Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Oxid Med Cell Longev ; 2023: 4463063, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36713031

RESUMO

Visceral pain caused by inflammatory bowel disease (IBD) greatly diminishes the quality of life in affected patients. Yet, the mechanism of how IBD causes visceral pain is currently not fully understood. Previous studies have suggested that the central nervous system (CNS) and gut-brain axis (GBA) play an important role in IBD-inducing visceral pain. As one of the treatments for IBD, electroacupuncture (EA) has been used to treat various types of pain and gastrointestinal diseases in clinical practice. However, whether EA relieves the visceral pain of IBD through the gut-brain axis has not been confirmed. To verify the relationship between visceral pain and CNS, the following experiments were conducted. 1H-NMR analysis was performed on the prefrontal cortex (PFC) tissue obtained from IBD rat models to determine the link between the metabolites and their role in EA treatment against visceral pain. Western blot assay was employed for detecting the contents of glutamate transporter excitatory amino acid transporters 2 (EAAT2) and the glutamate receptor N-methyl-D-aspartate (NMDA) to verify whether EA treatment can alleviate neurotoxic symptoms induced by abnormal increases of glutamate. Study results showed that the glutamate content was significantly increased in the PFC of TNBS-induced IBD rats. This change was reversed after EA treatment. This process was associated with increased EAAT2 expression and decreased expression of NMDA receptors in the PFC. In addition, an increase in intestinal glutamic-metabolizing bacteria was observed. In conclusion, this study suggests that EA treatment can relieve visceral pain by reducing glutamine toxicity in the PFC, and serves an alternative clinical utility.


Assuntos
Eletroacupuntura , Doenças Inflamatórias Intestinais , Dor Visceral , Ratos , Animais , Ratos Sprague-Dawley , Dor Visceral/terapia , Dor Visceral/etiologia , Dor Visceral/metabolismo , Eletroacupuntura/métodos , Ácido Trinitrobenzenossulfônico , Qualidade de Vida , Doenças Inflamatórias Intestinais/complicações , Córtex Pré-Frontal/metabolismo , Glutamatos
2.
Acupunct Med ; 41(4): 224-234, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-35957508

RESUMO

BACKGROUND: Electroacupuncture (EA) can effectively relieve visceral hypersensitivity (VH). However, its mechanisms are still unclear. OBJECTIVE: To investigate the impact of EA on VH caused by ileitis, and whether EA relieves VH by modulating the endogenous cannabinoid system (ECS). METHODS: Thirty male native goats were randomly divided into a saline-treated control group (Saline, n = 9) and three 2,4,6-trinitro-benzenesulfonic acid (TNBS)-treated VH model groups that underwent injection of TNBS into the ileal wall to induce VH and remained untreated (TNBS, n = 9) or received six sessions of EA (for 30 min every 3 days) (TNBS + EA, n = 6) or sham acupuncture (TNBS + Sham, n = 6). The visceromotor response (VMR) to colorectal distention (CRD) was measured after each EA treatment. Three goats in the Saline/TNBS groups were euthanized after 7 days for histopathological examination; the remaining 24 (n = 6/group) underwent sampling of the ileal wall, T11 spinal cord and brain nuclei/areas related to visceral regulation and ascending pain modulation system on day 22. Expression of cannabinoid receptor 1 (CB1R), fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) was detected by immunohistochemistry. RESULTS: VMR to CRD was greater in TNBS-treated goats than in saline-treated goats (p < 0.01) from day 7 to 22. After day 7, EA-treated goats showed a decreased (p < 0.05) VMR compared with untreated TNBS-exposed goats. TNBS treatment decreased CB1R and increased FAAH and MAGL expression in the ileum and related nuclei/areas; this was reversed by EA. CONCLUSION: EA ameliorates VH, probably by regulating the ECS in the intestine and nuclei/areas related to visceral regulation and descending pain modulation systems.


Assuntos
Canabinoides , Eletroacupuntura , Dor Visceral , Ratos , Animais , Masculino , Ratos Sprague-Dawley , Dor Visceral/terapia , Dor Visceral/metabolismo , Cabras
3.
Purinergic Signal ; 19(1): 43-53, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35389158

RESUMO

This study explored the role of P2X7 receptors in spinal cord astrocytes in the electroacupuncture-induced inhibition of visceral hypersensitivity (VH) in rats with irritable bowel syndrome (IBS). Visceral hypersensitivity of IBS was intracolonically induced by 2,4,6-trinitrobenzene sulfonic acid (TNBS). Visceromotor responses to colorectal distension (CRD-20,40,60,80 mmHg) and abdominal withdrawal reflex scoring (AWRs) were recorded after electroacupuncture at bilateral Zusanli (ST36) and Sanyinjiao (SP6) acupoints to evaluate the analgesic effect of electroacupuncture on visceral pain in rats with IBS. Fluorocitric acid (FCA), an astrocyte activity inhibitor, was injected intrathecally before electroacupuncture intervention and AWRs were recorded. Western blot and real-time qPCR were used to detect the expression of NMDA and P2X7 receptor to observe the regulation effect of electroacupuncture on NMDA receptor in the spinal cord of rats with visceral hypersensitivity. Intrathecal injection of P2X7 agonist or antagonist was administered before electroacupuncture treatment. To observe the effect of P2X7 receptor in spinal astrocytes on the inhibition of visceral hyperalgesia by electroacupuncture, the changes of AWR score, NMDA receptor in the spinal cord, and GFAP expression in astrocytes were detected. Inflammation of the colon had basically subsided at day 21 post-TNBS; persistent visceral hypersensitivity could be suppressed by electroacupuncture. This analgesic effect could be inhibited by FCA. The analgesic effect, downregulation of NMDA receptor NR1 subunit, and P2X7 protein of electroacupuncture were all reversed by FCA. P2X7 receptor antagonist A740003 can cooperate with EA to carry out analgesic effect in rats with visceral pain and downregulate the expression of NR1, NR2B, and GFAP in spinal dorsal horn. However, the P2X7 receptor agonist BzATP could partially reverse the analgesic effect of EA, inhibiting the downregulatory effect of EA on the expression of NR1, NR2B, and GFAP. These results indicate that EA may downregulate the expression of the NMDA receptor by inhibiting the P2X7 receptor in the spinal cord, thereby inhibiting spinal cord sensitization in IBS rats with visceral pain, in which astrocytes are an important medium.


Assuntos
Eletroacupuntura , Hipersensibilidade , Síndrome do Intestino Irritável , Dor Visceral , Ratos , Animais , Síndrome do Intestino Irritável/metabolismo , Síndrome do Intestino Irritável/terapia , Ratos Sprague-Dawley , Astrócitos/metabolismo , Dor Visceral/metabolismo , Eletroacupuntura/métodos , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Medula Espinal/metabolismo , Corno Dorsal da Medula Espinal/metabolismo , Hipersensibilidade/metabolismo , Analgésicos
4.
Comput Intell Neurosci ; 2022: 3755439, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275969

RESUMO

Visceral pain is unbearable, and natural methods are needed to relieve it. Electroacupuncture is a relatively new technique that helps relieve visceral pain by improving blood circulation and providing energy to clogged parts of the body. However, its analgesic effect and mechanism in colorectal pain are still unknown. In this study, the visceral pain models of electroacupuncture in rats were compared and discussed, using nanocomponents to stimulate the expression and mechanism of the nerve growth factor in colorectal pain and electroacupuncture and to observe the expression and mechanism of nerve growth factor in visceral pain relief rats induced by nanocomponents and electroacupuncture. The results show that nanocomponents can effectively relieve visceral pain under the action of electroacupuncture. NGF can activate endogenous proliferation, migration, differentiation, and integration. NSC can promote nerve regeneration and recovery after injury.


Assuntos
Neoplasias Colorretais , Eletroacupuntura , Dor Visceral , Ratos , Animais , Dor Visceral/terapia , Dor Visceral/metabolismo , Fator de Crescimento Neural/metabolismo , Ratos Sprague-Dawley , Analgésicos
5.
Acta Pharmacol Sin ; 42(11): 1821-1833, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33558654

RESUMO

Accumulating evidence shows that agents targeting gut dysbiosis are effective for improving symptoms of irritable bowel syndrome (IBS). However, the potential mechanisms remain unclear. In this study we investigated the effects of berberine on the microbiota-gut-brain axis in two rat models of visceral hypersensitivity, i.e., specific pathogen-free SD rats subjected to chronic water avoidance stress (WAS) and treated with berberine (200 mg· kg-1 ·d-1, ig, for 10 days) as well as germ-free (GF) rats subjected to fecal microbiota transplantation (FMT) from a patient with IBS (designated IBS-FMT) and treated with berberine (200 mg· kg-1 ·d-1, ig, for 2 weeks). Before the rats were sacrificed, visceral sensation and depressive behaviors were evaluated. Then colonic tryptase was measured and microglial activation in the dorsal lumbar spinal cord was assessed. The fecal microbiota was profiled using 16S rRNA sequencing, and short chain fatty acids (SCFAs) were measured. We showed that berberine treatment significantly alleviated chronic WAS-induced visceral hypersensitivity and activation of colonic mast cells and microglia in the dorsal lumbar spinal cord. Transfer of fecal samples from berberine-treated stressed donors to GF rats protected against acute WAS. FMT from a patient with IBS induced visceral hypersensitivity and pro-inflammatory phenotype in microglia, while berberine treatment reversed the microglial activation and altered microbial composition and function and SCFA profiles in stools of IBS-FMT rats. We demonstrated that berberine did not directly influence LPS-induced microglial activation in vitro. In both models, several SCFA-producing genera were enriched by berberine treatment, and positively correlated to the morphological parameters of microglia. In conclusion, activation of microglia in the dorsal lumbar spinal cord was involved in the pathogenesis of IBS caused by dysregulation of the microbiota-gut-brain axis, and the berberine-altered gut microbiome mediated the modulatory effects of the agent on microglial activation and visceral hypersensitivity, providing a potential option for the treatment of IBS.


Assuntos
Berberina/uso terapêutico , Eixo Encéfalo-Intestino/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Microglia/efeitos dos fármacos , Medula Espinal/efeitos dos fármacos , Dor Visceral/tratamento farmacológico , Animais , Berberina/farmacologia , Eixo Encéfalo-Intestino/fisiologia , Linhagem Celular , Transplante de Microbiota Fecal/métodos , Microbioma Gastrointestinal/fisiologia , Humanos , Síndrome do Intestino Irritável/tratamento farmacológico , Síndrome do Intestino Irritável/metabolismo , Masculino , Camundongos , Microglia/metabolismo , Ratos , Ratos Sprague-Dawley , Medula Espinal/metabolismo , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/metabolismo , Dor Visceral/metabolismo
6.
Brain Res ; 1724: 146464, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31536729

RESUMO

Visceral pain is a complex and common symptom of inflammatory bowel disease (IBD) patients. Developing novel efficient therapeutics is still a common interest for clinicians. Increasing evidence have shown that tumor necrosis factor (TNF) receptor associated factor 6 (TRAF6) contributes to the pathological pain state in some pain models. Resveratrol (RSV) has showed promising potential for the treatment of neuropathic pain and inflammatory pain. However, whether RSV has analgesic effect on visceral pain and the underlying mechanisms remain unclear. In this study, we established the colitis model through intrarectal administration of 2,4,6-trinitrobenzene sulfonic acid (TNBS), and found that TNBS induced colonic inflammation and visceral hypersensitivity. Meanwhile, astroglial marker glial fibrillary acidic protein (GFAP), TRAF6, phosphorylation of NF-κB (pNF-κB), tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß) levels were increased in L6-S1 spinal cord after TNBS enema. Then, intrathecal injection of TRAF6 siRNA attenuated visceral pain, blocked the upregulation of pNF-κB, TNF-α and IL-1ß levels in the spinal cord in TNBS mice. Furthermore, spinal administration of NF-κB inhibitor, BAY11-7082 reversed the pain behavior and suppressed spinal TNF-α and IL-1ß expression in TNBS mice. Finally, repeated intrathecal injection of RSV reversed TNBS-induced visceral pain hypersensitivity in a dose-dependent manner. Meanwhile, TNBS-induced enhancement of spinal GFAP, TRAF6, pNF-κB, TNF-α and IL-1ß were reduced by the same treatment of RSV. In conclusion, our results suggest that RSV exerts the effects of antinociception on colitis-induced visceral hyperalgesia through inhibition of spinal TRAF6/NF-κB signaling pathway and the production of inflammatory mediators in the spinal cord, suggesting a new application of RSV for the treatment of visceral pain.


Assuntos
Resveratrol/farmacologia , Dor Visceral/tratamento farmacológico , Dor Visceral/metabolismo , Analgésicos/farmacologia , Animais , Colite/tratamento farmacológico , Colite/fisiopatologia , Proteína Glial Fibrilar Ácida/metabolismo , Hiperalgesia/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Neuralgia/metabolismo , Resveratrol/metabolismo , Transdução de Sinais/efeitos dos fármacos , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
7.
Purinergic Signal ; 15(2): 193-204, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31187350

RESUMO

To investigate the involvement of peripheral adenosine receptors in the effect of electroacupuncture (EA) on visceral pain in mice with inflammatory bowel disease (IBD). 2,4,6-Trinitrobenzene sulfonic acid (TNBS) was used to induce the visceral pain model. EA (1 mA, 2 Hz, 30 min) treatment was applied to bilateral acupoints "Dachangshu" (BL25) 1 day after TNBS injection once daily for 7 consecutive days. Von Frey filaments were used to measure the mechanical pain threshold. Western blot was used to detect the protein expression levels of adenosine 1 receptor (A1R), adenosine 2a receptor (A2aR), adenosine 2b receptor (A2bR), adenosine 3 receptor (A3R), substance P (SP), and interleukin 1 beta (IL-1ß) in colon tissue. EA significantly ameliorated the disease-related indices and reduced the expression of SP and IL-1ß in the colon tissues of mice with IBD. EA increased the expression of A1R, A2aR, and A3R and decreased the expression of A2bR in the colon tissue. Furthermore, the administration of adenosine receptor antagonists influenced the effect of EA. EA can inhibit the expression of the inflammatory factors SP and IL-1ß by regulating peripheral A1, A2a, A2b, and A3 receptors, thus inhibiting visceral pain in IBD mice.


Assuntos
Eletroacupuntura , Receptores Purinérgicos P1/metabolismo , Dor Visceral/metabolismo , Animais , Doenças Inflamatórias Intestinais/metabolismo , Masculino , Camundongos
8.
J Med Food ; 22(7): 663-671, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30920336

RESUMO

Intestinal enterochromaffin (EC) cell hyperplasia and increased 5-hydroxytryptamine (5-HT) availability play key roles in the pathogenesis of abdominal hypersensitivity of irritable bowel syndrome (IBS). This study aims to study the effect of quercetin on visceral pain and 5-HT availability in postinflammatory IBS (PI-IBS) rats. PI-IBS model rats were administered quercetin by gavage at doses of 5, 10, and 20 mg/kg for 14 days. Compared with normal rats, the visceral pain threshold of PI-IBS rats was markedly decreased and the abdominal motor response to colon distension was markedly increased. The EC cell count and 5-HT level, as well as tryptophan hydroxylase (TPH) protein, were all significantly elevated in PI-IBS rats, while the 5-HT reuptake transporter (serotonin transporter) was reduced. Genes that are responsible for enteroendocrine cell differentiation, that is, Ngn3 and pdx1, were significantly increased in the PI-IBS group. Quercetin treatment markedly elevated the pain threshold pressure and decreased the visceral motor response of PI-IBS animals; and EC cell density and 5-HT level, as well as TPH expression, in the PI-IBS group were all reduced by quercetin. Quercetin treatment also significantly reduced colonic expression of Ngn3 and pdx1 of PI-IBS. Findings from the present study indicated that the analgesic effect of quercetin on PI-IBS may result from reduction of 5-HT availability in the colon, and the regulatory role of quercetin in endocrine progenitors may contribute to reduced EC cells.


Assuntos
Colo/citologia , Síndrome do Intestino Irritável/tratamento farmacológico , Quercetina/administração & dosagem , Serotonina/metabolismo , Dor Visceral/tratamento farmacológico , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Colo/efeitos dos fármacos , Colo/metabolismo , Modelos Animais de Doenças , Células Enterocromafins/efeitos dos fármacos , Células Enterocromafins/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Síndrome do Intestino Irritável/genética , Síndrome do Intestino Irritável/metabolismo , Masculino , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Ratos , Ratos Wistar , Transativadores/genética , Transativadores/metabolismo , Dor Visceral/genética , Dor Visceral/metabolismo
9.
Neuropharmacology ; 138: 232-244, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29913186

RESUMO

Since Cav3.2 T-type Ca2+ channels (T-channels) expressed in the primary afferents and CNS contribute to intractable pain, we explored T-channel-blocking components in distinct herbal extracts using a whole-cell patch-clamp technique in HEK293 cells stably expressing Cav3.2 or Cav3.1, and purified and identified sophoraflavanone G (SG) as an active compound from SOPHORAE RADIX (SR). Interestingly, hop-derived SG analogues, (2S)-6-prenylnaringenin (6-PNG) and (2S)-8-PNG, but not naringenin, also blocked T-channels; IC50 (µM) of SG, (2S)-6-PNG and (2S)-8-PNG was 0.68-0.75 for Cav3.2 and 0.99-1.41 for Cav3.1. (2S)-6-PNG and (2S)-8-PNG, but not SG, exhibited reversible inhibition. The racemic (2R/S)-6-PNG as well as (2S)-6-PNG potently blocked Cav3.2, but exhibited minor effect on high-voltage-activated Ca2+ channels and voltage-gated Na+ channels in differentiated NG108-15 cells. In mice, the mechanical allodynia following intraplantar (i.pl.) administration of an H2S donor was abolished by oral or i.p. SR extract and by i.pl. SG, (2S)-6-PNG or (2S)-8-PNG, but not naringenin. Intraperitoneal (2R/S)-6-PNG strongly suppressed visceral pain and spinal ERK phosphorylation following intracolonic administration of an H2S donor in mice. (2R/S)-6-PNG, administered i.pl. or i.p., suppressed the neuropathic allodynia induced by partial sciatic nerve ligation or oxaliplatin, an anti-cancer agent, in mice. (2R/S)-6-PNG had little or no effect on open-field behavior, motor performance or cardiovascular function in mice, and on the contractility of isolated rat aorta. (2R/S)-6-PNG, but not SG, was detectable in the brain after their i.p. administration in mice. Our data suggest that 6-PNG, a hop component, blocks T-channels, and alleviates neuropathic and visceral pain with little side effects.


Assuntos
Analgésicos não Narcóticos/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Flavonoides/farmacologia , Neuralgia/tratamento farmacológico , Dor Visceral/tratamento farmacológico , Analgésicos não Narcóticos/química , Analgésicos não Narcóticos/isolamento & purificação , Animais , Bloqueadores dos Canais de Cálcio/química , Bloqueadores dos Canais de Cálcio/isolamento & purificação , Canais de Cálcio Tipo T/genética , Canais de Cálcio Tipo T/metabolismo , Modelos Animais de Doenças , Flavonoides/química , Flavonoides/isolamento & purificação , Células HEK293 , Humanos , Humulus , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neuralgia/metabolismo , Compostos Fitoquímicos/química , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Distribuição Aleatória , Ratos Wistar , Dor Visceral/metabolismo
10.
Acupunct Med ; 36(4): 240-246, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29720377

RESUMO

BACKGROUND: Treatment with electroacupuncture (EA) at ST25 and CV12 has a significant analgesic effect on postinflammatory irritable bowel syndrome (PI-IBS) visceral pain. Enterochromaffin (EC) cells and serotonin (5-hydroxytryptamine (5-HT)) are important in the development of visceral hyperalgesia. OBJECTIVE: To investigate the analgesic effect and underlying mechanisms of EA at ST25 and CV12 on the treatment of trinitrobenzene sulfonic acid (TNBS)-induced PI-IBS visceral hyperalgesia in rats. METHODS: After EA at ST25 and CV12, changes in abdominal withdrawal reflex (AWR), electromyography (EMG) recordings, colonic EC cell numbers, and expression of tryptophan hydroxylase (TPH), 5-HT and 5-hydroxyindoleacetic acid (5-HIAA) of TNBS-induced PI-IBS visceral hyperalgesia in rats were examined. RESULTS: The results of AWR tests and EMG recordings indicated a significant analgesic effect of EA stimulation at ST25 and CV12on PI-IBS visceral hyperalgesia (p<0.05). In addition, the increased EC cell numbers and colonic expression of TPH and 5-HT in rats with TNBS-induced PI-IBS visceral hyperalgesia were significantly reduced by EA (p<0.05). CONCLUSIONS: EA stimulation at ST25 and CV12 can attenuate visceral hyperalgesia. This analgesic effect may be mediated via reduction of both colonic EC cell number and 5-HT concentration.


Assuntos
Analgesia por Acupuntura , Pontos de Acupuntura , Eletroacupuntura , Síndrome do Intestino Irritável/complicações , Dor Visceral/terapia , Animais , Humanos , Masculino , Ratos , Ratos Sprague-Dawley , Serotonina/metabolismo , Triptofano Hidroxilase/genética , Triptofano Hidroxilase/metabolismo , Dor Visceral/etiologia , Dor Visceral/genética , Dor Visceral/metabolismo
11.
J Ethnopharmacol ; 217: 178-186, 2018 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-29462700

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Eugenia brasiliensis Lam. (Myrtaceae) is a Brazilian tree distributed throughout Atlantic rain forest, since Bahia until Santa Catarina state, and is popularly known as "grumixaba, grumixameira, cumbixaba, ibaporoiti, and cereja-brasileira". The bark and leaves of Eugenia brasiliensis are used in folk medicine as adstringent, diuretic, energizing, anti-rheumatic and anti-inflammatory. This study aimed at investigating the chemical composition, antinociceptive and anti-inflammatory effect of the hydroalcoholic extract of Eugenia brasiliensis (HEEb). MATERIAL AND METHODS: Chemical composition of the HEEb was determined by High Performance Liquid Chromatography/ESI-Mass Spectrometry (HPLC-ESI-MS/MS). The antinociceptive and anti-inflammatory effects of HEEb (30-300 mg/kg) was verified in mice after oral administration by intra-gastric gavage (i.g.) 60 min prior to experimentation. It was investigated whether HEEb decreases visceral pain and leukocyte migration induced by an intraperitoneal (i.p.) injection of acetic acid (0.6%). We also evaluated whether HEEb decreases nociceptive behavior induced by formalin (including paw edema and temperature), prostaglandin E2 (PGE2), histamine, and compound 48/80. Finally, we evaluated the effect of HEEb in the chronic inflammatory (mechanical and thermal hypersensitivity) pain induced by complete Freund's adjuvant (CFA), as well as quantifying the concentration of the pro-inflammatory cytokines TNF-α and IL-6 in the paw by ELISA method. RESULTS: Seven polyphenols were identified in HEEb by HPLC-ESI-MS/MS analysis. HEEb treatment alleviated nocifensive behavior and leukocyte migration caused by acetic acid. Moreover, HEEb also reduced the inflammatory pain and paw temperature induced by formalin, as well as it decreased nociceptive behavior induced by histamine and compound 48/80. Finally, acute and repeated treatment of animals with HEEb (100 mg/kg, i.g.) markedly reduced the mechanical and thermal (heat) hypersensitivity, besides decrease paw edema and temperature induced by CFA, and this effect was evident until the day 7. Moreover, repeated treatment with HEEb (100 mg/kg, i.g.) significantly reduced the levels of IL-6 and TNF-α in the paw when compared to the CFA group. CONCLUSIONS: This is the first report showing that HEEb presents antinociceptive and anti-inflammatory effects in the visceral and somatic inflammatory pain in mice, possibly involving the inhibition of histamine receptors and pro-inflammatory cytokines activated pathways. Our results are of interest because they support the use of Eugenia brasiliensis as a potential source of phytomedicine for inflammatory diseases and pain.


Assuntos
Analgésicos/farmacologia , Anti-Inflamatórios/farmacologia , Eugenia , Dor Nociceptiva/prevenção & controle , Extratos Vegetais/farmacologia , Dor Visceral/prevenção & controle , Analgésicos/isolamento & purificação , Animais , Anti-Inflamatórios/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Eugenia/química , Feminino , Mediadores da Inflamação/metabolismo , Interleucina-6/metabolismo , Camundongos , Dor Nociceptiva/induzido quimicamente , Dor Nociceptiva/metabolismo , Fitoterapia , Extratos Vegetais/isolamento & purificação , Plantas Medicinais , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Fator de Necrose Tumoral alfa/metabolismo , Dor Visceral/induzido quimicamente , Dor Visceral/metabolismo
12.
Eur J Pharmacol ; 818: 578-584, 2018 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-29162434

RESUMO

Visceral hypersensitivity (VH) is a significant contributor to irritable bowel syndrome (IBS). Oxytocin (OT) possesses analgesic effects on the central nervous system (CNS) and attenuates microglial activation, however, little is known about its peripheral effects and involvement in VH of IBS. Reactive enteric glial cells (EGCs) contributes to abnormal motility in gastrointestinal (GI) diseases. The aim of this study was to evaluate the peripheral use of OT to maintain VH and activation of EGCs through involvement of the Toll-like receptor (TLR) 4/MyD88/NF-κB signaling. After assessing a baseline visceromotor response (VMR) to colorectal distension (CRD), rats were exposed to a 1h water avoidance stress (WAS) session. Before each WAS session, intraperitoneal injection of OT (1mg/kg body weight, in phosphate-buffered saline (PBS)) atosiban (0.5mg/kg body weight, in PBS) or PBS (as a vehicle control, 1ml/kg body weight) was administered. Animas are killed 24h after the last WAS session. EGCs activity, relative OT receptor expression, glial fibrillary acidic protein (GFAP) expression and TLR4/MyD88/NF-κB signaling were evaluated. Neonatal maternal separation (MS) significantly increased the OT receptor expression and enhanced VMR to CRD. WAS improved VMR to CRD only during neonatal MS. OT treatment prevented WAS-induced higher VMRs to CRD, which was reversed by an OT receptor antagonist administration. Compared to the vehicle, OT pre-treated rats reduced EGCs activation, GFAP expression and TLR4/MyD88/NF-κB signaling. We conclude that neonatal MS induces VH and visceral pain in rats. Furthermore, exogenous OT attenuated stress-induced VH and EGCs activation, which was mediated by TLR4/MyD88/NF-κB signaling.


Assuntos
Citocinas/metabolismo , Privação Materna , Neuroglia/efeitos dos fármacos , Ocitocina/farmacologia , Estresse Psicológico/tratamento farmacológico , Dor Visceral/psicologia , Animais , Colo/patologia , Feminino , Hipotálamo/efeitos dos fármacos , Hipotálamo/fisiopatologia , Inflamação/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , Neuroglia/patologia , Ocitocina/uso terapêutico , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Sistema Hipófise-Suprarrenal/fisiopatologia , Gravidez , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo , Dor Visceral/tratamento farmacológico , Dor Visceral/metabolismo , Dor Visceral/patologia
13.
Naunyn Schmiedebergs Arch Pharmacol ; 391(3): 285-297, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29279966

RESUMO

Betulinic acid (BA) exhibits many biological effects including anti-inflammatory and anti-oxidant activities. Free radicals and pro-inflammatory mediators play an important role in the pathology of inflammatory bowel disease (IBD) and associated pain. We, therefore, examined the anti-oxidant, anti-inflammatory, and anti-nociceptive potential of BA in colitis. Colitis was induced with 3% (w/v) dextran sulfate sodium (DSS) in drinking water in mice for 1to7 days. BA (3, 10 and 30 mg/kg) was given orally for 0 to 7 days. BA was also tested for its efficacy in acetic acid and mustard oil-induced visceral nociception in mice at same doses. BA significantly prevented diarrhea; bleeding and colonic pathological changes induced by DSS. Further, BA reduced the colon nitrite, malondialdehyde, myeloperoxidase, and lipid hydroperoxide levels and restored the superoxide dismutase, catalase and reduced glutathione levels to normalize the redox balance in DSS-exposed mice. Inflammatory mediators like matrix metalloproteinase-9 and prostaglandin E2 levels were also significantly attenuated by BA in colitis mice. Additionally, BA reduced acetic acid and mustard oil-induced visceral pain in mice. In conclusion, the results of the present study suggest that BA possesses good anti-nociceptive activity and the anti-IBD effects of BA are due to its anti-oxidant and anti-inflammatory potential.


Assuntos
Analgésicos/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Colite/tratamento farmacológico , Triterpenos/uso terapêutico , Dor Visceral/tratamento farmacológico , Ácido Acético , Analgésicos/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Catalase/metabolismo , Colite/induzido quimicamente , Colite/metabolismo , Sulfato de Dextrana , Dinoprostona/metabolismo , Glutationa/metabolismo , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Mostardeira , Triterpenos Pentacíclicos , Óleos de Plantas , Superóxido Dismutase/metabolismo , Triterpenos/farmacologia , Dor Visceral/induzido quimicamente , Dor Visceral/metabolismo , Ácido Betulínico
14.
Scand J Pain ; 17: 431-443, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-29122501

RESUMO

BACKGROUND AND PURPOSE (AIMS): Psychoneuroimmunology is both a theoretical and practical field of medicine in which human biology and psychology are considered an interconnected unity. Through such a framework it is possible to elucidate complex syndromes in gastrointestinal related pain, particularly chronic non-malignant. The aim is to provide insight into pathophysiological mechanisms and suggest treatment modalities according to a comprehensive paradigm. The article also presents novel findings that may guide clinicians to recognize new targets or scientists to find new research topics. METHODS: A literature search of 'PubMed' and 'Google Scholar' databases was performed. Search terms included: 'Visceral pain', 'Psychoneuroimmunology', 'Psychoneuroimmunology and pain', 'Pain in GI system', 'GI related pain', 'Pain and microbiota', 'Enteric nervous system', 'Enteric nervous system and inflammation', 'CNS and pain', 'Inflammation and pain in GI tract', 'Neurogastroenterology', 'Neuroendocrinology', 'Immune system in GI pain'. After searching and reading sources deemed recent and relevant, a narrative review was written with a tendency to discriminate the peripheral, intermediate, and central pathophysiological mechanisms or treatment targets. RESULTS: Recent evidence point out the importance of considering the brain-gut axis as the main connector of the central and peripheral phenomena encountered in patients suffering from chronic non-malignant gastrointestinal related pain. This axis is also a prime clinical target with multiple components to be addressed in order for therapy to be more effective. Patients suffering from inflammatory bowel disease or functional gastrointestinal disorders represent groups that could benefit most from the proposed approach. CONCLUSIONS (BASED ON OUR FINDINGS): Rather than proceeding with established allopathic single-target central or peripheral treatments, by non-invasively modulating the brain-gut axis components such as the psychological and neuroendocrinological status, microbiota, enteric nervous system, or immune cells (e.g. glial or mast cells), a favourable clinical outcome in various chronic gastrointestinal related pain syndromes may be achieved. Clinical tools are readily available in forms of psychotherapy, prebiotics, probiotics, nutritional advice, and off-label drugs. An example of the latter is low-dose naltrexone, a compound which opens the perspective of targeting glial cells to reduce neuroinflammation and ultimately pain. IMPLICATIONS (OUR OPINION ON WHAT OUR FINDINGS MEAN): Current findings from basic science provide sound mechanistic evidence and once entering clinical practice should yield more effective outcomes for patients. In addition to well-established pharmacotherapy comprised notably of anti-inflammatories, antibiotics, and proton-pump inhibitors, valid treatment strategies may contain other options. These disease modulating add-ons include probiotics, prebiotics, food supplements with anti-inflammatory properties, various forms of psychotherapy, and low-dose naltrexone as a glial modulator that attenuates neuroinflammation. Clearly, a broader and still under exploited set of evidence-based tools is available for clinical use.


Assuntos
Dor Abdominal , Encéfalo , Dor Crônica , Microbioma Gastrointestinal/fisiologia , Doenças Inflamatórias Intestinais , Psiconeuroimunologia/métodos , Dor Visceral , Dor Abdominal/imunologia , Dor Abdominal/metabolismo , Dor Abdominal/fisiopatologia , Encéfalo/imunologia , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Dor Crônica/imunologia , Dor Crônica/metabolismo , Dor Crônica/fisiopatologia , Microbioma Gastrointestinal/imunologia , Humanos , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/fisiopatologia , Dor Visceral/imunologia , Dor Visceral/metabolismo , Dor Visceral/fisiopatologia
15.
Mar Drugs ; 15(6)2017 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-28635651

RESUMO

Visceral pain is very common and represents a major unmet clinical need for which current pharmacological treatments are often insufficient. Tetrodotoxin (TTX) is a potent neurotoxin that exerts analgesic actions in both humans and rodents under different somatic pain conditions, but its effect has been unexplored in visceral pain. Therefore, we tested the effects of systemic TTX in viscero-specific mouse models of chemical stimulation of the colon (intracolonic instillation of capsaicin and mustard oil) and intraperitoneal cyclophosphamide-induced cystitis. The subcutaneous administration of TTX dose-dependently inhibited the number of pain-related behaviors in all evaluated pain models and reversed the referred mechanical hyperalgesia (examined by stimulation of the abdomen with von Frey filaments) induced by capsaicin and cyclophosphamide, but not that induced by mustard oil. Morphine inhibited both pain responses and the referred mechanical hyperalgesia in all tests. Conditional nociceptor­specific Nav1.7 knockout mice treated with TTX showed the same responses as littermate controls after the administration of the algogens. No motor incoordination after the administration of TTX was observed. These results suggest that blockade of TTX-sensitive sodium channels, but not Nav1.7 subtype alone, by systemic administration of TTX might be a potential therapeutic strategy for the treatment of visceral pain.


Assuntos
Medição da Dor/efeitos dos fármacos , Tetrodotoxina/farmacologia , Dor Visceral/tratamento farmacológico , Analgésicos/farmacologia , Animais , Capsaicina/farmacologia , Colo/efeitos dos fármacos , Colo/metabolismo , Cistite/tratamento farmacológico , Cistite/metabolismo , Modelos Animais de Doenças , Feminino , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Masculino , Camundongos , Camundongos Knockout , Morfina/farmacologia , Mostardeira , Nociceptores/metabolismo , Óleos de Plantas/farmacologia , Canais de Sódio/metabolismo , Dor Visceral/metabolismo
16.
World J Gastroenterol ; 23(16): 2928-2939, 2017 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-28522910

RESUMO

AIM: To observe whether there are differences in the effects of electro-acupuncture (EA) and moxibustion (Mox) in rats with visceral hypersensitivity. METHODS: EA at 1 mA and 3 mA and Mox at 43 °C and 46 °C were applied to the Shangjuxu (ST37, bilateral) acupoints in model rats with visceral hypersensitivity. Responses of wide dynamic range neurons in dorsal horns of the spinal cord were observed through the extracellular recordings. Mast cells (MC) activity in the colons of rats were assessed, and 5-hydroxytryptamine (5-HT), 5-hydroxytryptamine 3 receptor (5-HT3R) and 5-HT4R expressions in the colons were measured. RESULTS: Compared with normal control group, responses of wide dynamic range neurons in the dorsal horn of the spinal cord were increased in the EA at 1 mA and 3 mA groups (1 mA: 0.84 ± 0.74 vs 2.73 ± 0.65, P < 0.001; 3 mA: 1.91 ± 1.48 vs 6.44 ± 1.26, P < 0.001) and Mox at 43 °C and 46 °C groups (43 °C: 1.76 ± 0.81 vs 4.14 ± 1.83, P = 0.001; 46 °C: 5.19 ± 2.03 vs 7.91 ± 2.27, P = 0.01). MC degranulation rates and the expression of 5-HT, 5-HT3R and 5-HT4R in the colon of Mox 46 °C group were decreased compared with model group (MC degranulation rates: 0.47 ± 0.56 vs 0.28 ± 0.78, P < 0.001; 5-HT: 1.42 ± 0.65 vs 7.38 ± 1.12, P < 0.001; 5-HT3R: 6.62 ± 0.77 vs 2.86 ± 0.88, P < 0.001; 5-HT4R: 4.62 ± 0.65 vs 2.22 ± 0.97, P < 0.001). CONCLUSION: The analgesic effects of Mox at 46 °C are greater than those of Mox at 43 °C, EA 1 mA and EA 3 mA.


Assuntos
Dor Abdominal/terapia , Colo/inervação , Eletroacupuntura , Hiperalgesia/terapia , Síndrome do Intestino Irritável/terapia , Moxibustão , Manejo da Dor/métodos , Dor Visceral/terapia , Dor Abdominal/diagnóstico , Dor Abdominal/metabolismo , Dor Abdominal/fisiopatologia , Animais , Colo/metabolismo , Modelos Animais de Doenças , Hiperalgesia/diagnóstico , Hiperalgesia/metabolismo , Hiperalgesia/fisiopatologia , Síndrome do Intestino Irritável/diagnóstico , Síndrome do Intestino Irritável/metabolismo , Síndrome do Intestino Irritável/fisiopatologia , Masculino , Mastócitos/metabolismo , Medição da Dor , Células do Corno Posterior/metabolismo , Ratos Sprague-Dawley , Receptores 5-HT3 de Serotonina/metabolismo , Receptores 5-HT4 de Serotonina/metabolismo , Serotonina/metabolismo , Temperatura , Dor Visceral/diagnóstico , Dor Visceral/metabolismo , Dor Visceral/fisiopatologia
17.
J Ethnopharmacol ; 201: 123-135, 2017 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-28263849

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Chang-Kang-Fang formula (CKF), a multi-herb traditional Chinese medicinal formula, has been clinically used for treatment of irritable bowel syndrome (IBS). The mechanisms of CKF for treating IBS and the components that are responsible for the activities were still unknown. AIM OF THE STUDY: To investigate the chemical profiles and effects of CKF on IBS model. MATERIALS AND METHODS: The chemical profiles of CKF were investigated by ultra performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-Q/TOF-MS/MS). On colon irritation induced rat neonates IBS model, the influence of CKF on neuropeptides, including substance P (SP), calcitonin gene-related peptide (CGRP), vasoactive intestinal polypeptide (VIP) and 5-hydroxytryptamine (5-HT), were measured by ELISA, and the effect on intestinal sensitivity was assessed based on the abdominal withdrawal reflex (AWR) scores. In addition, the activities of CKF against acetic acid-induced nociceptive responses and prostigmin methylsulfate triggered intestinal propulsion in mice were also evaluated. RESULTS: 80 components were identified or tentatively assigned from CKF, including 11 alkaloids, 20 flavanoids, 4 monoterpenoids, 9 iridoid glycoside, 9 phenylethanoid glycosides, 10 chromones, 7 organic acid, 3 coumarins, 2 triterpene and 5 other compounds. On IBS rat model, CKF was observed to reduce AWR scores and levels of SP, CGRP, VIP and 5-HT. Moreover, CKF reduced the acetic acid-induced writhing scores at all dosages and reduced the intestinal propulsion ration at dosage of 7.5 and 15.0g/kg/d. CONCLUSIONS: CKF could alleviate the symptoms of IBS by modulating the brain-gut axis through increasing the production of neuropeptides such as CGRP, VIP, 5-HT and SP, releasing pain and reversing disorders of intestinal propulsion. Berberine, paeoniflorin, acteoside, flavonoids and chromones may be responsible for the multi-bioactivities of CKF.


Assuntos
Medicamentos de Ervas Chinesas , Síndrome do Intestino Irritável/tratamento farmacológico , Compostos Fitoquímicos , Ácido Acético , Animais , Peptídeo Relacionado com Gene de Calcitonina/sangue , Colo/efeitos dos fármacos , Colo/metabolismo , Colo/patologia , Medicamentos de Ervas Chinesas/análise , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Síndrome do Intestino Irritável/sangue , Síndrome do Intestino Irritável/metabolismo , Síndrome do Intestino Irritável/patologia , Masculino , Camundongos , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Ratos Sprague-Dawley , Serotonina/metabolismo , Substância P/sangue , Substância P/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo , Dor Visceral/sangue , Dor Visceral/tratamento farmacológico , Dor Visceral/metabolismo , Dor Visceral/patologia
18.
J Physiol ; 595(8): 2661-2679, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28105664

RESUMO

KEY POINTS: Voltage-gated sodium channels play a fundamental role in determining neuronal excitability. Specifically, voltage-gated sodium channel subtype NaV 1.7 is required for sensing acute and inflammatory somatic pain in mice and humans but its significance in pain originating from the viscera is unknown. Using comparative behavioural models evoking somatic and visceral pain pathways, we identify the requirement for NaV 1.7 in regulating somatic (noxious heat pain threshold) but not in visceral pain signalling. These results enable us to better understand the mechanisms underlying the transduction of noxious stimuli from the viscera, suggest that the investigation of pain pathways should be undertaken in a modality-specific manner and help to direct drug discovery efforts towards novel visceral analgesics. ABSTRACT: Voltage-gated sodium channel NaV 1.7 is required for acute and inflammatory pain in mice and humans but its significance for visceral pain is unknown. Here we examine the role of NaV 1.7 in visceral pain processing and the development of referred hyperalgesia using a conditional nociceptor-specific NaV 1.7 knockout mouse (NaV 1.7Nav1.8 ) and selective small-molecule NaV 1.7 antagonist PF-5198007. NaV 1.7Nav1.8 mice showed normal nociceptive behaviours in response to intracolonic application of either capsaicin or mustard oil, stimuli known to evoke sustained nociceptor activity and sensitization following tissue damage, respectively. Normal responses following induction of cystitis by cyclophosphamide were also observed in both NaV 1.7Nav1.8 and littermate controls. Loss, or blockade, of NaV 1.7 did not affect afferent responses to noxious mechanical and chemical stimuli in nerve-gut preparations in mouse, or following antagonism of NaV 1.7 in resected human appendix stimulated by noxious distending pressures. However, expression analysis of voltage-gated sodium channel α subunits revealed NaV 1.7 mRNA transcripts in nearly all retrogradely labelled colonic neurons, suggesting redundancy in function. By contrast, using comparative somatic behavioural models we identify that genetic deletion of NaV 1.7 (in NaV 1.8-expressing neurons) regulates noxious heat pain threshold and that this can be recapitulated by the selective NaV 1.7 antagonist PF-5198007. Our data demonstrate that NaV 1.7 (in NaV 1.8-expressing neurons) contributes to defined pain pathways in a modality-dependent manner, modulating somatic noxious heat pain, but is not required for visceral pain processing, and advocate that pharmacological block of NaV 1.7 alone in the viscera may be insufficient in targeting chronic visceral pain.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.7/deficiência , Nociceptores/metabolismo , Dor Visceral/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Capsaicina/toxicidade , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout , Mostardeira/toxicidade , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Dor Nociceptiva/induzido quimicamente , Dor Nociceptiva/genética , Dor Nociceptiva/metabolismo , Nociceptores/efeitos dos fármacos , Óleos de Plantas/toxicidade , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Bloqueadores dos Canais de Sódio/farmacologia , Dor Visceral/induzido quimicamente , Dor Visceral/genética
19.
J Physiol Sci ; 67(1): 197-206, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27221284

RESUMO

The involvement of spinal NR2B, a N-methyl-D-aspartate (NMDA) receptor subunit, in the therapeutic effect of electro-acupuncture (EA) on chronic visceral hyperalgesia was investigated. Chronic visceral hyperalgesia was induced using an irritable bowel syndrome (IBS) model in rats. Graded colorectal distention (CRD) stimuli at strengths of 20, 40, 60 and 80 mmHg were applied, and behavioral tests were performed to measure the abdominal withdrawal reflex (AWR) in response to the CRD stimuli and assess the severity of the visceral hyperalgesia. Rats were randomly divided into four groups: normal intact (control) group, IBS model (model) group, EA-treated IBS rats (EA) group and sham EA-treated IBS rats (sham EA) group. For the EA treatment, electric stimuli were applied through needles inserted into two acupoints [Zu-san-li (ST-36) and Shang-ju-xu (ST-37)] in both hind limbs, while the sham EA treatment consisted of only the insertion of needles into these same acupoints without an application of electric stimuli. Our results showed that AWR scores of the model group responding to CRD stimuli of 20, 40, 60 and 80 mmHg were significantly increased. These increased scores subsequently decreased following EA treatment (P < 0.05) compared with those for the other groups. The expression of NR2B in the superficial laminae (SDH, laminae I and II), nucleus proprius (NP, laminae III and IV), neck of the dorsal horn (NECK, laminae V and VI) and central canal region (lamina X) at thoracolumbar (T13-L2) and lumbosacral (L6-S2) segmental level significantly increased in the model group versus the control group (P < 0.05) and significantly decreased after EA treatment (P < 0.05). There were no significant changes in neither AWR scores nor expression of the NR2B subunit in these spinal regions after the sham EA treatment. These results confirm that EA can relieve chronic visceral hyperalgesia in IBS model rats and suggest that such an effect is possibly mediated through the downregulation of the NR2B subunits of NMDA at the spinal level.


Assuntos
Eletroacupuntura , Hiperalgesia/terapia , Receptores de N-Metil-D-Aspartato/metabolismo , Dor Visceral/terapia , Animais , Regulação para Baixo , Hiperalgesia/genética , Hiperalgesia/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/genética , Dor Visceral/genética , Dor Visceral/metabolismo
20.
Zhen Ci Yan Jiu ; 41(4): 291-7, 2016 Aug 25.
Artigo em Chinês | MEDLINE | ID: mdl-29071922

RESUMO

OBJECTIVE: To compare the effects of electroacupuncture (EA) and moxibustion (Moxi) on visceral pain and expression of vanilloid receptor subtype 1 (VR 1) and heat shock protein (HSP)70 in "Tianshu" (ST 25) region in colorectal distension (CRD)-induced visceral hypersensitivity (VHS) rats. METHODS: Fifty male SD rats were randomly divided into normal control, VHS model, 43℃-moxi, 46℃-moxi, 1 mA-EA and 3 mA-EA groups (n=10 in each group). The VSH model was established by CRD once daily for 14 days. EA or Moxi stimulation was applied to bilateral "Tianshu" (ST 25) for 10 min, once daily for consecutive 10 days. The abdominal withdrawal reflex (AWR) scores (0-4 points) were rated according to Al-Chaer's and coworkers' standards (2000) and the expression levels of VR 1 and HSP 70 in bilateral ST 25 area tissues detected by immunohistochemistry. RESULTS: The AWR scores for 20, 40, 60 and 80 mmHg CRD pressures were significantly increased compared to the normal control group (P<0.01) and notably decreased after 43℃- and 46℃-moxi, and 1 mA- and 3 mA-EA stimulation of bila-teral ST 25 in comparison with the model group (P<0.05, P<0.01), and the effect of 46℃-moxi was apparently superior to those of 1 mA-EA at 40 and 80 mmHg, and 3 mA-EA at 40 mmHg (P<0.05). After modeling, the expression of both VR 1 and HSP 70 (percentages of area of positive-cells) in ST 25 region had no significant changes (P>0.05). Compared to the model group, the expression levels of VR 1 in the 43℃-moxi and 46℃-moxi groups, and HSP 70 in the 43℃-moxi and 46℃-moxi, 1 mA-EA and 3 mA-EA groups were significantly up-regulated (P<0.01), but without obvious changes in the expression of VR 1 in the 1 mA-EA and 3 mA-EA groups (P>0.05). The effects of 46℃-moxi were considerably better than those of 43℃-moxi, 1 mA-EA and 3 mA-EA in up-regulating VR 1 and HSP 70 expression (P<0.05, P<0.01). No significant differences were found among the 43℃-moxi, 1 mA-EA and 3 mA-EA groups in the expression of VR 1 and HSP 70 (P>0.05). CONCLUSIONS: Moxibustion at 43℃ and 46℃ and EA at 1 mA and 3 mA, especially the 46℃-moxi, can relieve visceral pain in visceral hypersensitivity rats, which may be related to their effects in up-regulating expression of VR 1 and HSP 70 in "Tianshu" (ST 25) area.


Assuntos
Pontos de Acupuntura , Eletroacupuntura , Proteínas de Choque Térmico HSP70/metabolismo , Moxibustão , Canais de Cátion TRPV/metabolismo , Dor Visceral/terapia , Animais , Proteínas de Choque Térmico HSP70/genética , Humanos , Masculino , Manejo da Dor , Ratos , Ratos Sprague-Dawley , Canais de Cátion TRPV/genética , Dor Visceral/genética , Dor Visceral/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA