Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 296
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 15, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34996967

RESUMO

The nutritional integrity of wheat is jeopardized by rapidly rising atmospheric carbon dioxide (CO2) and the associated emergence and enhanced virulence of plant pathogens. To evaluate how disease resistance traits may impact wheat climate resilience, 15 wheat cultivars with varying levels of resistance to Fusarium Head Blight (FHB) were grown at ambient and elevated CO2. Although all wheat cultivars had increased yield when grown at elevated CO2, the nutritional contents of FHB moderately resistant (MR) cultivars were impacted more than susceptible cultivars. At elevated CO2, the MR cultivars had more significant differences in plant growth, grain protein, starch, fructan, and macro and micro-nutrient content compared with susceptible wheat. Furthermore, changes in protein, starch, phosphorus, and magnesium content were correlated with the cultivar FHB resistance rating, with more FHB resistant cultivars having greater changes in nutrient content. This is the first report of a correlation between the degree of plant pathogen resistance and grain nutritional content loss in response to elevated CO2. Our results demonstrate the importance of identifying wheat cultivars that can maintain nutritional integrity and FHB resistance in future atmospheric CO2 conditions.


Assuntos
Dióxido de Carbono/metabolismo , Ecossistema , Fusarium/fisiologia , Doenças das Plantas/microbiologia , Triticum/química , Triticum/imunologia , Resistência à Doença , Magnésio/análise , Magnésio/metabolismo , Valor Nutritivo , Fósforo/análise , Fósforo/metabolismo , Doenças das Plantas/imunologia , Proteínas de Plantas/análise , Proteínas de Plantas/metabolismo , Sementes/química , Sementes/classificação , Sementes/imunologia , Sementes/metabolismo , Triticum/classificação , Triticum/metabolismo
2.
J Sci Food Agric ; 102(3): 1225-1232, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34358355

RESUMO

BACKGROUND: The recently developed Robusta coffee wilt disease resistant (CWD-r) varieties in Uganda outperform the local landraces, both in yield and resilience. However, their uptake has been slow due to limited information on their cup worth. This study profiled the cup worth of the five most commonly grown CWD-r across the Lake Victoria Crescent, Western Mid-altitude farmland and Central Wooded Savannah agro-ecologies. RESULTS: Significant correlations (P ≤ 0.05) were observed between soil nutrients and coffee bean size but this was not the case for biochemical and cup quality. The proportion of coffee beans retained on screen 15; minimum acceptable size through coffee commercial markets, ranged from 58.09% in Mukono to 92.49% in Mityana. Interestingly, the bean size of variety KR4 was hardly influenced by environmental variations, with portions of beans retained on screen 15 being relatively the same (80.30% Ibanda, 89.50% Mukono, 98.20% Mityana). Coffee cup quality for most of the varieties was scored as premium (70-79%) across three agro-ecologies, with the exception of KR4, which was scored specialty grade (≥80%). Coffee blends generated were used to make coffee products with specialty score (82.25%) and a distinctive aroma complex. CONCLUSION: In this study, blends of CWD-r resulted in superior cup scores (76-82%). These findings show that CWD-r varieties have a high cup worth with potential for wide adaptation in Uganda's Robusta coffee growing agro-ecologies. Most importantly, variety KR4 has resilience across three agro-ecologies with a consistent high bean size and superior cup quality, making it a candidate variety for the market and breeding. © 2021 Society of Chemical Industry.


Assuntos
Coffea/imunologia , Doenças das Plantas/imunologia , Sementes/química , Altitude , Coffea/química , Coffea/crescimento & desenvolvimento , Café/química , Resistência à Doença , Humanos , Odorantes/análise , Sementes/crescimento & desenvolvimento , Sementes/imunologia , Olfato , Solo/química , Uganda
3.
BMC Plant Biol ; 21(1): 582, 2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34886813

RESUMO

BACKGROUND: The oomycete pathogen secretes many effectors into host cells to manipulate host defenses. For the majority of effectors, the mechanisms related to how they alter the expression of host genes and reprogram defenses are not well understood. In order to investigate the molecular mechanisms governing the influence that the Phytophthora infestans RXLR effector Pi04089 has on host immunity, a comparative transcriptome analysis was conducted on Pi04089 stable transgenic and wild-type potato plants. RESULTS: Potato plants stably expressing Pi04089 were more susceptible to P. infestans. RNA-seq analysis revealed that 658 upregulated genes and 722 downregulated genes were characterized in Pi04089 transgenic lines. A large number of genes involved in the biological process, including many defense-related genes and certain genes that respond to salicylic acid, were suppressed. Moreover, the comparative transcriptome analysis revealed that Pi04089 significantly inhibited the expression of many flg22 (a microbe-associated molecular pattern, PAMP)-inducible genes, including various Avr9/Cf-9 rapidly elicited (ACRE) genes. Four selected differentially expressed genes (StWAT1, StCEVI57, StKTI1, and StP450) were confirmed to be involved in host resistance against P. infestans when they were transiently expressed in Nicotiana benthamiana. CONCLUSION: The P. infestans effector Pi04089 was shown to suppress the expression of many resistance-related genes in potato plants. Moreover, Pi04089 was found to significantly suppress flg22-triggered defense signaling in potato plants. This research provides new insights into how an oomycete effector perturbs host immune responses at the transcriptome level.


Assuntos
Regulação da Expressão Gênica de Plantas , Phytophthora infestans/imunologia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Imunidade Vegetal , Solanum tuberosum/imunologia , Fatores de Virulência/imunologia , Resistência à Doença/genética , Resistência à Doença/imunologia , Regulação da Expressão Gênica , Plantas Geneticamente Modificadas , Solanum tuberosum/genética , Solanum tuberosum/microbiologia , Transcriptoma
4.
Plant Sci ; 312: 111036, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34620440

RESUMO

Like in mammals, the plant immune system has evolved to perceive damage. Damaged-associated molecular patterns (DAMPs) are endogenous signals generated in wounded or infected tissue after pathogen or insect attack. Although extracellular DNA (eDNA) is a DAMP signal that induces immune responses, plant responses after eDNA perception remain largely unknown. Here, we report that signaling defenses but not direct defense responses are induced after eDNA applications enhancing broad-range plant protection. A screening of defense signaling and hormone biosynthesis marker genes revealed that OXI1, CML37 and MPK3 are relevant eDNA-Induced Resistance markers (eDNA-IR). Additionally, we observed that eDNA from several Arabidopsis ecotypes and other phylogenetically distant plants such as citrus, bean and, more surprisingly, a monocotyledonous plant such as maize upregulates eDNA-IR marker genes. Using 3,3'-Diaminobenzidine (DAB) and aniline blue staining methods, we observed that H2O2 but not callose was strongly accumulated following self-eDNA treatments. Finally, eDNA resulted in effective induced resistance in Arabidopsis against the pathogens Hyaloperonospora arabidopsidis, Pseudomonas syringae, and Botrytis cinerea and against aphid infestation, reducing the number of nymphs and moving forms. Hence, the unspecificity of DNA origin and the wide range of insects to which eDNA can protect opens many questions about the mechanisms behind eDNA-IR.


Assuntos
Arabidopsis/genética , DNA/farmacologia , Resistência à Doença/genética , Resistência à Doença/imunologia , Imunidade Vegetal/genética , Transdução de Sinais/genética , Zea mays/genética , Arabidopsis/imunologia , Arabidopsis/microbiologia , Brassica/genética , Brassica/imunologia , Brassica/microbiologia , Citrus/genética , Citrus/imunologia , Citrus/microbiologia , Produtos Agrícolas/genética , Produtos Agrícolas/imunologia , Produtos Agrícolas/microbiologia , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo , Phaseolus/genética , Phaseolus/imunologia , Phaseolus/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Solanum/genética , Solanum/imunologia , Solanum/microbiologia , Spinacia oleracea/genética , Spinacia oleracea/imunologia , Spinacia oleracea/microbiologia , Zea mays/imunologia , Zea mays/microbiologia
5.
BMC Plant Biol ; 21(1): 360, 2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34362300

RESUMO

BACKGROUND: Dendrobium catenatum belongs to the Orchidaceae, and is a precious Chinese herbal medicine. In the past 20 years, D. catenatum industry has developed from an endangered medicinal plant to multi-billion dollar grade industry. The necrotrophic pathogen Sclerotium delphinii has a devastating effection on over 500 plant species, especially resulting in widespread infection and severe yield loss in the process of large-scale cultivation of D. catenatum. It has been widely reported that Jasmonate (JA) is involved in plant immunity to pathogens, but the mechanisms of JA-induced plant resistance to S. delphinii are unclear. RESULTS: In the present study, the role of JA in enhancing D. catenatum resistance to S. delphinii was investigated. We identified 2 COI1, 13 JAZ, and 12 MYC proteins in D. catenatum genome. Subsequently, systematic analyses containing phylogenetic relationship, gene structure, protein domain, and motif architecture of core JA pathway proteins were conducted in D. catenatum and the newly characterized homologs from its closely related orchid species Phalaenopsis equestris and Apostasia shenzhenica, along with the well-investigated homologs from Arabidopsis thaliana and Oryza sativa. Public RNA-seq data were investigated to analyze the expression patterns of D. catenatum core JA pathway genes in various tissues and organs. Transcriptome analysis of MeJA and S. delphinii treatment showed exogenous MeJA changed most of the expression of the above genes, and several key members, including DcJAZ1/2/5 and DcMYC2b, are involved in enhancing defense ability to S. delphinii in D. catenatum. CONCLUSIONS: The findings indicate exogenous MeJA treatment affects the expression level of DcJAZ1/2/5 and DcMYC2b, thereby enhancing D. catenatum resistance to S. delphinii. This research would be helpful for future functional identification of core JA pathway genes involved in breeding for disease resistance in D. catenatum.


Assuntos
Basidiomycota/patogenicidade , Ciclopentanos/metabolismo , Dendrobium/microbiologia , Oxilipinas/metabolismo , Imunidade Vegetal/fisiologia , Proteínas de Plantas/genética , Acetatos/farmacologia , Ciclopentanos/farmacologia , Dendrobium/efeitos dos fármacos , Dendrobium/imunologia , Dendrobium/metabolismo , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Família Multigênica , Oxilipinas/farmacologia , Filogenia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/imunologia , Transdução de Sinais/genética
6.
J Basic Microbiol ; 61(10): 910-922, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34398489

RESUMO

White mold and stem rot is a common disease of Phaseolus vulgaris caused by Sclerotinia sclerotiorum. Biological control is a promising alternative for the control of this disease. In the present study, two Trichoderma spp., T. erinaceum and T. viride, and the consortium of both were evaluated as biocontrol agents against sclerotinia stem rot disease. The results revealed that T. erinaceum (NAIMCC-F-02171) and T. viride (NAIMCC-F-02500) when applied alone, significantly suppressed the infection rate of S. sclerotiorum and increased the rate of survival of plants by 74.5%. On the contrary, the combination of both the Trichoderma spp. was found to be more effective in reducing stem rot by 57.2% and increasing the survival of plants by 87.5% when compared to the individual Trichoderma applications. Further, the exogenous supplementation of Trichoderma activated antioxidative machineries, such as peroxidase, polyphenol oxidase, superoxide dismutase, catalase, and ascorbic acid in the plant. Besides, hydrogen peroxide and superoxide-free radical accumulation were also found to be reduced when T. erinaceum and T. viride were used either individually or in combination under the pathogen-challenged condition. Additionally, the photopigments in the bioprimed plants were markedly increased. Moreover, the combined inoculation of the two isolates yielded the highest records of growth parameters (root weight, shoot length, and leaf weight) compared with individual inoculation. Therefore, based on the above results, it was concluded that the combination of T. erinaceum and T. viride can be effectively used as an alternative to control white mold and stem rot caused by S. sclerotiorum.


Assuntos
Hypocreales/patogenicidade , Phaseolus/microbiologia , Doenças das Plantas/microbiologia , Antioxidantes , Ascomicetos , Resistência à Doença , Peróxido de Hidrogênio/metabolismo , Pigmentos Biológicos , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Folhas de Planta , Proteínas de Plantas/imunologia , Espécies Reativas de Oxigênio , Superóxido Dismutase/metabolismo , Trichoderma
7.
Genes (Basel) ; 12(7)2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34208836

RESUMO

Black pepper (Piper nigrum L.) is a prominent spice that is an indispensable ingredient in cuisine and traditional medicine. Phytophthora capsici, the causative agent of footrot disease, causes a drastic constraint in P. nigrum cultivation and productivity. To counterattack various biotic and abiotic stresses, plants employ a broad array of mechanisms that includes the accumulation of pathogenesis-related (PR) proteins. Through a genome-wide survey, eleven PR-1 genes that belong to a CAP superfamily protein with a caveolin-binding motif (CBM) and a CAP-derived peptide (CAPE) were identified from P. nigrum. Despite the critical functional domains, PnPR-1 homologs differ in their signal peptide motifs and core amino acid composition in the functional protein domains. The conserved motifs of PnPR-1 proteins were identified using MEME. Most of the PnPR-1 proteins were basic in nature. Secondary and 3D structure analyses of the PnPR-1 proteins were also predicted, which may be linked to a functional role in P. nigrum. The GO and KEGG functional annotations predicted their function in the defense responses of plant-pathogen interactions. Furthermore, a transcriptome-assisted FPKM analysis revealed PnPR-1 genes mapped to the P. nigrum-P. capsici interaction pathway. An altered expression pattern was detected for PnPR-1 transcripts among which a significant upregulation was noted for basic PnPR-1 genes such as CL10113.C1 and Unigene17664. The drastic variation in the transcript levels of CL10113.C1 was further validated through qRT-PCR and it showed a significant upregulation in infected leaf samples compared with the control. A subsequent analysis revealed the structural details, phylogenetic relationships, conserved sequence motifs and critical cis-regulatory elements of PnPR-1 genes. This is the first genome-wide study that identified the role of PR-1 genes during P. nigrum-P. capsici interactions. The detailed in silico experimental analysis revealed the vital role of PnPR-1 genes in regulating the first layer of defense towards a P. capsici infection in Panniyur-1 plants.


Assuntos
Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Estudo de Associação Genômica Ampla , Phytophthora/fisiologia , Piper nigrum/genética , Doenças das Plantas/genética , Proteínas de Plantas/metabolismo , Resistência à Doença/imunologia , Genoma de Planta , Filogenia , Piper nigrum/crescimento & desenvolvimento , Piper nigrum/parasitologia , Doenças das Plantas/imunologia , Doenças das Plantas/parasitologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/parasitologia , Proteínas de Plantas/genética , Transcriptoma
8.
PLoS One ; 16(6): e0253414, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34133457

RESUMO

Common scab is a potato disease characterized by the formation of scab-like lesions on the surface of potato tubers. The actinobacterium Streptomyces scabiei is the main causal agent of common scab. During infection, this bacterium synthesizes the phytotoxin thaxtomin A which is essential for the production of disease symptoms. While thaxtomin A can activate an atypical programmed cell death in plant cell suspensions, it is possible to gradually habituate plant cells to thaxtomin A to provide resistance to lethal phytotoxin concentrations. Potato 'Russet Burbank' calli were habituated to thaxtomin A to regenerate the somaclone RB9 that produced tubers more resistant to common scab than those obtained from the original cultivar. Compared to the Russet Burbank cultivar, somaclone RB9 generated up to 22% more marketable tubers with an infected tuber area below the 5% threshold. Enhanced resistance was maintained over at least two years of cultivation in the field. However, average size of tubers was significantly reduced in somaclone RB9 compared to the parent cultivar. Small RB9 tubers had a thicker phellem than Russet Burbank tubers, which may contribute to improving resistance to common scab. These results show that thaxtomin A-habituation in potato is efficient to produce somaclones with increased and durable resistance to common scab.


Assuntos
Resistência à Doença , Indóis/metabolismo , Piperazinas/metabolismo , Doenças das Plantas/imunologia , Solanum tuberosum/imunologia , Streptomyces/metabolismo , Doenças das Plantas/microbiologia , Tubérculos/crescimento & desenvolvimento , Tubérculos/imunologia , Tubérculos/metabolismo , Tubérculos/microbiologia , Solanum tuberosum/metabolismo , Solanum tuberosum/microbiologia , Streptomyces/patogenicidade
9.
BMC Plant Biol ; 21(1): 272, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34130637

RESUMO

BACKGROUND: Late blight seriously threatens potato cultivation worldwide. The severe and widespread damage caused by the fungal pathogen can lead to drastic decreases in potato yield. Although grafting technology has been widely used to improve crop resistance, the effects of grafting on potato late blight resistance as well as the associated molecular mechanisms remain unclear. Therefore, we performed RNA transcriptome sequencing analysis and the late blight resistance testing of the scion when the potato late blight-resistant variety Qingshu 9 and the susceptible variety Favorita were used as the rootstock and scion, respectively, and vice versa. The objective of this study was to evaluate the influence of the rootstock on scion disease resistance and to clarify the related molecular mechanisms. RESULTS: A Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis revealed that the expression levels of genes related to plant-pathogen interactions, plant mitogen-activated protein kinase (MAPK) signaling pathways, and plant hormone signal transduction pathways were significantly up-regulated in the scion when Qingshu 9 was used as the rootstock. Some of these genes encoded calcium-dependent protein kinases (CDPKs), chitin elicitor receptor kinases (CERKs), LRR receptor serine/threonine protein kinases (LRR-LRKs), NPR family proteins in the salicylic acid synthesis pathway, and MAPKs which were potato late blight response proteins. When Favorita was used as the rootstock, only a few genes of late blight response genes were upregulated in the scion of Qingshu 9. Grafted plants using resistant variety as rootstocks inoculated with P. infestans spores showed significant reductions in lesion size while no significant difference in lesion size was observed when susceptible variety was used as the rootstock. We also showed that this induction of disease resistance in scions, especially scions derived from susceptible potato varieties was mediated by the up-regulation of expression of genes involved in plant disease resistance in scions. CONCLUSIONS: Our results showed that potato grafting using late blight resistant varieties as rootstocks could render or enhance resistance to late blight in scions derived from susceptible varieties via up-regulating the expression of disease resistant genes in scions. The results provide the basis for exploring the molecular mechanism underlying the effects of rootstocks on scion disease resistance.


Assuntos
Phytophthora infestans , Doenças das Plantas/microbiologia , Raízes de Plantas/imunologia , Solanum tuberosum/genética , Resistência à Doença/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Horticultura/métodos , Sistema de Sinalização das MAP Quinases , Doenças das Plantas/imunologia , Solanum tuberosum/imunologia , Solanum tuberosum/microbiologia
10.
Mol Plant Pathol ; 22(7): 829-842, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33951264

RESUMO

Sugar beet cultivation is dependent on an effective control of beet necrotic yellow vein virus (BNYVV, family Benyviridae), which causes tremendous economic losses in sugar production. As the virus is transmitted by a soilborne protist, the use of resistant cultivars is currently the only way to control the disease. The Rz2 gene product belongs to a family of proteins conferring resistance towards diverse pathogens in plants. These proteins contain coiled-coil and leucine-rich repeat domains. After artificial inoculation of homozygous Rz2 resistant sugar beet lines, BNYVV and beet soilborne mosaic virus (BSBMV, family Benyviridae) were not detected. Analysis of the expression of Rz2 in naturally infected plants indicated constitutive expression in the root system. In a transient assay, coexpression of Rz2 and the individual BNYVV-encoded proteins revealed that only the combination of Rz2 and triple gene block protein 1 (TGB1) resulted in a hypersensitive reaction (HR)-like response. Furthermore, HR was also triggered by the TGB1 homologues from BSBMV as well as from the more distantly related beet soilborne virus (family Virgaviridae). This is the first report of an R gene providing resistance across different plant virus families.


Assuntos
Beta vulgaris/genética , Resistência à Doença/genética , Doenças das Plantas/imunologia , Proteínas de Plantas/metabolismo , Vírus de Plantas/fisiologia , Sequência de Aminoácidos , Beta vulgaris/imunologia , Beta vulgaris/virologia , Morte Celular , Expressão Gênica , Genes Dominantes , Variação Genética , Especificidade de Órgãos , Doenças das Plantas/virologia , Folhas de Planta/imunologia , Folhas de Planta/virologia , Proteínas de Plantas/genética , Domínios Proteicos , Alinhamento de Sequência , Nicotiana/genética , Nicotiana/imunologia , Nicotiana/virologia , Virulência
11.
BMC Plant Biol ; 21(1): 215, 2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-33985437

RESUMO

BACKGROUND: Ginseng rusty root symptoms (GRS) is one of the primary diseases of ginseng. This disease leads to a severe decline in the quality of ginseng. It has been shown that the occurrence of GRS is associated with soil environmental degradation, which may involve changes in soil microbiology and physicochemical properties. RESULTS: In this study, GRS and healthy ginseng (HG) samples were used as experimental materials for comparative analysis of transcriptome and metabolome. Compared with those in HG samples, 949 metabolites and 9451 genes were significantly changed at the metabolic and transcriptional levels in diseased samples. The diseased tissues' metabolic patterns changed, and the accumulation of various organic acids, alkaloids, alcohols and phenols in diseased tissues increased significantly. There were significant differences in the expression of genes involved in plant hormone signal transduction, phenylpropanoid biosynthesis, the peroxidase pathway, and the plant-pathogen interaction pathway. CONCLUSION: The current study involved a comparative metabolome and transcriptome analysis of GRS and HG samples. Based on the findings at the transcriptional and metabolic levels, a mechanism model of the ginseng response to GRS was established. Our results provide new insights into ginseng's response to GRS, which will reveal the potential molecular mechanisms of this disease in ginseng.


Assuntos
Basidiomycota/patogenicidade , Resistência à Doença/genética , Panax/genética , Panax/imunologia , Panax/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , China , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Metaboloma , Raízes de Plantas/microbiologia , Plantas Medicinais/genética , Plantas Medicinais/microbiologia
12.
Int J Mol Sci ; 22(6)2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33803511

RESUMO

Rhizoctonia solani is the causer of black scurf disease on potatoes and is responsible for high economical losses in global agriculture. In order to increase the limited knowledge of the plants' molecular response to this pathogen, we inoculated potatoes with R. solani AG3-PT isolate Ben3 and carried out RNA sequencing with total RNA extracted from potato sprouts at three and eight days post inoculation (dpi). In this dual RNA-sequencing experiment, the necrotrophic lifestyle of R. solani AG3-PT during early phases of interaction with its host has already been characterised. Here the potato plants' comprehensive transcriptional response to inoculation with R. solani AG3 was evaluated for the first time based on significantly different expressed plant genes extracted with DESeq analysis. Overall, 1640 genes were differentially expressed, comparing control (-Rs) and with R. solani AG3-PT isolate Ben3 inoculated plants (+Rs). Genes involved in the production of anti-fungal proteins and secondary metabolites with antifungal properties were significantly up regulated upon inoculation with R. solani. Gene ontology (GO) terms involved in the regulation of hormone levels (i.e., ethylene (ET) and jasmonic acid (JA) at 3 dpi and salicylic acid (SA) and JA response pathways at 8 dpi) were significantly enriched. Contrastingly, the GO term "response to abiotic stimulus" was down regulated at both time points analysed. These results may support future breeding efforts toward the development of cultivars with higher resistance level to black scurf disease or the development of new control strategies.


Assuntos
Interações Hospedeiro-Patógeno/genética , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Rhizoctonia/fisiologia , Solanum tuberosum/genética , Solanum tuberosum/microbiologia , Transcrição Gênica , Regulação para Baixo/genética , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Genes de Plantas , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Doenças das Plantas/genética , Análise de Componente Principal , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Solanum tuberosum/imunologia , Transcriptoma/genética , Regulação para Cima/genética
13.
Int J Mol Sci ; 22(6)2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33799566

RESUMO

Potato virus X (PVX) belongs to genus Potexvirus. This study characterizes the cellular transcriptome responses to PVX infection in Russet potato at 2 and 3 days post infection (dpi). Among the 1242 differentially expressed genes (DEGs), 268 genes were upregulated, and 37 genes were downregulated at 2 dpi while 677 genes were upregulated, and 265 genes were downregulated at 3 dpi. DEGs related to signal transduction, stress response, and redox processes. Key stress related transcription factors were identified. Twenty-five pathogen resistance gene analogs linked to effector triggered immunity or pathogen-associated molecular pattern (PAMP)-triggered immunity were identified. Comparative analysis with Arabidopsis unfolded protein response (UPR) induced DEGs revealed genes associated with UPR and plasmodesmata transport that are likely needed to establish infection. In conclusion, this study provides an insight on major transcriptional regulatory networked involved in early response to PVX infection and establishment.


Assuntos
Regulação da Expressão Gênica de Plantas , Doenças das Plantas/genética , Imunidade Vegetal/genética , Potexvirus/genética , Solanum tuberosum/genética , Fatores de Transcrição/genética , Transcriptoma , Arabidopsis/genética , Arabidopsis/imunologia , Arabidopsis/virologia , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Moléculas com Motivos Associados a Patógenos/imunologia , Moléculas com Motivos Associados a Patógenos/metabolismo , Doenças das Plantas/imunologia , Doenças das Plantas/virologia , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Potexvirus/crescimento & desenvolvimento , Potexvirus/patogenicidade , Transdução de Sinais , Solanum tuberosum/imunologia , Solanum tuberosum/virologia , Fatores de Transcrição/classificação , Fatores de Transcrição/metabolismo , Transcrição Gênica , Resposta a Proteínas não Dobradas
14.
Mol Plant Pathol ; 22(6): 644-657, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33764635

RESUMO

A cascade formed by phosphorylation events of mitogen-activated protein kinases (MAPKs) takes part in plant stress responses. However, the roles of these MAPKs in resistance of potato (Solanum tuberosum) against Phytophthora pathogens is not well studied. Our previous work showed that a Phytophthora infestans RXLR effector targets and stabilizes the negative regulator of MAPK kinase 1 of potato (StMKK1). Because in Arabidopsis thaliana the AtMPK4 is the downstream phosphorylation target of AtMKK1, we performed a phylogenetic analysis and found that potato StMPK4/6/7 are closely related and are orthologs of AtMPK4/5/11/12. Overexpression of StMPK4/7 enhances plant resistance to P. infestans and P. parasitica. Yeast two-hybrid analysis revealed that StMPK7 interacts with StMKK1, and StMPK7 is phosphorylated on flg22 treatment and by expressing constitutively active StMKK1 (CA-StMKK1), indicating that StMPK7 is a direct downstream signalling partner of StMKK1. Overexpression of StMPK7 in potato enhances potato resistance to P. infestans. Constitutively active StMPK7 (CA-StMPK7; StMPK7D198G, E202A ) was found to promote immunity to Phytophthora pathogens and to trigger host cell death when overexpressed in Nicotiana benthamiana leaves. Cell death triggered by CA-StMPK7 is SGT1/RAR1-dependent. Furthermore, cell death triggered by CA-StMPK7 is suppressed on coexpression with the salicylate hydroxylase NahG, and StMPK7 activation promotes salicylic acid (SA)-responsive gene expression. We conclude that potato StMPK7 is a downstream signalling component of the phosphorelay cascade involving StMKK1 and StMPK7 plays a role in immunity to Phytophthora pathogens via an SA-dependent signalling pathway.


Assuntos
Resistência à Doença , Sistema de Sinalização das MAP Quinases , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Phytophthora infestans/fisiologia , Doenças das Plantas/imunologia , Solanum tuberosum/genética , Morte Celular , Expressão Gênica , Proteínas Quinases Ativadas por Mitógeno/genética , Filogenia , Doenças das Plantas/parasitologia , Folhas de Planta/genética , Folhas de Planta/imunologia , Folhas de Planta/parasitologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido Salicílico/metabolismo , Solanum tuberosum/imunologia , Solanum tuberosum/parasitologia , Nicotiana/genética , Nicotiana/imunologia , Nicotiana/parasitologia
15.
Transgenic Res ; 30(2): 169-183, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33751337

RESUMO

Standard food safety assessments of genetically modified crops require a thorough molecular characterization of the novel DNA as inserted into the plant that is intended for commercialization, as well as a comparison of agronomic and nutritional characteristics of the genetically modified to the non-modified counterpart. These characterization data are used to identify any unintended changes in the inserted DNA or in the modified plant that would require assessment for safety in addition to the assessment of the intended modification. An unusual case of an unintended effect discovered from the molecular characterization of a genetically modified late blight resistant potato developed for growing in Bangladesh and Indonesia is presented here. Not only was a significant portion of the plasmid vector backbone DNA inserted into the plant along with the intended insertion of an R-gene for late blight resistance, but the inserted DNA was split into two separate fragments and inserted into two separate chromosomes. One fragment carries the R-gene and the other fragment carries the NPTII selectable marker gene and the plasmid backbone DNA. The implications of this for the food safety assessment of this late blight resistant potato are considered.


Assuntos
Produtos Agrícolas/genética , Inocuidade dos Alimentos/métodos , Phytophthora infestans/patogenicidade , Doenças das Plantas/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Solanum tuberosum/genética , Mapeamento Cromossômico , Produtos Agrícolas/imunologia , Produtos Agrícolas/microbiologia , DNA de Plantas/genética , Marcadores Genéticos , Imunidade Inata , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Plantas Geneticamente Modificadas/imunologia , Plantas Geneticamente Modificadas/microbiologia , Solanum tuberosum/imunologia , Solanum tuberosum/microbiologia
16.
Plant J ; 106(2): 468-479, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33524169

RESUMO

Many plant intracellular immune receptors mount a hypersensitive response (HR) upon pathogen perception. The concomitant localized cell death is proposed to trap pathogens, such as viruses, inside infected cells, thereby preventing their spread. Notably, extreme resistance (ER) conferred by the potato immune receptor Rx1 to potato virus X (PVX) does not involve the death of infected cells. It is unknown what defines ER and how it differs from HR-based resistance. Interestingly, Rx1 can trigger an HR, but only upon artificial (over)expression of PVX or its avirulence coat protein (CP). Rx1 has a nucleocytoplasmic distribution and both pools are required for HR upon transient expression of a PVX-GFP amplicon. It is unknown whether mislocalized Rx1 variants can induce ER upon natural PVX infection. Here, we generated transgenic Nicotiana benthamiana producing nuclear- or cytosol-restricted Rx1 variants. We found that these variants can still mount an HR. However, nuclear- or cytosol-restricted Rx1 variants can no longer trigger ER or restricts viral infection. Interestingly, unlike the mislocalized Rx1 variants, wild-type Rx1 was found to compromise CP protein accumulation. We show that the lack of CP accumulation does not result from its degradation but is likely to be linked with translational arrest of its mRNA. Together, our findings suggest that translational arrest of viral genes is a major component of ER and, unlike the HR, is required for resistance to PVX.


Assuntos
Doenças das Plantas/virologia , Proteínas de Plantas/metabolismo , Potexvirus/metabolismo , Solanum tuberosum/virologia , Núcleo Celular/metabolismo , Citosol/metabolismo , Resistência à Doença , Doenças das Plantas/imunologia , Proteínas de Plantas/fisiologia , Solanum tuberosum/imunologia , Solanum tuberosum/metabolismo
17.
Plant J ; 106(3): 862-875, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33595875

RESUMO

Gray blight (GB) is one of the most destructive diseases of tea plants, causing considerable damage and productivity losses; however, the dynamic roles of defense genes during pathogen infection remain largely unclear. To explore the numerous molecular interactions associated with GB stress in tea plants, we employed transcriptome, sRNAome and degradome sequencing from 1 to 13 days post-inoculation (dpi) at 3-day intervals. The transcriptomics results showed that differentially expressed genes (DEGs) related to flavonoid synthesis, such as chalcone synthase (CHS) and phenylalanine ammonia-lyase (PAL), were particularly induced at 4 dpi. Consistent with this, the contents of catechins (especially gallocatechin), which are the dominant flavonoids in tea plants, also increased in the leaves of tea plants infected with GB. Combined analysis of the sRNAome and degradome revealed that microRNAs could mediate tea plant immunity by regulating DEG expression at the post-transcriptional level. Co-expression network analysis demonstrated that miR530b-ethylene responsive factor 96 (ERF96) and miRn211-thaumatin-like protein (TLP) play crucial roles in the response to GB. Accordingly, gene-specific antisense oligonucleotide assays suggested that suppressing ERF96 decreased the levels of reactive oxygen species (ROS), whereas suppressing TLP increased the levels of ROS. Furthermore, ERF96 was induced, but TLP was suppressed, in susceptible tea cultivars. Our results collectively demonstrate that ERF96 is a negative regulator and TLP is a positive regulator in the response of tea plants to GB. Taken together, our comprehensive integrated analysis reveals a dynamic regulatory network linked to GB stress in tea plants and provides candidate genes for improvement of tea plants.


Assuntos
Camellia sinensis/genética , Genes de Plantas/genética , Doenças das Plantas/microbiologia , Transcriptoma/genética , Camellia sinensis/imunologia , Camellia sinensis/microbiologia , Regulação da Expressão Gênica de Plantas , Genes de Plantas/fisiologia , Sequenciamento de Nucleotídeos em Larga Escala , MicroRNAs/genética , MicroRNAs/fisiologia , Pestalotiopsis , Doenças das Plantas/imunologia , RNA de Plantas/genética , RNA de Plantas/fisiologia
18.
Mol Plant Pathol ; 22(3): 317-333, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33389783

RESUMO

Ralstonia solanacearum causes bacterial wilt disease in many plant species. Type III-secreted effectors (T3Es) play crucial roles in bacterial pathogenesis. However, some T3Es are recognized by corresponding disease resistance proteins and activate plant immunity. In this study, we identified the R. solanacearum T3E protein RipAZ1 (Ralstonia injected protein AZ1) as an avirulence determinant in the black nightshade species Solanum americanum. Based on the S. americanum accession-specific avirulence phenotype of R. solanacearum strain Pe_26, 12 candidate avirulence T3Es were selected for further analysis. Among these candidates, only RipAZ1 induced a cell death response when transiently expressed in a bacterial wilt-resistant S. americanum accession. Furthermore, loss of ripAZ1 in the avirulent R. solanacearum strain Pe_26 resulted in acquired virulence. Our analysis of the natural sequence and functional variation of RipAZ1 demonstrated that the naturally occurring C-terminal truncation results in loss of RipAZ1-triggered cell death. We also show that the 213 amino acid central region of RipAZ1 is sufficient to induce cell death in S. americanum. Finally, we show that RipAZ1 may activate defence in host cell cytoplasm. Taken together, our data indicate that the nucleocytoplasmic T3E RipAZ1 confers R. solanacearum avirulence in S. americanum. Few avirulence genes are known in vascular bacterial phytopathogens and ripAZ1 is the first one in R. solanacearum that is recognized in black nightshades. This work thus opens the way for the identification of disease resistance genes responsible for the specific recognition of RipAZ1, which can be a source of resistance against the devastating bacterial wilt disease.


Assuntos
Proteínas de Bactérias/metabolismo , Resistência à Doença/genética , Doenças das Plantas/microbiologia , Ralstonia solanacearum/genética , Solanum/microbiologia , Proteínas de Bactérias/genética , Doenças das Plantas/imunologia , Imunidade Vegetal , Folhas de Planta , Ralstonia solanacearum/patogenicidade , Virulência
19.
Mol Genet Genomics ; 296(1): 155-164, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33118051

RESUMO

Sugar beets are attacked by several pathogens that cause root damages. Rhizoctonia (Greek for "root killer") is one of them. Rhizoctonia root rot has become an increasing problem for sugar beet production and to decrease yield losses agronomical measures are adopted. Here, two partially resistant and two susceptible sugar beet genotypes were used for transcriptome analysis to discover new defense genes to this fungal disease, information to be implemented in molecular resistance breeding. Among 217 transcripts with increased expression at 2 days post-infection (dpi), three resistance-like genes were found. These genes were not significantly elevated at 5 dpi, a time point when increased expression of three Bet v I/Major latex protein (MLP) homologous genes BvMLP1, BvMLP2 and BvML3 was observed in the partially resistant genotypes. Quantitative RT-PCR analysis on diseased sugar beet seedlings validated the activity of BvMLP1 and BvMLP3 observed in the transcriptome during challenge by R. solani. The three BvMLP genes were cloned and overexpressed in Arabidopsis thaliana to further dissect their individual contribution. Transgenic plants were also compared to T-DNA mutants of orthologous MLP genes. Plants overexpressing BvMLP1 and BvMLP3 showed significantly less infection whereas additive effects were seen on Atmlp1/Atmlp3 double mutants. The data suggest that BvMLP1 and BvMLP3 may contribute to the reduction of the Rhizoctonia root rot disease in sugar beet. Impact on the defense reaction from other differential expressed genes observed in the study is discussed.


Assuntos
Beta vulgaris/genética , Regulação da Expressão Gênica de Plantas/imunologia , Doenças das Plantas/genética , Proteínas de Plantas/genética , Rhizoctonia/patogenicidade , Transcriptoma/imunologia , Arabidopsis/genética , Arabidopsis/metabolismo , Beta vulgaris/imunologia , Beta vulgaris/microbiologia , Clonagem Molecular , Expressão Gênica , Redes Reguladoras de Genes , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Imunidade Vegetal/genética , Proteínas de Plantas/imunologia , Plantas Geneticamente Modificadas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Rhizoctonia/crescimento & desenvolvimento , Plântula/genética , Plântula/imunologia , Plântula/microbiologia
20.
Plant Cell Environ ; 44(1): 275-289, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33070347

RESUMO

Oligogalacturonides (OGs) are fragments of pectin released from the plant cell wall during insect or pathogen attack. They can be perceived by the plant as damage signals, triggering local and systemic defence responses. Here, we analyse the dynamics of local and systemic responses to OG perception in tomato roots or shoots, exploring their impact across the plant and their relevance in pathogen resistance. Targeted and untargeted metabolomics and gene expression analysis in plants treated with purified OGs revealed that local responses were transient, while distal responses were stronger and more sustained. Remarkably, changes were more conspicuous in roots, even upon foliar application of the OGs. The treatments differentially activated the synthesis of defence-related hormones and secondary metabolites including flavonoids, alkaloids and lignans, some of them exclusively synthetized in roots. Finally, the biological relevance of the systemic defence responses activated upon OG perception was confirmed, as the treatment induced systemic resistance to Botrytis cinerea. Overall, this study shows the differential regulation of tomato defences upon OGs perception in roots and shoots and reveals the key role of roots in the coordination of the plant responses to damage sensing.


Assuntos
Pectinas/metabolismo , Imunidade Vegetal , Raízes de Plantas/metabolismo , Solanum lycopersicum/imunologia , Botrytis , Solanum lycopersicum/metabolismo , Solanum lycopersicum/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/imunologia , Raízes de Plantas/fisiologia , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA