Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.593
Filtrar
Mais filtros

Medicinas Complementares
Intervalo de ano de publicação
1.
Physiol Plant ; 176(2): e14293, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38641970

RESUMO

MicroRNAs (miRNAs) are small noncoding RNAs in eukaryotes. Plant endogenous miRNAs play pivotal roles in regulating plant development and defense responses. MicroRNA394 (miR394) has been reported to regulate plant development, abiotic stresses and defense responses. Previous reports showed that miR394 responded to P. infestans inoculation in potato, indicating that miR394 may be involved in defense responses. In this study, we further investigated its role in potato defense against P. infestans. Stable expression of miR394 in tobacco and potato enhances the susceptibility to P. infestans, which is accompanied with the reduced accumulation of ROS and down-regulation of the PTI (pattern-triggered immunity) marker genes. Besides well-known target StLCR, miR394 also targets StA/N-INVE, which encodes a chloroplast Alkaline/Neutral Invertases (A/N-INVE). Both StLCR and StA/N-INVE positively regulate late blight resistance, while miR394 degrades them. Interestingly, StA/N-INVE is located in the chloroplast, indicating that miR394 may manipulate chloroplast immunity. Degradation of StA/N-INVE may affect the chloroplast function and hence lead to the compromised ROS (reactive oxygen species) burst and reduced retrograde signaling from the chloroplast to the nucleus and cytoplasm. In summary, this study provides new information that miR394 targets and degrades StA/N-INVE and StLCR, which are positive regulators, to enhance potato susceptibility to P. infestans.


Assuntos
MicroRNAs , Phytophthora infestans , Solanum tuberosum , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Phytophthora infestans/genética , Phytophthora infestans/metabolismo , Plantas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Doenças das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
2.
PLoS Pathog ; 20(4): e1012142, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38574111

RESUMO

RNA viruses and viroids exist and evolve as quasispecies due to error-prone replication. Quasispecies consist of a few dominant master sequences alongside numerous variants that contribute to genetic diversity. Upon environmental changes, certain variants within quasispecies have the potential to become the dominant sequences, leading to the emergence of novel infectious strains. However, the emergence of new infectious variants remains unpredictable. Using mutant pools prepared by saturation mutagenesis of selected stem and loop regions, our study of potato spindle tuber viroid (PSTVd) demonstrates that mutants forming local three-dimensional (3D) structures similar to the wild type (WT) are more likely to accumulate in PSTVd quasispecies. The selection mechanisms underlying this biased accumulation are likely associated with cell-to-cell movement and long-distance trafficking. Moreover, certain trafficking-defective PSTVd mutants can be spread by functional sister genomes in the quasispecies. Our study reveals that the RNA 3D structure of stems and loops constrains the evolution of viroid quasispecies. Mutants with a structure similar to WT have a higher likelihood of being maintained within the quasispecies and can potentially give rise to novel infectious variants. These findings emphasize the potential of targeting RNA 3D structure as a more robust approach to defend against viroid infections.


Assuntos
Vírus de Plantas , Solanum tuberosum , Viroides , Viroides/genética , Solanum tuberosum/genética , RNA Viral/genética , RNA Viral/química , Quase-Espécies , Mutagênese , Doenças das Plantas , Vírus de Plantas/genética
3.
Theor Appl Genet ; 137(5): 106, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38622441

RESUMO

KEY MESSAGE: A new resistance locus acting against the potato cyst nematode Globodera pallida was mapped to chromosome VI in the diploid wild potato species Solanum spegazzinii CPC 7195. The potato cyst nematodes (PCN) Globodera pallida and Globodera rostochiensis are economically important potato pests in almost all regions where potato is grown. One important management strategy involves deployment through introgression breeding into modern cultivars of new sources of naturally occurring resistance from wild potato species. We describe a new source of resistance to G. pallida from wild potato germplasm. The diploid species Solanum spegazzinii Bitter accession CPC 7195 shows resistance to G. pallida pathotypes Pa1 and Pa2/3. A cross and first backcross of S. spegazzinii with Solanum tuberosum Group Phureja cultivar Mayan Gold were performed, and the level of resistance to G. pallida Pa2/3 was determined in progeny clones. Bulk-segregant analysis (BSA) using generic mapping enrichment sequencing (GenSeq) and genotyping-by-sequencing were performed to identify single-nucleotide polymorphisms (SNPs) that are genetically linked to the resistance, using S. tuberosum Group Phureja clone DM1-3 516 R44 as a reference genome. These SNPs were converted into allele-specific PCR assays, and the resistance was mapped to an interval of roughly 118 kb on chromosome VI. This newly identified resistance, which we call Gpa VIlspg, can be used in future efforts to produce modern cultivars with enhanced and broad-spectrum resistances to the major pests and pathogens of potato.


Assuntos
Solanum tuberosum , Solanum , Tylenchoidea , Animais , Solanum tuberosum/genética , Solanum/genética , Doenças das Plantas/genética , Melhoramento Vegetal
4.
BMC Plant Biol ; 24(1): 332, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664645

RESUMO

BACKGROUND: Aconitum carmichaelii Debx. has been widely used as a traditional medicinal herb for a long history in China. It is highly susceptible to various dangerous diseases during the cultivation process. Downy mildew is the most serious leaf disease of A. carmichaelii, affecting plant growth and ultimately leading to a reduction in yield. To better understand the response mechanism of A. carmichaelii leaves subjected to downy mildew, the contents of endogenous plant hormones as well as transcriptome sequencing were analyzed at five different infected stages. RESULTS: The content of 3-indoleacetic acid, abscisic acid, salicylic acid and jasmonic acid has changed significantly in A. carmichaelii leaves with the development of downy mildew, and related synthetic genes such as 9-cis-epoxycarotenoid dioxygenase and phenylalanine ammonia lyase were also significant for disease responses. The transcriptomic data indicated that the differentially expressed genes were primarily associated with plant hormone signal transduction, plant-pathogen interaction, the mitogen-activated protein kinase signaling pathway in plants, and phenylpropanoid biosynthesis. Many of these genes also showed potential functions for resisting downy mildew. Through weighted gene co-expression network analysis, the hub genes and genes that have high connectivity to them were identified, which could participate in plant immune responses. CONCLUSIONS: In this study, we elucidated the response and potential genes of A. carmichaelii to downy mildew, and observed the changes of endogenous hormones content at different infection stages, so as to contribute to the further screening and identification of genes involved in the defense of downy mildew.


Assuntos
Aconitum , Doenças das Plantas , Reguladores de Crescimento de Plantas , Transcriptoma , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Aconitum/genética , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/microbiologia , Folhas de Planta/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas
5.
Sci Rep ; 14(1): 9374, 2024 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653777

RESUMO

Colletotrichum is an important plant pathogenic fungi that causes anthracnose/-twister disease in onion. This disease was prevalent in the monsoon season from August to November months and the symptoms were observed in most of the fields. This study aimed to investigate the pathogenicity and cumulative effect, if any of Colletotrichum gloeosporioides and Fusarium acutatum. The pot experiment was laid out to identify the cause responsible for inciting anthracnose-twister disease, whether the Colletotrichum or Fusarium or both, or the interaction of pathogens and GA3. The results of the pathogenicity test confirmed that C. gloeosporioides and F. acutatum are both pathogenic. C. gloeosporioides caused twisting symptoms independently, while F.acutatum independently caused only neck elongation. The independent application of GA3 did not produce any symptoms, however, increased the plant height. The combined treatment of C. gloeosporioides and F. acutatum caused twisting, which enhanced upon interaction with GA3 application giving synergistic effect. The acervuli were found in lesions infected with C. gloeosporioides after 8 days of inoculation on the neck and leaf blades. Symptoms were not observed in untreated control plants. Koch's postulates were confirmed by reisolating the same pathogens from the infected plants.


Assuntos
Colletotrichum , Fusarium , Cebolas , Doenças das Plantas , Colletotrichum/patogenicidade , Fusarium/patogenicidade , Doenças das Plantas/microbiologia , Cebolas/microbiologia
6.
Viruses ; 16(3)2024 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-38543780

RESUMO

An investigation of viruses circulating in populations of field and laboratory potato/tomato psyllids (Bactericera cockerelli) was conducted using high-throughput sequencing (HTS) technology and conventional RT-PCR. Three new viruses were discovered: one from the family Tymoviridae and two from the family Solemoviridae. A tymo-like virus sequence represented a nearly complete 6843 nt genome of a virus named Bactericera cockerelli tymo-like virus (BcTLV) that spanned five open reading frames (ORFs) which encoded RNA-dependent RNA polymerase (RdRP), helicase, protease, methyltransferase, and a capsid protein. Phylogenetic analyses placed the RdRP of BcTLV inside a divergent lineage of the viruses from the family Tymoviridae found in insect and plant hosts in a sister clade to the genera Tymovirus, Marafivirus, and Maculavirus. Four solemo-like virus sequences were identified in the HTS outputs, representing two new viruses. One virus found only in field-collected psyllids and named Bactericera cockerelli solemo-like virus 1 (BcSLV-1) had a 5479 nt genome which spanned four ORFs encoding protease and RdRP. Three solemo-like sequences displayed 87.4-99.7% nucleotide sequence identity among themselves, representing variants or strains of the same virus named Bactericera cockerelli solemo-like virus 2 (BcSLV-2). The genome of BcSLV-2 spanned only two ORFs that encoded a protease and an RdRP. Phylogenetic analysis placed the RdRPs of BcSLV-1 and BcSLV-2 in two separate lineages as sister clades to viruses from the genus Sobemovirus found in plant hosts. All three new psyllid viruses were found circulating in psyllids collected from potato fields in southern Idaho along with a previously identified Bactericera cockerelli picorna-like virus. Any possible role of the three viruses in controlling populations of the field psyllids remains to be elucidated.


Assuntos
Hemípteros , Solanum lycopersicum , Solanum tuberosum , Vírus , Animais , Filogenia , Peptídeo Hidrolases , RNA Polimerase Dependente de RNA , Doenças das Plantas
7.
Virus Res ; 344: 199362, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38508402

RESUMO

We report the characterization of a novel tri-segmented RNA virus infecting Mercurialis annua, a common crop weed and model species in plant science. The virus, named "Mercurialis latent virus" (MeLaV) was first identified in a mixed infection with the recently described Mercurialis orthotospovirus 1 (MerV1) on symptomatic plants grown in glasshouses in Lausanne (Switzerland). Both viruses were found to be transmitted by Thrips tabaci, which presumably help the inoculation of infected pollen in the case of MeLaV. Complete genome sequencing of the latter revealed a typical ilarviral architecture and close phylogenetic relationship with members of the Ilarvirus subgroup 1. Surprisingly, a short portion of MeLaV replicase was found to be identical to the partial sequence of grapevine angular mosaic virus (GAMV) reported in Greece in the early 1990s. However, we have compiled data that challenge the involvement of GAMV in angular mosaic of grapevine, and we propose alternative causal agents for this disorder. In parallel, three highly-conserved MeLaV isolates were identified in symptomatic leaf samples in The Netherlands, including a herbarium sample collected in 1991. The virus was also traced in diverse RNA sequencing datasets from 2013 to 2020, corresponding to transcriptomic analyses of M. annua and other plant species from five European countries, as well as metaviromics analyses of bees in Belgium. Additional hosts are thus expected for MeLaV, yet we argue that infected pollen grains have likely contaminated several sequencing datasets and may have caused the initial characterization of MeLaV as GAMV.


Assuntos
Genoma Viral , Ilarvirus , Filogenia , Doenças das Plantas , Pólen , Vitis , Vitis/virologia , Doenças das Plantas/virologia , Pólen/virologia , Ilarvirus/genética , Ilarvirus/isolamento & purificação , Ilarvirus/classificação , Animais , RNA Viral/genética , Sequenciamento Completo do Genoma , Tisanópteros/virologia
8.
J Appl Microbiol ; 135(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38503565

RESUMO

AIMS: This study aimed to assess the impact of rocket (Eruca sativa) extract on Verticillium wilt in eggplants, explore rhizospheric microorganisms for disease biocontrol, and evaluate selected strains' induced systemic resistance (ISR) potential while characterizing their genomic and biosynthetic profiles. METHODS AND RESULTS: Rocket extract application led to a significant reduction in Verticillium wilt symptoms in eggplants compared to controls. Isolated microorganisms from treated soil, including Paraburkholderia oxyphila EP1, Pseudomonas citronellolis EP2, Paraburkholderia eburnea EP3, and P. oxyphila EP4 and EP5, displayed efficacy against Verticillium dahliae, decreasing disease severity and incidence in planta. Notably, strains EP3 and EP4 triggered ISR in eggplants against V. dahliae. Genomic analysis unveiled shared biosynthetic gene clusters, such as ranthipeptide and non-ribosomal peptide synthetase-metallophore types, among the isolated strains. Additionally, metabolomic profiling of EP2 revealed the production of metabolites associated with amino acid metabolism, putative antibiotics, and phytohormones. CONCLUSIONS: The application of rocket extract resulted in a significant reduction in Verticillium wilt symptoms in eggplants, while the isolated microorganisms displayed efficacy against V. dahliae, inducing systemic resistance and revealing shared biosynthetic gene clusters, with metabolomic profiling highlighting potential disease-suppressing metabolites.


Assuntos
Verticillium , Verticillium/metabolismo , Doenças das Plantas/prevenção & controle , Extratos Vegetais/farmacologia , Gossypium , Resistência à Doença
9.
Microb Pathog ; 190: 106604, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38490458

RESUMO

Early blight caused by Alternaria solani is a common foliar disease of potato around the world, and serious infections result in reduced yields and marketability due to infected tubers. The major aim of this study is to figure out the synergistic effect between microorganism and fungicides and to evaluate the effectiveness of Bacillus subtilis NM4 in the control of early blight in potato. Based on its colonial morphology and a 16S rRNA analysis, a bacterial antagonist isolated from kimchi was identified as B. subtilis NM4 and it has strong antifungal and anti-oomycete activity against several phytopathogenic fungi and oomycetes. The culture filtrate of strain NM4 with the fungicide effectively suppressed the mycelial growth of A. solani, with the highest growth inhibition rate of 83.48%. Although exposure to culture filtrate prompted hyphal alterations in A. solani, including bulging, combining it with the fungicide caused more severe hyphal damage with continuous bulging. Surfactins and fengycins, two lipopeptide groups, were isolated and identified as the main compounds in two fractions using LC-ESI-MS. Although the surfactin-containing fraction failed to inhibit growth, the fengycin-containing fraction, alone and in combination with chlorothalonil, restricted mycelial development, producing severe hyphal deformations with formation of chlamydospores. A pot experiment combining strain NM4, applied as a broth culture, with fungicide, at half the recommended concentration, resulted in a significant reduction in potato early blight severity. Our results indicate the feasibility of an integrated approach for the management of early blight in potato that can reduce fungicide application rates, promoting a healthy ecosystem in agriculture.


Assuntos
Alternaria , Bacillus subtilis , Fungicidas Industriais , Lipopeptídeos , Nitrilas , Doenças das Plantas , Solanum tuberosum , Solanum tuberosum/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Alternaria/efeitos dos fármacos , Alternaria/crescimento & desenvolvimento , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/crescimento & desenvolvimento , Fungicidas Industriais/farmacologia , Nitrilas/farmacologia , Lipopeptídeos/farmacologia , RNA Ribossômico 16S/genética , Hifas/efeitos dos fármacos , Hifas/crescimento & desenvolvimento , Micélio/efeitos dos fármacos , Micélio/crescimento & desenvolvimento , Peptídeos Cíclicos/farmacologia
10.
Curr Genet ; 70(1): 4, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38555312

RESUMO

Panax notoginseng (Burkill) F.H. Chen, a valuable traditional Chinese medicine, faces significant yield and quality challenges stemming from root rot primarily caused by Fusarium solani. Burkholderia arboris PN-1, isolated from the rhizosphere soil of P. notoginseng, demonstrated a remarkable ability to inhibit the growth of F. solani. This study integrates phenotypic, phylogenetic, and genomic analyses to enhance our understanding of the biocontrol mechanisms employed by B. arboris PN-1. Phenotype analysis reveals that B. arboris PN-1 effectively suppresses P. notoginseng root rot both in vitro and in vivo. The genome of B. arboris PN-1 comprises three circular chromosomes (contig 1: 3,651,544 bp, contig 2: 1,355,460 bp, and contig 3: 3,471,056 bp), with a 66.81% GC content, housing 7,550 protein-coding genes. Notably, no plasmids were detected. Phylogenetic analysis places PN-1 in close relation to B. arboris AU14372, B. arboris LMG24066, and B. arboris MEC_B345. Average nucleotide identity (ANI) values confirm the PN-1 classification as B. arboris. Comparative analysis with seven other B. arboris strains identified 4,628 core genes in B. arboris PN-1. The pan-genome of B. arboris appears open but may approach closure. Whole-genome sequencing revealed 265 carbohydrate-active enzymes and identified 9 gene clusters encoding secondary metabolites. This comprehensive investigation enhances our understanding of B. arboris genomes, paving the way for their potential as effective biocontrol agents against fungal plant pathogens in the future.


Assuntos
Burkholderia , Fusarium , Panax notoginseng , Panax notoginseng/genética , Panax notoginseng/metabolismo , Panax notoginseng/microbiologia , Filogenia , Doenças das Plantas/genética , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Fusarium/genética , Genômica
11.
Virology ; 594: 110032, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38467094

RESUMO

Many viruses employ a process known as superinfection exclusion (SIE) to block subsequent entry or replication of the same or closely related viruses in the cells they occupy. SIE is also referred to as Cross-protection refers to the situation where a host plant infected by a mild strain of a virus or viroid gains immunity against a more severe strain closely related to the initial infectant. The mechanisms underlying cross-protection are not fully understood. In this study, we performed a comparative transcriptomic analysis of potato (Solanum tuberosum L.) leaves. The strains PVYN-Wi-HLJ-BDH-2 and PVYNTN-NW-INM-W-369-12 are henceforth designated as BDH and 369, respectively. In total, 806 differentially expressed genes (DEGs) were detected between the Control and JZ (preinfected with BDH and challenge with 369) treatment. Gene Ontology (GO) analysis showed that the response to external biological stimulation, signal transduction, kinase, immunity, redox pathways were significantly enriched. Among these pathways, we identified numerous differentially expressed metabolites related to virus infection. Moreover, our data also identified a small set of genes that likely play important roles in the establishment of cross-protection. Specifically, we observed significant differential expression of the A1-II gamma-like gene, elongation factor 1-alpha-like gene, and subtilisin-like protease StSBT1.7 gene, with StSBT1.7 being the most significant in our transcriptome data. These genes can stimulate the expression of defense plant genes, induce plant chemical defense, and participate in the induction of trauma and pathogenic bacteria. Our findings provided insights into the mechanisms underlying the ability of mild viruses to protect host plants against subsequent closely related virus infection in Solanum tuberosum L.


Assuntos
Potyvirus , Solanum tuberosum , Viroses , Potyvirus/genética , Perfilação da Expressão Gênica , Transcriptoma , Doenças das Plantas
12.
Mol Plant Pathol ; 25(3): e13435, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38476108

RESUMO

Alternaria spp. cause different diseases in potato and tomato crops. Early blight caused by Alternaria solani and brown spot caused by Alternaria alternata are most common, but the disease complex is far more diverse. We first provide an overview of the Alternaria species infecting the two host plants to alleviate some of the confusion that arises from the taxonomic rearrangements in this fungal genus. Highlighting the diversity of Alternaria fungi on both solanaceous hosts, we review studies investigating the genetic diversity and genomes, before we present recent advances from studies elucidating host-pathogen interactions and fungicide resistances. TAXONOMY: Kingdom Fungi, Phylum Ascomycota, Class Dothideomycetes, Order Pleosporales, Family Pleosporaceae, Genus Alternaria. BIOLOGY AND HOST RANGE: Alternaria spp. adopt diverse lifestyles. We specifically review Alternaria spp. that cause disease in the two solanaceous crops potato (Solanum tuberosum) and tomato (Solanum lycopersicum). They are necrotrophic pathogens with no known sexual stage, despite some signatures of recombination. DISEASE SYMPTOMS: Symptoms of the early blight/brown spot disease complex include foliar lesions that first present as brown spots, depending on the species with characteristic concentric rings, which eventually lead to severe defoliation and considerable yield loss. CONTROL: Good field hygiene can keep the disease pressure low. Some potato and tomato cultivars show differences in susceptibility, but there are no fully resistant varieties known. Therefore, the main control mechanism is treatment with fungicides.


Assuntos
Fungicidas Industriais , Solanum lycopersicum , Solanum tuberosum , Alternaria/genética , Solanum tuberosum/microbiologia , Doenças das Plantas/microbiologia
13.
Int J Mol Sci ; 25(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38474041

RESUMO

Dickeya solani, belonging to the Soft Rot Pectobacteriaceae, are aggressive necrotrophs, exhibiting both a wide geographic distribution and a wide host range that includes many angiosperm orders, both dicot and monocot plants, cultivated under all climatic conditions. Little is known about the infection strategies D. solani employs to infect hosts other than potato (Solanum tuberosum L.). Our earlier study identified D. solani Tn5 mutants induced exclusively by the presence of the weed host S. dulcamara. The current study assessed the identity and virulence contribution of the selected genes mutated by the Tn5 insertions and induced by the presence of S. dulcamara. These genes encode proteins with functions linked to polyketide antibiotics and polysaccharide synthesis, membrane transport, stress response, and sugar and amino acid metabolism. Eight of these genes, encoding UvrY (GacA), tRNA guanosine transglycosylase Tgt, LPS-related WbeA, capsular biosynthesis protein VpsM, DltB alanine export protein, glycosyltransferase, putative transcription regulator YheO/PAS domain-containing protein, and a hypothetical protein, were required for virulence on S. dulcamara plants. The implications of D. solani interaction with a weed host, S. dulcamara, are discussed.


Assuntos
Solanum tuberosum , Solanum , Solanum/genética , Dickeya/genética , Solanum tuberosum/genética , Enterobacteriaceae/genética , Loci Gênicos , Doenças das Plantas
14.
J Agric Food Chem ; 72(11): 5699-5709, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38462724

RESUMO

Potato virus Y (PVY) is a plant virus that is known to be responsible for substantial economic losses in agriculture. Within the PVY genome, viral genome-linked protein (VPg) plays a pivotal role in the viral translation process. In this study, VPg was used as a potential target for analyzing the antiviral activity of tryptanthrin derivatives. In vitro, the dissociation constants of B1 with PVY VPg were 0.69 µmol/L (measured by microscale thermophoresis) and 4.01 µmol/L (measured via isothermal titration calorimetry). B1 also strongly bound to VPg proteins from three other Potyviruses. Moreover, in vivo experiments demonstrated that B1 effectively suppressed the expression of the PVY gene. Molecular docking experiments revealed that B1 formed a hydrogen bond with N121 and that no specific binding occurred between B1 and the PVY VPgN121A mutant. Therefore, N121 is a key amino acid residue in PVY VPg involved in B1 binding. These results highlight the potential of PVY VPg as a potential target for the development of antiviral agents.


Assuntos
Potyvirus , Quinazolinas , Solanum tuberosum , Potyvirus/genética , Simulação de Acoplamento Molecular , Proteínas Virais/genética , Proteínas Virais/metabolismo , Genoma Viral , Solanum tuberosum/metabolismo , Doenças das Plantas
15.
J Agric Food Chem ; 72(9): 5073-5087, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38377432

RESUMO

Tobacco black shank (TBS), caused by Phytophthora nicotianae, poses a significant threat to tobacco plants. Selenium (Se), recognized as a beneficial trace element for plant growth, exhibited inhibitory effects on P. nicotianae proliferation, disrupting the cell membrane integrity. This action reduced the energy supply and hindered hyphal transport through membrane proteins, ultimately inducing hyphal apoptosis. Application of 8 mg/L Se through leaf spraying resulted in a notable decrease in TBS incidence. Moreover, Se treatment preserved chloroplast structure, elevated chitinase activities, ß-1,3-GA, polyphenol oxidase, phenylalanine ammonia-lyase, and increased hormonal content. Furthermore, Se enhanced flavonoid and sugar alcohol metabolite levels while diminishing amino acid and organic acid content. This shift promoted amino acid degradation and flavonoid synthesis. These findings underscore the potential efficacy of Se in safeguarding tobacco and potentially other plants against P. nicotianae.


Assuntos
Phytophthora , Selênio , Selênio/farmacologia , Nicotiana , Membrana Celular , Metabolismo Energético , Aminoácidos/farmacologia , Flavonoides/farmacologia , Doenças das Plantas
16.
J Virol Methods ; 326: 114905, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38387695

RESUMO

Plant virus detection and identification in crops is a pillar for disease management, import of crop material, production of clean stock plants and basic plant virology studies. In this report, we present a platform for the enrichment and isolation of known or unknown viruses. This platform is based on carbon nanotube arrays inside a microfluidic device that can be a solution for the identification of low titer viruses from plants. Using our microfluidic devices, we achieved enrichment of two economically important viruses, the orthotospovirus, tomato spotted wilt orthotospovirus (TSWV) and the potyvirus, zucchini yellow mosaic virus (ZYMV). The carbon nanotube arrays integrated in these microfluidic devices are capable of trapping viruses discriminated by their size; the virus rich arrays can be then analyzed by common downstream techniques including immunoassays, PCR, HTS and electron microscopy. This procedure offers a simple to operate and portable sample preparation device capable of trapping viruses from raw plant extracts while reducing the host contamination.


Assuntos
Nanotubos de Carbono , Vírus de Plantas , Microfluídica , Doenças das Plantas
17.
J Appl Microbiol ; 135(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38346851

RESUMO

AIM: To investigate antifungal activity of the extract and major metabolite of the endophytic fungus Acrophialophora jodhpurensis (belonging to Chaetomiaceae) against crown and root rot caused by Rhizoctonia solani (teleomorph: Thanatephorus cucumeris), as an important pathogen of tomato. METHODS AND RESULTS: The endophytic fungus A. jodhpurensis, has high inhibitory effect against R. solani AG4-HG II in vitro and in vivo. The media conditions were optimized for production of the endophyte's metabolites. The highest amounts of secondary metabolites were produced at pH 7, 30°C temperature, and in the presence of 0.5% glucose, 0.033% sodium nitrate, and 1 gl-1 asparagine as the best carbon, nitrogen, and amino acid sources, respectively. The mycelia were extracted by methanol and the obtained extract was submitted to various chromatography techniques. Phytochemical analysis via thin-layer chromatography (TLC) and nuclear magnetic resonance (NMR) spectroscopy showed that ergosterol peroxide was the major component in the extract of this endophyte. Antifungal activities of the methanolic extract and ergosterol peroxide in the culture media were studied against R. solani. Minimum inhibitory concentrations of the extract and ergosterol peroxide against the pathogen were 600 and 150 µg ml-1, respectively. Ergosterol peroxide revealed destructive effects on the pathogen structures in microscopic analyses and induced sclerotia production. Histochemical analyses revealed that it induced apoptosis in the mycelia of R. solani via superoxide production and cell death. Application of ergosterol peroxide in the leaf disc assay reduced the disease severity in tomato leaves. CONCLUSIONS: Antifungal metabolites produced by A. jodhpurensis, such as ergosterol peroxide, are capable of controlling destructive Rhizoctonia diseases on tomato.


Assuntos
Antifúngicos , Ergosterol/análogos & derivados , Rhizoctonia , Sordariales , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Extratos Vegetais/farmacologia , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia
18.
Int J Biol Macromol ; 263(Pt 1): 130072, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38346615

RESUMO

MYB transcription factor despite their solid involvement in growth are potent regulator of plant stress response. Herein, we identified a MYB gene named as StoMYB41 in a wild eggplant species Solanum torvum. The expression level of StoMYB41 was higher in root than the tissues including stem, leaf, and seed. It induced significantly by Verticillium dahliae inoculation. StoMYB41 was localized in the nucleus and exhibited transcriptional activation activity. Silencing of StoMYB41 enhanced susceptibility of Solanum torvum against Verticillium dahliae, accompanied by higher disease index. The significant down-regulation of resistance marker gene StoABR1 comparing to the control plants was recorded in the silenced plants. Moreover, transient expression of StoMYB41 could trigger intense hypersensitive reaction mimic cell death, darker DAB and trypan blue staining, higher ion leakage, and induced the expression levels of StoABR1 and NbDEF1 in the leaves of Solanum torvum and Nicotiana benthamiana. Taken together, our data indicate that StoMYB41 acts as a positive regulator in Solanum torvum against Verticillium wilt.


Assuntos
Ascomicetos , Solanum melongena , Solanum , Verticillium , Solanum/genética , Verticillium/metabolismo , Ascomicetos/metabolismo , Solanum melongena/genética , Doenças das Plantas/genética , Resistência à Doença/genética , Gossypium/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
19.
BMC Plant Biol ; 24(1): 131, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383294

RESUMO

Early blight (EB), caused by Alternaria solani, is a serious problem in tomato production. Plant growth-promoting rhizobacteria promote plant growth and inhibit plant disease. The present study explored the bio-efficacy of synergistic effect of rhizobacterial isolates and ginger powder extract (GPE) against tomato EB disease, singly and in combination. Six fungal isolates from symptomatic tomato plants were identified as A. solani on the basis of morphological features i.e., horizontal septation (6.96 to 7.93 µm), vertical septation (1.50 to 2.22 µm), conidia length (174.2 to 187.6 µm), conidial width (14.09 to 16.52 µm), beak length (93.06 to 102.26 µm), and sporulation. Five of the twenty-three bacterial isolates recovered from tomato rhizosphere soil were nonpathogenic to tomato seedlings and were compatible with each other and with GPE. Out of five isolates tested individually, three isolates (St-149D, Hyd-13Z, and Gb-T23) showed maximum inhibition (56.3%, 48.3%, and 42.0% respectively) against mycelial growth of A. solani. Among combinations, St-149D + GPE had the highest mycelial growth inhibition (76.9%) over the untreated control. Bacterial strains molecularly characterized as Pseudomonas putida, Bacillus subtilis, and Bacillus cereus and were further tested in pot trials through seed bacterization for disease control. Seeds treated with bacterial consortia + GPE had the highest disease suppression percentage (78.1%), followed by St-149D + GPE (72.2%) and Hyd-13Z + GPE (67.5%). Maximum seed germination was obtained in the bacterial consortia + GPE (95.0 ± 2.04) followed by St-149D + GPE (92.5 ± 1.44) and Hyd-13Z + GPE (90.0 ± 2.04) over control (73.8 ± 2.39) and chemical control as standard treatment (90.0 ± 2). Ginger powder extracts also induce the activation of defence-related enzymes (TPC, PO, PPO, PAL, and CAT) activity in tomato plants. These were highly significant in the testing bacterial inoculants against A. solani infection in tomato crops.


Assuntos
Inoculantes Agrícolas , Extratos Vegetais , Solanum lycopersicum , Zingiber officinale , Animais , Pós , Alternaria , Bactérias , Doenças das Plantas/microbiologia
20.
PLoS One ; 19(2): e0298514, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38408078

RESUMO

The use of fungicides to manage disease has led to multiple environmental externalities, including resistance development, pollution, and non-target mortality. Growers have limited options as legacy chemistry is withdrawn from the market. Moreover, fungicides are generally labeled for traditional soil-based production, and not for liquid culture systems. Biocontrol agents for disease management are a more sustainable and environmentally friendly alternative to conventional agroprotectants. Pythium ultimum is a soil borne oomycete plant pathogen with a broad taxonomic host range exceeding 300 plants. Cucumber seedlings exposed to P. ultimum 1 day after a protective inoculation with bacterial endophyte accession IALR1619 (Pseudomonas sp.) recorded 59% survival; with the control assessed at 18%. When the pathogen was added 5 days post endophyte inoculation, 74% of the seedlings treated survived, compared to 36% of the control, indicating a longer-term effect of IALR1619. Under hydroponic conditions, IALR1619 treated leaf type lettuce cv. 'Cristabel' and Romaine cv. 'Red Rosie' showed 29% and 42% higher shoot fresh weight compared to their controls, respectively. Similar results with less growth decline were observed for a repeat experiment with IALR1619. Additionally, an experiment on hydroponic lettuce in pots with perlite was carried out with a mixture of P. ultimum and P. dissotocum after IALR1619 inoculation. The endophyte treated 'Cristabel' showed fresh weight gain, but the second cultivar 'Pensacola' yielded no increase. In summary, the endophyte IALR1619 provided short term as well as medium-term protection against Pythium blight in cucumber seedlings and may be used as an alternative to conventional fungicides in a greenhouse setting. This study also demonstrated the potential of ALR1619 as a biocontrol agent against Pythium blight in hydroponic lettuce.


Assuntos
Cucumis sativus , Fungicidas Industriais , Pythium , Pseudomonas , Cucumis sativus/microbiologia , Lactuca , Hidroponia , Plântula , Plantas , Solo , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA