Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Mais filtros

Medicinas Complementares
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Tradit Chin Med ; 43(1): 95-104, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36640000

RESUMO

OBJECTIVE: To explore whether kidney deficiency (KYD) is prone to metabolic disorders may be linked to impaired mitochondrial function in thermogenesis and metabolic tissues. METHODS: A rat model of KYD was used, which was established using Sprague Dawley rat dams with warm preference subjected to herbal treatment that can improve kidney . The human relevance was confirmed by reduced serum corticosterone levels, and increased preference for warm location. RESULTS: KYD Rats were underdeveloped. Adenosine-triphosphate (ATP) production was reduced in the brown fat, but increased in the muscle. However, oxidative phosphorylated complexes to generate ATP and mitochondrial biogenesis marker were reduced in both tissues. When the second insult of high-fat diet (HFD) was introduced, KYD rats gained less weight yet developed more severe lipid and glucose metabolic disorders. This may be driven by disregulated liver gluconeogenesis marker forkhead box protein O1 and lipid metabolic regulator cholesterol 7 alpha-hydroxylase. CONCLUSION: KYD rats exhibited reduced mito-chondrial function in the brown fat, but were partially compensated by skeletal muscle, associated with the phenotype of warm preference and metabolic disorder, which was further exacerbated by additional HFD consumption. Future studies can focus on treatment targetting mitochondria function to reverse this phenotype.


Assuntos
Doenças Metabólicas , Mitocôndrias , Ratos , Animais , Humanos , Ratos Sprague-Dawley , Mitocôndrias/genética , Mitocôndrias/metabolismo , Dieta Hiperlipídica/efeitos adversos , Trifosfato de Adenosina/metabolismo , Músculo Esquelético/metabolismo , Doenças Metabólicas/genética , Doenças Metabólicas/metabolismo , Lipídeos
2.
Front Biosci (Landmark Ed) ; 27(9): 253, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-36224002

RESUMO

SIRT1 was discovered in 1979 but growing interest in this protein occurred only 20 years later when its overexpression was reported to prolong the lifespan of yeast. Since then, several studies have shown the benefits of its increased expression in preventing or delaying of many diseases. SIRT1, as a histone deacetylase, is an epigenetic regulator but it has wide range of non-histone targets which are involved in metabolism, energy sensing pathways, circadian machinery and in inflammatory regulation. Disturbances in these interconnected processes cause different diseases, however it seems they have common roots in unbalanced inflammatory processes and lower level or inactivation of SIRT1. SIRT1 inactivation was implicated in coronavirus disease (COVID-19) severity as well and its low level counted as a predictor of uncontrolled COVID-19. Several other diseases such as metabolic disease, obesity, diabetes, Alzheimer's disease, cardiovascular disease or depression are related to chronic inflammation and similarly show decreased SIRT1 level. It has recently been known that SIRT1 is inducible by calorie restriction/proper diet, physical activity and appropriate emotional state. Indeed, a healthier metabolic state belongs to higher level of SIRT1 expression. These suggest that appropriate lifestyle as non-pharmacological treatment may be a beneficial tool in the prevention of inflammation or metabolic disturbance-related diseases as well as could be a part of the complementary therapy in medical practice to reach better therapeutic response and quality of life. We aimed in this review to link the beneficial effect of SIRT1 with those diseases, where its level decreased. Moreover, we aimed to collect evidences of interventions or treatments, which increase SIRT1 expression and thus, open the possibility to use them as preventive or complementary therapies in medical practice.


Assuntos
Epigênese Genética , Doenças Metabólicas , Neoplasias , Sirtuína 1 , COVID-19 , Homeostase , Humanos , Inflamação , Doenças Metabólicas/genética , Doenças Metabólicas/prevenção & controle , Neoplasias/genética , Neoplasias/prevenção & controle , Qualidade de Vida , Sirtuína 1/genética , Sirtuína 1/metabolismo
3.
Theranostics ; 12(6): 2631-2634, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401814

RESUMO

Obesity is a metabolic chronic disease whose prevalence is strongly growing in the last years, reaching pandemic proportions. Nowadays weight loss, achieved through lifestyle changes, is the first line therapeutic objective, although great inter-individual variabilities influence response to treatment, suggesting the involvement of epigenetic factors. In this contest, there is increasing recognition of the role of small RNA molecules, particularly microRNAs in the epigenetic regulation of genes involved in adipose tissue and glucose metabolism and several microRNAs have been found to be dysregulated in obesity and metabolic diseases. The development of novel personalized therapeutic strategies using microRNAs bears promise. However, the application of naked microRNAs has been hampered by their low specificity and sensitivity. In a recent issue of Theranostics, Kumar et al. explored the possibility of microRNA delivery through ginger-derived nanoparticles (GDNPs) as an alternative therapeutic approach for obesity treatment. The results reported by Kumar et al., addressing non-coding RNAs and edible plant derived nanoparticles, open new perspectives for the application of this innovative and safe delivery system in the clinical practice for the treatment of obesity and other metabolic disorders.


Assuntos
Doenças Metabólicas , MicroRNAs , Nanopartículas , Epigênese Genética , Humanos , Doenças Metabólicas/genética , Doenças Metabólicas/terapia , MicroRNAs/genética , MicroRNAs/metabolismo , Obesidade/metabolismo
4.
Biomed Res Int ; 2021: 4896282, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34926685

RESUMO

BACKGROUND: Constitution in traditional Chinese medicine (TCM) plays a key role in the genesis, development, and prognosis of diseases. Phlegm-dampness constitution (PDC) is one of the nine constitutions in TCM, susceptible to metabolic disorders, which is mainly manifested by profuse phlegm, loose abdomen, and greasy face. Epidemiologic, genomic, and epigenetic studies have been carried out in previous works, confirming that PDC represents a distinctive population with microcosmic changes related to metabolic disorders. However, whether long noncoding RNAs (lncRNAs) play a regulatory role in metabolic disease in subjects with PDC remains largely unknown. We aimed to investigate distinct lncRNA and mRNA expression signatures and lncRNA-mRNA regulatory networks in the phlegm-dampness constitution (PDC). METHODS: The peripheral blood mononuclear cells (PBMCs) were isolated from the subjects with PDC (n = 13) and balanced constitution (BC) (n = 9). The profiles of lncRNAs and mRNAs in PBMCs were analyzed using microarray and further validated with RT-qPCR. Subsequently, pathway analysis was performed to investigate the function of differentially expressed mRNAs by using Ingenuity Pathway Analysis (IPA). RESULTS: Results suggested that some mRNAs, which were regulated by the differentially expressed lncRNAs, were mainly enriched in lipid metabolism and immune inflammation-related pathways. This was consistent with the molecular characteristics of previous studies, indicating that the clinical characteristics of metabolic disorders in PDC might be regulated by lncRNAs. Furthermore, by making coexpression network construction as well as cis-regulated target gene analysis, several lncRNA-mRNA pairs with potential regulatory relationships were identified by bioinformatic analyses, including RP11-317J10.2-CA3, RP11-809C18.3-PIP4K2A, LINC0069-RFTN1, TTTY15-ARHGEF9, and AC135048.13-ORAI3. CONCLUSIONS: This study first revealed that the expression characteristics of lncRNAs/mRNAs may be potential biomarkers, indicating that the distinctive physical and clinical characteristics of PDC might be partially attributed to the specific expression signatures of lncRNAs/mRNAs.


Assuntos
RNA Longo não Codificante/genética , RNA Mensageiro/genética , Adulto , Biologia Computacional/métodos , Feminino , Redes Reguladoras de Genes/genética , Humanos , Inflamação/genética , Leucócitos Mononucleares/patologia , Metabolismo dos Lipídeos/genética , Masculino , Medicina Tradicional Chinesa/métodos , Doenças Metabólicas/genética
6.
Exp Mol Med ; 53(7): 1109-1115, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34211092

RESUMO

Obesity is a global health problem that is associated with adverse consequences such as the development of metabolic disorders, including cardiovascular disease, neurodegenerative disorders, and type 2 diabetes. A major cause of obesity is metabolic imbalance, which results from insufficient physical activity and excess energy intake. Understanding the pathogenesis of obesity, as well as other metabolic disorders, is important in the development of methods for prevention and therapy. The coordination of energy balance takes place in the hypothalamus, a major brain region that maintains body homeostasis. The primary cilium is an organelle that has recently received attention because of its role in controlling energy balance in the hypothalamus. Defects in proteins required for ciliary function and formation, both in humans and in mice, have been shown to cause various metabolic disorders. In this review, we provide an overview of the critical functions of primary cilia, particularly in hypothalamic areas, and briefly summarize the studies on the primary roles of cilia in specific neurons relating to metabolic homeostasis.


Assuntos
Cílios/fisiologia , Hipotálamo/metabolismo , Obesidade/patologia , Animais , Síndrome de Bardet-Biedl/genética , Síndrome de Bardet-Biedl/metabolismo , Síndrome de Bardet-Biedl/patologia , Metabolismo Energético , Homeostase/fisiologia , Humanos , Hipotálamo/citologia , Leptina/metabolismo , Doenças Metabólicas/genética , Doenças Metabólicas/metabolismo , Camundongos , Neurônios/metabolismo , Neurônios/patologia , Obesidade/metabolismo , Proteínas/genética , Proteínas/metabolismo
7.
Nutrients ; 13(5)2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34062793

RESUMO

Selenium (Se) is an essential element for the maintenance of a healthy physiological state. However, due to environmental and dietary factors and the narrow safety range of Se, diseases caused by Se deficiency or excess have gained considerable traction in recent years. In particular, links have been identified between low Se status, cognitive decline, immune disorders, and increased mortality, whereas excess Se increases metabolic risk. Considerable evidence has suggested microRNAs (miRNAs) regulate interactions between the environment (including the diet) and genes, and play important roles in several diseases, including cancer. MiRNAs target messenger RNAs to induce changes in proteins including selenoprotein expression, ultimately generating disease. While a plethora of data exists on the epigenetic regulation of other dietary factors, nutrient Se epigenetics and especially miRNA regulated mechanisms remain unclear. Thus, this review mainly focuses on Se metabolism, pathogenic mechanisms, and miRNAs as key regulatory factors in Se-related diseases. Finally, we attempt to clarify the regulatory mechanisms underpinning Se, miRNAs, selenoproteins, and Se-related diseases.


Assuntos
Doenças Metabólicas/metabolismo , MicroRNAs/efeitos dos fármacos , Fenômenos Fisiológicos da Nutrição/genética , Selênio/metabolismo , Selenoproteínas/metabolismo , Epigênese Genética/efeitos dos fármacos , Humanos , Doenças Metabólicas/genética
8.
Mol Genet Metab ; 132(4): 227-233, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33610471

RESUMO

INTRODUCTION: Triheptanoin provides long-chain fatty acid oxidation disorder (LC-FAOD) patients with an alternative to medium-even-chain triglycerides therapy. MATERIAL-METHODS: Retrospective analysis of 18 French LC-FAOD patients benefiting from early access to triheptanoin treatment. RESULTS: Eight female and 10 male patients with LC-FAOD (VLCAD, LCHAD, CACT, CPTII and MTP) were treated with triheptanoin for a median duration of 22 months (range: 9-228 months). At last consultation, triheptanoin accounted for 15-35% of their daily caloric intake. In the year following the introduction of triheptanoin, patients reported a reduction of intermittent snacking and nocturnal meals. Three patients, including 1 adult, became free of severe hypoglycaemic events. Ten of 12 paediatric patients and 4 of 6 adult patients reported reduced fatigue with reductions in the number and severity of episodes of myalgia. Of 6 patients, including 1 adult, that had required the use of a wheelchair in the year prior to triheptanoin, all but one no longer required its use. The number of emergency hospitalizations decreased, and none were recorded for paediatric patients during these 12 months. Cumulative annual days of emergency care in the home were reduced from 286 to 51 days in the year before and after initiation, respectively, and 13 patients required no such interventions. Adverse events were limited to digestive issues that dissipated over time. CONCLUSIONS: Our case-series suggests that long-term treatment of LC-FAOD paediatric and adult patients with triheptanoin is safe and leads to marked improvement of symptoms and an improved quality of life.


Assuntos
Acil-CoA Desidrogenase de Cadeia Longa/genética , Doenças Metabólicas/tratamento farmacológico , Triglicerídeos/administração & dosagem , Acil-CoA Desidrogenase de Cadeia Longa/deficiência , Adolescente , Adulto , Carnitina/genética , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Doenças Metabólicas/genética , Doenças Metabólicas/patologia , Oxirredução/efeitos dos fármacos , Qualidade de Vida , Estudos Retrospectivos , Resultado do Tratamento , Adulto Jovem
9.
Clin Biochem ; 90: 66-72, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33539811

RESUMO

BACKGROUND: A small amount of methanol is produced endogenously in the human body but it is efficiently metabolized by alcohol dehydrogenase (ADH) and other enzymes, and the products eliminated without harm. In this study, we present a new entity of inborn error of methanol metabolism due to a mutation in the ADH1C gene coding for the γ subunit that is part of several ADH isoenzymes. RESULTS: This disorder was discovered in an 11.58-year-old boy. During one 9-month hospital admission, he had periods of 1-4 days during which he was comatose, and between these periods he was sometimes verbose and euphoric, and had ataxia, dysarthria. Following hemodialysis treatments, he became conscious and appeared healthy. Organ evaluations and his laboratory tests were normal. Toxicological evaluation of his blood showed a high methanol level [12.2 mg/dL (3.8 mmol/L), normal range up to 3.5 mg/dL (1.09 mmol/L) while the formaldehyde level was undetectable. The finding of liver function tests that were within normal limits, coupled with a normal eye examination and size of the liver, elevated blood methanol levels and an undetectable formaldehyde level, suggested ADH insufficiency. Adding zinc to the drug regimen 15 mg/daily dramatically reduced the patient's methanol level and alleviated the abnormal symptoms. When zinc supplementation was discontinued, the patient relapsed into a coma and hemodialysis was once again required. A homozygous mutation in ADH1C gene located at exon 3 was found, and both parents were heterozygous for this mutation. CONCLUSION: Accumulation of methanol due to mutation in ADH1C gene may result in drunkenness and ataxia, and leads to coma. This condition can be successfully treated with zinc supplementation as the cofactor of ADH.


Assuntos
Álcool Desidrogenase/genética , Erros Inatos do Metabolismo/diagnóstico , Erros Inatos do Metabolismo/genética , Metanol/sangue , Álcool Desidrogenase/metabolismo , Intoxicação Alcoólica/complicações , Ataxia/complicações , Criança , Coma/etiologia , Éxons/genética , Heterozigoto , Humanos , Fígado/metabolismo , Masculino , Doenças Metabólicas/diagnóstico , Doenças Metabólicas/genética , Erros Inatos do Metabolismo/complicações , Erros Inatos do Metabolismo/terapia , Metanol/metabolismo , Mutação , Diálise Renal/métodos , Resultado do Tratamento , Zinco/administração & dosagem
10.
Addict Biol ; 26(1): e12856, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-31782234

RESUMO

Worldwide consumption of opioids remains at historic levels. Preclinical studies report intergenerational effects on the endogenous opioid system of future progeny following preconception morphine exposure. Given the role of endogenous opioids in energy homeostasis, such effects could impact metabolism in the next generation. Thus, we examined diet-induced modifications in F1 male progeny of morphine-exposed female rats (MORF1). When fed a high fat-sugar diet (FSD) for 6 weeks, MORF1 males display features of emerging metabolic syndrome; they consume more food, gain more weight, and develop fasting-induced hyperglycemia and hyperinsulinemia. In the hypothalamus, proteins involved in energy homeostasis are modified and RNA sequencing revealed down-regulation of genes associated with neuronal plasticity, coupled with up-regulation of genes associated with immune, inflammatory, and metabolic processes that are specific to FSD-maintained MORF1 males. Thus, limited preconception morphine exposure in female rats increases the risk of metabolic syndrome/type 2 diabetes in the next generation.


Assuntos
Analgésicos Opioides/farmacologia , Doenças Metabólicas/genética , Efeitos Tardios da Exposição Pré-Natal/genética , Animais , Dieta Hiperlipídica , Feminino , Hipotálamo/metabolismo , Masculino , Morfina/farmacologia , Gravidez , Ratos
11.
J Nutr ; 150(Suppl 1): 2506S-2517S, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33000152

RESUMO

The metabolism of sulfur-containing amino acids (SAAs) requires an orchestrated interplay among several dozen enzymes and transporters, and an adequate dietary intake of methionine (Met), cysteine (Cys), and B vitamins. Known human genetic disorders are due to defects in Met demethylation, homocysteine (Hcy) remethylation, or cobalamin and folate metabolism, in Hcy transsulfuration, and Cys and hydrogen sulfide (H2S) catabolism. These disorders may manifest between the newborn period and late adulthood by a combination of neuropsychiatric abnormalities, thromboembolism, megaloblastic anemia, hepatopathy, myopathy, and bone and connective tissue abnormalities. Biochemical features include metabolite deficiencies (e.g. Met, S-adenosylmethionine (AdoMet), intermediates in 1-carbon metabolism, Cys, or glutathione) and/or their accumulation (e.g. S-adenosylhomocysteine, Hcy, H2S, or sulfite). Treatment should be started as early as possible and may include a low-protein/low-Met diet with Cys-enriched amino acid supplements, pharmacological doses of B vitamins, betaine to stimulate Hcy remethylation, the provision of N-acetylcysteine or AdoMet, or experimental approaches such as liver transplantation or enzyme replacement therapy. In several disorders, patients are exposed to long-term markedly elevated Met concentrations. Although these conditions may inform on Met toxicity, interpretation is difficult due to the presence of additional metabolic changes. Two disorders seem to exhibit Met-associated toxicity in the brain. An increased risk of demyelination in patients with Met adenosyltransferase I/III (MATI/III) deficiency due to biallelic mutations in the MATIA gene has been attributed to very high blood Met concentrations (typically >800 µmol/L) and possibly also to decreased liver AdoMet synthesis. An excessively high Met concentration in some patients with cystathionine ß-synthase deficiency has been associated with encephalopathy and brain edema, and direct toxicity of Met has been postulated. In summary, studies in patients with various disorders of SAA metabolism showed complex metabolic changes with distant cellular consequences, most of which are not attributable to direct Met toxicity.


Assuntos
Aminoácidos Sulfúricos/metabolismo , Cisteína/metabolismo , Homocisteína/metabolismo , Doenças Metabólicas/genética , Metionina/metabolismo , Compostos de Enxofre/metabolismo , Enxofre/metabolismo , Animais , Encefalopatias/etiologia , Encefalopatias/metabolismo , Glutationa/metabolismo , Homocistinúria/etiologia , Homocistinúria/metabolismo , Humanos , Sulfeto de Hidrogênio/metabolismo , Fígado/metabolismo , Doenças Metabólicas/metabolismo , Doenças Metabólicas/patologia , Doenças Metabólicas/terapia , Erros Inatos do Metabolismo/patologia , Erros Inatos do Metabolismo/terapia , Metionina Adenosiltransferase/metabolismo , Metilação , S-Adenosilmetionina/metabolismo , Sulfitos/metabolismo
12.
J Nutr ; 150(Suppl 1): 2556S-2560S, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33000154

RESUMO

Lysine is an essential amino acid, and inherited diseases of its metabolism therefore represent defects of lysine catabolism. Although some of these enzyme defects are not well described yet, glutaric aciduria type I (GA1) and antiquitin (2-aminoadipic-6-semialdehyde dehydrogenase) deficiency represent the most well-characterized diseases. GA1 is an autosomal recessive disorder due to a deficiency of glutaryl-CoA dehydrogenase. Untreated patients exhibit early onset macrocephaly and may present a neurological deterioration with regression and movement disorder at the time of a presumably "benign" infection most often during the first year of life. This is associated with a characteristic neuroimaging pattern with frontotemporal atrophy and striatal injuries. Diagnosis relies on the identification of glutaric and 3-hydroxyglutaric acid in urine along with plasma glutarylcarnitine. Treatment consists of a low-lysine diet aiming at reducing the putatively neurotoxic glutaric and 3-hydroxyglutaric acids. Additional therapeutic measures include administration of l-carnitine associated with emergency measures at the time of intercurrent illnesses aiming at preventing brain injury. Early treated (ideally through newborn screening) patients exhibit a favorable long-term neurocognitive outcome, whereas late-treated or untreated patients may present severe neurocognitive irreversible disabilities. Antiquitin deficiency is the most common form of pyridoxine-dependent epilepsy. α-Aminoadipic acid semialdehyde (AASA) and Δ-1-piperideine-6-carboxylate (P6C) accumulate proximal to the enzymatic block. P6C forms a complex with pyridoxal phosphate (PLP), a key vitamer of pyridoxine, thereby reducing PLP bioavailability and subsequently causing epilepsy. Urinary AASA is a biomarker of antiquitin deficiency. Despite seizure control, only 25% of the pyridoxine-treated patients show normal neurodevelopment. Low-lysine diet and arginine supplementation are proposed in some patients with decrease of AASA, but the impact on neurodevelopment is unclear. In summary, GA1 and antiquitin deficiency are the 2 main human defects of lysine catabolism. Both include neurological impairment. Lysine dietary restriction is a key therapy for GA1, whereas its benefits in antiquitin deficiency appear less clear.


Assuntos
Aldeído Desidrogenase/deficiência , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Encefalopatias Metabólicas Congênitas/metabolismo , Encefalopatias Metabólicas/metabolismo , Encéfalo/metabolismo , Epilepsia/metabolismo , Glutaril-CoA Desidrogenase/deficiência , Lisina/metabolismo , Ácido 2-Aminoadípico/análogos & derivados , Ácido 2-Aminoadípico/metabolismo , Aldeído Desidrogenase/metabolismo , Erros Inatos do Metabolismo dos Aminoácidos/terapia , Arginina/uso terapêutico , Encéfalo/patologia , Encefalopatias Metabólicas/terapia , Encefalopatias Metabólicas Congênitas/terapia , Carnitina/análogos & derivados , Carnitina/metabolismo , Carnitina/uso terapêutico , Epilepsia/terapia , Glutaratos/metabolismo , Glutaril-CoA Desidrogenase/metabolismo , Humanos , Doenças Metabólicas/genética , Doenças Metabólicas/metabolismo , Doenças Metabólicas/terapia , Fosfato de Piridoxal/metabolismo , Piridoxina/metabolismo , Piridoxina/uso terapêutico
13.
Am J Chin Med ; 48(6): 1409-1433, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32907360

RESUMO

Scutellaria baicalensis (SB), a herbal medicine, is commonly used to treat metabolic diseases, while Metformin (MF) is a widely used drug for type 2 diabetes. The purpose of this study was to investigate whether co-treatment of SB with MF could produce a potential therapeutic effect on high-fat and high-fructose diet (HFFD)-induced metabolic dysregulation. First, we optimized the dose of SB (100, 200, 400, and 800[Formula: see text]mg/kg) with MF (200[Formula: see text]mg/kg) in HFFD-induced C57BL6J mice. Next, the optimized dose of SB (400[Formula: see text]mg/kg) was co-administered with MF (50, 100, and 200[Formula: see text]mg/kg) in a similar animal model to find the effective combinations of SB and MF. Metabolic markers were determined in serum and tissues using different assays, histology, gene expression, and gut microbial population. The SB and MF co-treatment significantly decreased the body, liver, and VAT weights. The outcome of OGTT was improved, and the fasting insulin, HbA1c, TG, TC, LDL-c, AST, and ALT were decreased, while HDL-c was significantly increased. Histological analyses revealed maintained the integrity of liver, adipose tissue, and intestine prevented lipid accumulation in the liver and intestine and combated neuronal damage in the brain. Importantly, controlled the expression of PPAR[Formula: see text], and IL-6 genes in the liver, and expression of BDNF, Glut1, Glut3, and Glut4 genes in the brain. Treatment-specific gut microbial segregation was observed in the PCA chart. Our findings indicate that SB and MF co-treatment is an effective therapeutic approach for HFFD-induced metabolic dysregulation which is operated through the gut-liver-brain axis.


Assuntos
Encéfalo/metabolismo , Microbioma Gastrointestinal , Fígado/metabolismo , Doenças Metabólicas/tratamento farmacológico , Doenças Metabólicas/metabolismo , Metformina/administração & dosagem , Metformina/farmacologia , Fitoterapia , Extratos Vegetais/administração & dosagem , Extratos Vegetais/farmacologia , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Dieta da Carga de Carboidratos/efeitos adversos , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Quimioterapia Combinada , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Masculino , Doenças Metabólicas/genética , Doenças Metabólicas/microbiologia , Camundongos Endogâmicos C57BL , PPAR gama/genética , PPAR gama/metabolismo , Scutellaria baicalensis
14.
J Neuroinflammation ; 17(1): 285, 2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-32993686

RESUMO

BACKGROUND: Hypothalamic dysfunction occurs early in the clinical course of Alzheimer's disease (AD), likely contributing to disturbances in feeding behavior and metabolic function that are often observed years prior to the onset of cognitive symptoms. Late-life weight loss and low BMI are associated with increased risk of dementia and faster progression of disease. However, high-fat diet and metabolic disease (e.g., obesity, type 2 diabetes), particularly in mid-life, are associated with increased risk of AD, as well as exacerbated AD pathology and behavioral deficits in animal models. In the current study, we explored possible relationships between hypothalamic function, diet/metabolic status, and AD. Considering the sex bias in AD, with women representing two-thirds of AD patients, we sought to determine whether these relationships vary by sex. METHODS: WT and 3xTg-AD male and female mice were fed a control (10% fat) or high-fat (HF 60% fat) diet from ~ 3-7 months of age, then tested for metabolic and hypothalamic disturbances. RESULTS: On control diet, male 3xTg-AD mice displayed decreased body weight, reduced fat mass, hypoleptinemia, and mild systemic inflammation, as well as increased expression of gliosis- and inflammation-related genes in the hypothalamus (Iba1, GFAP, TNF-α, IL-1ß). In contrast, female 3xTg-AD mice on control diet displayed metabolic disturbances opposite that of 3xTg-AD males (increased body and fat mass, impaired glucose tolerance). HF diet resulted in expected metabolic alterations across groups (increased body and fat mass; glucose intolerance; increased plasma insulin and leptin, decreased ghrelin; nonalcoholic fatty liver disease-related pathology). HF diet resulted in the greatest weight gain, adiposity, and glucose intolerance in 3xTg-AD females, which were associated with markedly increased hypothalamic expression of GFAP and IL-1ß, as well as GFAP labeling in several hypothalamic nuclei that regulate energy balance. In contrast, HF diet increased diabetes markers and systemic inflammation preferentially in AD males but did not exacerbate hypothalamic inflammation in this group. CONCLUSIONS: These findings provide further evidence for the roles of hypothalamic and metabolic dysfunction in AD, which in the 3xTg-AD mouse model appears to be dependent on both sex and diet.


Assuntos
Doença de Alzheimer/metabolismo , Glicemia/metabolismo , Dieta Hiperlipídica/efeitos adversos , Hipotálamo/metabolismo , Doenças Metabólicas/metabolismo , Caracteres Sexuais , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Animais , Glicemia/genética , Feminino , Hipotálamo/patologia , Masculino , Doenças Metabólicas/genética , Doenças Metabólicas/patologia , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia
15.
Nat Commun ; 11(1): 1914, 2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32313051

RESUMO

Obesity is associated with the activation of cellular responses, such as endoplasmic reticulum (ER) stress. Here, we show that leptin-deficient ob/ob mice display elevated hypothalamic ER stress as early as postnatal day 10, i.e., prior to the development of obesity in this mouse model. Neonatal treatment of ob/ob mice with the ER stress-relieving drug tauroursodeoxycholic acid (TUDCA) causes long-term amelioration of body weight, food intake, glucose homeostasis, and pro-opiomelanocortin (POMC) projections. Cells exposed to ER stress often activate autophagy. Accordingly, we report that in vitro induction of ER stress and neonatal leptin deficiency in vivo activate hypothalamic autophagy-related genes. Furthermore, genetic deletion of autophagy in pro-opiomelanocortin neurons of ob/ob mice worsens their glucose homeostasis, adiposity, hyperphagia, and POMC neuronal projections, all of which are ameliorated with neonatal TUDCA treatment. Together, our data highlight the importance of early life ER stress-autophagy pathway in influencing hypothalamic circuits and metabolic regulation.


Assuntos
Autofagia/fisiologia , Estresse do Retículo Endoplasmático/fisiologia , Metabolismo Energético/fisiologia , Hipotálamo/metabolismo , Leptina/metabolismo , Neurogênese/fisiologia , Adiposidade , Animais , Antivirais/farmacologia , Autofagia/efeitos dos fármacos , Autofagia/genética , Proteína 7 Relacionada à Autofagia/genética , Peso Corporal/efeitos dos fármacos , Peso Corporal/fisiologia , Colagogos e Coleréticos/farmacologia , Modelos Animais de Doenças , Ingestão de Alimentos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/genética , Comportamento Alimentar , Homeostase , Hiperfagia/metabolismo , Leptina/genética , Masculino , Doenças Metabólicas/genética , Doenças Metabólicas/metabolismo , Camundongos , Camundongos Endogâmicos , Camundongos Knockout , Neuroendocrinologia , Neurogênese/efeitos dos fármacos , Obesidade/metabolismo , Pró-Opiomelanocortina/metabolismo , Ácido Tauroquenodesoxicólico
16.
Biochim Biophys Acta Mol Basis Dis ; 1866(6): 165716, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32061776

RESUMO

Thiosulfate sulfurtransferase (TST, EC 2.8.1.1), also known as Rhodanese, is a mitochondrial enzyme which catalyzes the transfer of sulfur in several molecular pathways. After its initial identification as a cyanide detoxification enzyme, it was found that its functions also include sulfur metabolism, modification of iron­sulfur clusters and the reduction of antioxidants glutathione and thioredoxin. TST deficiency was shown to be strongly related to the pathophysiology of metabolic diseases including diabetes and obesity. This review summarizes research related to the enzymatic properties and functions of TST, to then explore the association between the effects of TST on mitochondria and development of diseases such as diabetes and obesity.


Assuntos
Antioxidantes/metabolismo , Doenças Metabólicas/genética , Enxofre/metabolismo , Tiossulfato Sulfurtransferase/genética , Glutationa/metabolismo , Humanos , Proteínas Ferro-Enxofre/genética , Doenças Metabólicas/enzimologia , Doenças Metabólicas/patologia , Selênio/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Tiossulfato Sulfurtransferase/metabolismo
17.
Pharmacol Res ; 152: 104627, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31904505

RESUMO

Traditional Chinese medicine (TCM) has been broadly used for the personalized treatment of many diseases in China for thousands of years. In the past century, TCM was also introduced to other Asian countries and even the Western world. Increasing evidence has shown that TCM has the capacity to treat numerous complex diseases in the clinic, such as cardiovascular diseases (CVDs), infectious diseases, metabolic diseases, and neurodegenerative diseases. However, the earlier lack of analytical strategies to annotate the chemical complexity has severely impeded the modern study and translational application of TCM. This critical review aims to explore and exploit applications of systems biology-driven omics methods in TCM against a diversity of diseases, toward the specific use of TCM to treat patients with different diseases. Such effort shall enhance the applicability of systems biology-driven omics strategies in deciphering the mechanisms by which TCM treats different diseases and may lead to the discovery of new therapeutic directions. In addition, we proposed the possible strategies to innovate the applicable pattern of omics technologies in TCM niches, such as precision-modification metabolomics and chinmedomics methods, allowing to unveil the complexity of TCM, which must enable TCM to serve better for the population-health. Taken together, this review eventually shall highlight the core value of omics technologies in innovating TCM to combat the diseases in a new horizon.


Assuntos
Doenças Cardiovasculares/tratamento farmacológico , Infecções/tratamento farmacológico , Medicina Tradicional Chinesa , Doenças Metabólicas/tratamento farmacológico , Doenças Neurodegenerativas/tratamento farmacológico , Animais , Doenças Cardiovasculares/genética , Biologia Computacional , Descoberta de Drogas , Humanos , Infecções/genética , Doenças Metabólicas/genética , Doenças Neurodegenerativas/genética
18.
Food Funct ; 10(11): 7216-7226, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31612177

RESUMO

Offspring of dams exposed to excess folic acid during the perigestational period have been shown by us to be predisposed to metabolic dysfunction revealed by hyperglycemia, glucose intolerance, increased insulin and decreased adiponectin in late adulthood. This work aims to characterize adipocyte phenotype and expression profile of genes in the regulation of lipid and glucose metabolism in visceral adipose tissue and in skeletal muscle. From mating until weaning, a recommended dose of folic acid for pregnancy (C, 2 mg of folic acid per kg of diet) or a high folic acid dose (HFA, 40 mg of folic acid per kg of diet) was administered to Sprague-Dawley females. At 10 months of age progeny were divided into groups fed the standard chow (C/STD and HFA/STD) and groups fed the standard chow plus drinking water with 10% fructose (C/FRU and HFA/FRU), as an additional metabolic challenge. Adipocyte morphology and quantification of key genes involved in lipid and glucose metabolism were studied in visceral adipose tissue and skeletal muscle of 13 months old offspring. HFA exposure led to an enlargement of visceral adipose cells most likely mediated by an upregulation of lipoprotein lipase, and it tended to downregulate Glut4 in visceral adipose tissue and skeletal muscle. Fructose exposure in a background of perigestational excess folic acid, but not in controls, induced an upregulation of lipogenesis pathway genes and it decreased jejunal expression of the proton-coupled folate transporter (Pcft1). In addition, fructose exposure led to a downregulation of jejunal Sglt1 in control animals. Our data suggest that high folic acid exposure during the perigestational period caused morphologic and genic alterations related to insulin resistant states indicating that this intervention may act as an effective programmer of long-term metabolic dysfunction.


Assuntos
Suplementos Nutricionais/efeitos adversos , Ácido Fólico/efeitos adversos , Doenças Metabólicas/etiologia , Efeitos Tardios da Exposição Pré-Natal/etiologia , Animais , Suplementos Nutricionais/análise , Feminino , Ácido Fólico/administração & dosagem , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/metabolismo , Resistência à Insulina , Gordura Intra-Abdominal/metabolismo , Masculino , Fenômenos Fisiológicos da Nutrição Materna , Doenças Metabólicas/genética , Doenças Metabólicas/metabolismo , Músculo Esquelético/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal/genética , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Transportador de Folato Acoplado a Próton/genética , Transportador de Folato Acoplado a Próton/metabolismo , Ratos , Ratos Sprague-Dawley
19.
Nutrients ; 11(8)2019 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-31408957

RESUMO

Nowadays, it is well-known that the deregulation of epigenetic machinery is a common biological event leading to the development and progression of metabolic disorders. Moreover, the expression level and actions of leptin, a vast adipocytokine regulating energy metabolism, appear to be strongly associated with epigenetics. Therefore, the aim of this review was to summarize the current knowledge of the epigenetic regulation of leptin as well as the leptin-induced epigenetic modifications in metabolic disorders and associated phenomena. The collected data indicated that the deregulation of leptin expression and secretion that occurs during the course of metabolic diseases is underlain by a variation in the level of promoter methylation, the occurrence of histone modifications, along with miRNA interference. Furthermore, leptin was proven to epigenetically regulate several miRNAs and affect the activity of the histone deacetylases. These epigenetic modifications were observed in obesity, gestational diabetes, metabolic syndrome and concerned various molecular processes like glucose metabolism, insulin sensitivity, liver fibrosis, obesity-related carcinogenesis, adipogenesis or fetal/early postnatal programming. Moreover, the circulating miRNA profiles were associated with the plasma leptin level in metabolic syndrome, and miRNAs were found to be involved in hypothalamic leptin sensitivity. In summary, the evidence suggests that leptin is both a target and a mediator of epigenetic changes that develop in numerous tissues during metabolic disorders.


Assuntos
Diabetes Gestacional , Epigênese Genética , Leptina/metabolismo , Síndrome Metabólica , MicroRNAs/metabolismo , Obesidade , Adipogenia/genética , Animais , Metilação de DNA , Diabetes Gestacional/genética , Diabetes Gestacional/metabolismo , Feminino , Desenvolvimento Fetal , Código das Histonas/genética , Humanos , Hipotálamo/metabolismo , Doenças Metabólicas/genética , Doenças Metabólicas/metabolismo , Síndrome Metabólica/genética , Síndrome Metabólica/metabolismo , Obesidade/genética , Obesidade/metabolismo , Gravidez
20.
BMC Pediatr ; 19(1): 229, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31288771

RESUMO

BACKGROUND: Manganese is a critical trace element that not only has antioxidant properties, but also is essential for various metabolic pathways and neurotransmitters production. However, it can be toxic at high levels, particularly in the central nervous system. Manganese intoxication can be acquired, but an inherited form due to autosomal-recessive mutations in the SLC30A10 gene encoding a Mn transporter protein has also been reported recently. These mutations are associated with significant failure of manganese excretion and its storage in the liver, brain (especially basal ganglia), and other peripheral tissues, resulting in toxicity. CASE PRESENTATION: A 10-year-old boy from consanguineous parents presented with a history of progressive truncal instability, gait difficulty, and frequent falls for 2 months. He had dystonia, rigidity, ataxia, dysarthria, bradykinesia and a plethoric skin. Investigations showed polycythemia, low serum iron and ferritin levels, and increased total iron binding capacity. A brain MRI revealed symmetric hyperintensities in the basal ganglia and dentate nucleuses on TI images that were suggestive of brain metal deposition together with clinical manifestations. Serum calcium and copper levels were normal, while the manganese level was significantly higher than normal values. There was no history of environmental overexposure to manganese. Genetic testing showed a homozygous missense mutation in SLC30A10 (c.C1006T, p.His336Tyr) and Sanger sequencing confirmed a homozygous state in the proband and a heterozygous state in the parents. Regular treatment with monthly infusions of disodium calcium edetate and oral iron compounds resulted in decreased serum manganese and hemoglobin levels to normal values, significant resolution of MRI lesions, and partial improvement of neurological symptoms during 6 months of follow-up. CONCLUSION: The syndrome of hepatic cirrhosis, dystonia, polycythemia, and hypermanganesemia caused by SLC30A10 mutation is a treatable inherited metal deposition syndrome. The patient may only have pure neurological without hepatic manifestations. Although this is a rare and potentially fatal inborn error of metabolism, early diagnosis and continuous chelation therapy might improve the symptoms and prevent disease progression.


Assuntos
Proteínas de Transporte de Cátions/genética , Manganês/metabolismo , Doenças Metabólicas/genética , Mutação de Sentido Incorreto , Mutação Puntual , Encéfalo/patologia , Terapia por Quelação , Criança , Consanguinidade , Ácido Edético/uso terapêutico , Genótipo , Humanos , Compostos de Ferro/uso terapêutico , Imageamento por Ressonância Magnética , Masculino , Doenças Metabólicas/diagnóstico por imagem , Doenças Metabólicas/tratamento farmacológico , Neuroimagem , Sequenciamento do Exoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA