Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Mol Biol ; 108(4-5): 343-361, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34387795

RESUMO

KEY MESSAGE: FLO6 is involved in starch synthesis by interacting with SSIVb and GBSS in rice. Starch synthesized and stored in plastids including chloroplasts and amyloplasts plays a vital role in plant growth and provides the major energy for human diet. However, the molecular mechanisms by which regulate starch synthesis remain largely unknown. In this study, we identified and characterized a rice floury endosperm mutant M39, which exhibited defective starch granule formation in pericarp and endosperm, accompanied by the decreased starch content and amylose content. The abnormal starch accumulation in M39 pollen grains caused a significant decrease in plant fertility. Chloroplasts in M39 leaves contained no or only one large starch granule. Positional cloning combined with complementary experiment demonstrated that the mutant phenotypes were restored by the FLOURY ENDOSPERM6 (FLO6). FLO6 was generally expressed in various tissues, including leaf, anther and developing endosperm. FLO6 is a chloroplast and amyloplast-localized protein that is able to bind to starch by its carbohydrate-binding module 48 (CBM48) domain. Interestingly, we found that FLO6 interacted with starch synthase IVb (SSIVb) and granule-bound starch synthase (GBSSI and GBSSII). Together, our results suggested that FLO6 plays a critical role in starch synthesis through cooperating with several starch synthesis enzymes throughout plant growth and development.


Assuntos
Oryza/metabolismo , Proteínas de Plantas/metabolismo , Sintase do Amido/metabolismo , Amido/biossíntese , Proteínas de Cloroplastos/genética , Proteínas de Cloroplastos/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Mutação , Oryza/enzimologia , Oryza/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Pólen/metabolismo , Ligação Proteica , Domínios Proteicos/fisiologia , Sementes/crescimento & desenvolvimento , Sementes/metabolismo
2.
Biochemistry ; 60(31): 2425-2435, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34319705

RESUMO

Glucan phosphatases are members of a functionally diverse family of dual-specificity phosphatase (DSP) enzymes. The plant glucan phosphatase Starch Excess4 (SEX4) binds and dephosphorylates glucans, contributing to processive starch degradation in the chloroplast at night. Little is known about the complex kinetics of SEX4 when acting on its complex physiologically relevant glucan substrate. Therefore, we explored the kinetics of SEX4 against both insoluble starch and soluble amylopectin glucan substrates. SEX4 displays robust activity and a unique sigmoidal kinetic response to amylopectin, characterized by a Hill coefficient of 2.77 ± 0.63, a signature feature of cooperativity. We investigated the basis for this positive kinetic cooperativity and determined that the SEX4 carbohydrate-binding module (CBM) dramatically influences the binding cooperativity and substrate transformation rates. These findings provide insights into a previously unknown but important regulatory role for SEX4 in reversible starch phosphorylation and further advances our understanding of atypical kinetic mechanisms.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Fosfatases de Especificidade Dupla/química , Fosfatases de Especificidade Dupla/metabolismo , Glucanos/metabolismo , Monoéster Fosfórico Hidrolases/química , Monoéster Fosfórico Hidrolases/metabolismo , Sítio Alostérico/fisiologia , Amilopectina/química , Amilopectina/metabolismo , Brassica/química , Metabolismo dos Carboidratos , Glucanos/química , Cinética , Modelos Moleculares , Fosforilação , Ligação Proteica , Domínios Proteicos/fisiologia , Estabilidade Proteica , Solanum tuberosum/química
3.
Acta Crystallogr F Struct Biol Commun ; 77(Pt 7): 202-207, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34196610

RESUMO

Pivotal to the regulation of key cellular processes such as the transcription, replication and repair of DNA, DNA-binding proteins play vital roles in all aspects of genetic activity. The determination of high-quality structures of DNA-binding proteins, particularly those in complexes with DNA, provides crucial insights into the understanding of these processes. The presence in such complexes of phosphate-rich oligonucleotides offers the choice of a rapid method for the routine solution of DNA-binding proteins through the use of long-wavelength beamlines such as I23 at Diamond Light Source. This article reports the use of native intrinsic phosphorus and sulfur single-wavelength anomalous dispersion methods to solve the complex of the DNA-binding domain (DBD) of interferon regulatory factor 4 (IRF4) bound to its interferon-stimulated response element (ISRE). The structure unexpectedly shows three molecules of the IRF4 DBD bound to one ISRE. The sole reliance on native intrinsic anomalous scattering elements that belong to DNA-protein complexes renders the method of general applicability to a large number of such protein complexes that cannot be solved by molecular replacement or by other phasing methods.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Fatores Reguladores de Interferon/metabolismo , Ácidos Nucleicos/metabolismo , Fósforo/metabolismo , Enxofre/metabolismo , Sítios de Ligação/fisiologia , Cristalografia por Raios X/métodos , Proteínas de Ligação a DNA/química , Humanos , Fatores Reguladores de Interferon/química , Ácidos Nucleicos/química , Fósforo/química , Domínios Proteicos/fisiologia , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Enxofre/química
4.
Nat Commun ; 11(1): 4916, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33004803

RESUMO

Self-incompatibility (SI) is a breeding system that promotes cross-fertilization. In Brassica, pollen rejection is induced by a haplotype-specific interaction between pistil determinant SRK (S receptor kinase) and pollen determinant SP11 (S-locus Protein 11, also named SCR) from the S-locus. Although the structure of the B. rapa S9-SRK ectodomain (eSRK) and S9-SP11 complex has been determined, it remains unclear how SRK discriminates self- and nonself-SP11. Here, we uncover the detailed mechanism of self/nonself-discrimination in Brassica SI by determining the S8-eSRK-S8-SP11 crystal structure and performing molecular dynamics (MD) simulations. Comprehensive binding analysis of eSRK and SP11 structures reveals that the binding free energies are most stable for cognate eSRK-SP11 combinations. Residue-based contribution analysis suggests that the modes of eSRK-SP11 interactions differ between intra- and inter-subgroup (a group of phylogenetically neighboring haplotypes) combinations. Our data establish a model of self/nonself-discrimination in Brassica SI.


Assuntos
Brassica rapa/fisiologia , Melhoramento Vegetal , Proteínas de Plantas/metabolismo , Proteínas Quinases/metabolismo , Animais , Cristalografia , Flores/metabolismo , Haplótipos , Simulação de Dinâmica Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/ultraestrutura , Pólen/metabolismo , Ligação Proteica/fisiologia , Domínios Proteicos/fisiologia , Proteínas Quinases/genética , Proteínas Quinases/ultraestrutura , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestrutura , Células Sf9 , Spodoptera
5.
Plant Sci ; 277: 285-295, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30466594

RESUMO

Proteinaceous α-amylase inhibitors have specialized activities that make some strong inhibition of α-amylases. New α-amylase inhibitors continue to be discovered so far. A proteinaceous α-amylase inhibitor CL-AI was isolated and identified from chickpea seeds. CL-AI, encoded by Q9SMJ4, was a storage legumin precursor containing one α-chain and one ß-chain, and each chain possessed a same conserved cupin domain. Amino acid mutation and deficiency of cupin domain would lead to loss of α-amylase inhibitory activity, indicating that it was essential for inhibitory activity. CL-AI(α + ß) in its single stranded state in vivo had inhibitory activity. After it was processed into one α-chain and one ß-chain, the two chains were connected to each other via disulfide bond, which would cover the cupin domains and lead to the loss of inhibitory activity. The CL-AI(α + ß), α-chain and ß-chain could inhibit various α-amylases and delay the seed germination of wheat, rice and maize as well as the growth and development of potato beetle larva. Two cupin proteins, Glycinin G1 in soybean and Glutelinin in rice were also found to have inhibitory activity. Our results indicated that the cupin domain is involved in α-amylase inhibitory activity and the proteins with a cupin domain may be a new kind of proteinaceous α-amylase inhibitor.


Assuntos
Ativação Enzimática/genética , Inibidores Enzimáticos/farmacologia , Plantas/enzimologia , Domínios Proteicos/fisiologia , alfa-Amilases/metabolismo , Cicer/enzimologia , Ativação Enzimática/efeitos dos fármacos , Globulinas/metabolismo , Oryza/enzimologia , Proteínas de Plantas/metabolismo , Solanum tuberosum/enzimologia , Triticum/enzimologia , Zea mays/enzimologia , alfa-Amilases/antagonistas & inibidores
6.
Mol Biol Rep ; 45(6): 1637-1646, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30215193

RESUMO

Study on the binding properties of helicid by pepsin systematically using multi-spectroscopic techniques and molecular docking method, and these interactions comprise biological recognition at molecular level and backbone of biological significance in medicine concerned with the uses, effects, and modes of action of drugs. We investigated the mechanism of interaction between helicid and pepsin by using various spectroscopic techniques viz., fluorescence spectra, UV-Vis absorption spectra, circular dichroism (CD), 3D spectra, synchronous fluorescence spectra and molecular docking methods. The quenching mechanism associated with the helicid-pepsin interaction was determined by performing fluorescence measurements at different temperatures. From the experimental results show that helicid quenched the fluorescence intensity of pepsin via a combination of static and dynamic quenching process. The binding constants (Ka) at three temperatures (288, 298, and 308 K) were 7.940 × 107, 2.082 × 105 and 3.199 × 105 L mol-1, respectively, and the number of binding sites (n) were 1.44, 1.14, and 1.18, respectively. The n value is close to unity, which means that there is only one independent class of binding site on pepsin for helicid. Thermodynamic parameters at 298 K were calculated as follows: ΔHo (- 83.85 kJ mol-1), ΔGo (- 33.279 kJ mol-1), and ΔSo (- 169.72 J K-1 mol-1). Based on thermodynamic analysis, the interaction of helicid with pepsin is driven by enthalpy, and Van der Waals' forces and hydrogen bonds are the main forces between helicid and pepsin. A molecular docking study further confirmed the binding mode obtained by the experimental studies. The conformational changes in the structure of pepsin was confirmed by 3D fluorescence spectra and circular dichroism.


Assuntos
Benzaldeídos/química , Pepsina A/química , Sítios de Ligação , Dicroísmo Circular , Fluorescência , Ligação de Hidrogênio , Medicina Tradicional Chinesa , Simulação de Acoplamento Molecular/métodos , Ligação Proteica/fisiologia , Domínios Proteicos/fisiologia , Espectrometria de Fluorescência/métodos , Espectrofotometria Ultravioleta/métodos , Temperatura , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA