Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 392
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Maturitas ; 184: 107941, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38430618

RESUMO

INTRODUCTION: Medicinal cannabis might have a role in supporting the mental health of people with cancer. This systematic review and meta-analysis examined the efficacy and safety of medicinal cannabis, compared with any control, as an intervention for depression, anxiety, and stress symptoms in people living with cancer. A secondary aim was to examine the effect of low versus high Δ9-tetrahydrocannabinol (THC) dose on these outcomes. METHODS: Five databases were systematically searched, and complemented with a snowball search from inception to May 2023, for any type of interventional study that included humans of any age with any cancer type. Primary outcomes were incidence and severity of depression, anxiety, and stress symptoms. Secondary outcomes were mood, cognition, quality of life, appetite, nutrition status, gastrointestinal symptoms, and adverse events. Data were pooled using Review Manager. Evidence was appraised using Cochrane risk of bias tools. Confidence in the estimated effect of pooled outcomes was assessed using Grading of Recommendations, Assessment, Development and Evaluation (GRADE). RESULTS: Fifteen studies (n = 11 randomized trials, n = 4 non-randomized trials) of 18 interventions (N = 1898 total participants; 100 % ≥18 years of age) were included. Ten studies examined THC (70 % synthetic), two synthetic cannabidiol with or without THC, and six whole-plant extracts. No clinically significant effects of medicinal cannabis were found on primary outcomes. The likelihood of anxiety events increased with higher-dose synthetic THC compared with a lower dose (OR: 2.0; 95 % CI: 1.4, 2.9; p < 0.001; Confidence: very low). Medicinal cannabis (THC, cannabidiol, and whole-plant extract) increased the likelihood of improved appetite (OR: 12.3; 95 % CI: 3.5, 45.5; p < 0.001; n = 3 interventions; Confidence: moderate) and reduced severity of appetite loss (SMD: -0.4; 95 % CI: -0.8, -0.1; p = 0.009; Confidence: very low). There was very low confidence that higher doses of synthetic THC increased the likelihood of any adverse event (OR: 0.5; 95 % CI: 0.3, 0.7; p < 0.001). Medicinal cannabis had no effect on emotional functioning, mood changes, confusion, disorientation, quality of life, and gastrointestinal symptoms. Confidence in findings was limited by some studies having high or unclear risk of bias and imprecise pooled estimates. CONCLUSIONS: There was insufficient evidence to determine the efficacy and safety of medicinal cannabis as a therapeutic intervention for depression, anxiety, or stress in people with active cancer. Further research should explore whether medicinal cannabis might improve and maintain appetite and if high-dose synthetic THC might increase the incidence of side-effects, including anxiety. To inform clinical practice, well-powered and rigorously designed trials are warranted that evaluate the effects of medicinal cannabis prescribed to target anxiety, depression, and stress.


Assuntos
Ansiedade , Depressão , Maconha Medicinal , Neoplasias , Estresse Psicológico , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/psicologia , Maconha Medicinal/uso terapêutico , Maconha Medicinal/efeitos adversos , Ansiedade/tratamento farmacológico , Depressão/tratamento farmacológico , Estresse Psicológico/tratamento farmacológico , Dronabinol/farmacologia , Dronabinol/uso terapêutico , Qualidade de Vida
2.
Mini Rev Med Chem ; 24(15): 1427-1448, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38318827

RESUMO

Sativex is a cannabis-based medicine that comes in the form of an oromucosal spray. It contains equal amounts of Δ9-tetrahydrocannabinol and cannabidiol, two compounds derived from cannabis plants. Sativex has been shown to have positive effects on symptoms of amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), and sleep disorders. It also has analgesic, antiinflammatory, antitumoral, and neuroprotective properties, which make it a potential treatment option for other neurological disorders. The article reviews the results of recent preclinical and clinical studies that support the therapeutic potential of Sativex and the molecular mechanisms behind its neuroprotective benefits in various neurological disorders. The article also discusses the possible advantages and disadvantages of using Sativex as a neurotherapeutic agent, such as its safety, efficacy, availability, and legal status.


Assuntos
Canabidiol , Dronabinol , Fármacos Neuroprotetores , Extratos Vegetais , Humanos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química , Canabidiol/farmacologia , Canabidiol/uso terapêutico , Canabidiol/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Dronabinol/farmacologia , Dronabinol/química , Dronabinol/uso terapêutico , Animais , Esclerose Múltipla/tratamento farmacológico , Cannabis/química , Combinação de Medicamentos
3.
Sci Rep ; 14(1): 4343, 2024 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-38383569

RESUMO

Antibiotic resistance in staphylococcal strains and its impact on public health and agriculture are global problems. The development of new anti-staphylococcal agents is an effective strategy for addressing the increasing incidence of bacterial resistance. In this study, ethanolic extracts of Cannabis sativa L. made from plant parts harvested during the whole vegetation cycle under various nutritional treatments were assessed for in vitro anti-staphylococcal effects. The results showed that all the cannabis extracts tested exhibited a certain degree of growth inhibition against bacterial strains of Staphylococcus aureus, including antibiotic-resistant and antibiotic-sensitive forms. The highest antibacterial activity of the extracts was observed from the 5th to the 13th week of plant growth across all the nutritional treatments tested, with minimum inhibitory concentrations ranging from 32 to 64 µg/mL. Using HPLC, Δ9-tetrahydrocannabinolic acid (THCA) was identified as the most abundant cannabinoid in the ethanolic extracts. A homolog of THCA, tetrahydrocannabivarinic acid (THCVA), reduced bacterial growth by 74%. These findings suggest that the cannabis extracts tested in this study can be used for the development of new anti-staphylococcal compounds with improved efficacy.


Assuntos
Canabinoides , Cannabis , Alucinógenos , Canabinoides/farmacologia , Extratos Vegetais/farmacologia , Staphylococcus , Dronabinol/farmacologia , Antibacterianos/farmacologia , Alucinógenos/farmacologia , Agonistas de Receptores de Canabinoides/farmacologia , Etanol/farmacologia
4.
Curr Pain Headache Rep ; 28(3): 109-118, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38095748

RESUMO

PURPOSE OF REVIEW: Neuropathic pain (NP) remains a challenge to treat, with 50% of patients experiencing limited efficacy from current treatments. Medicinal cannabis, which contains tetrahydrocannabinol (THC), cannabidiol (CBD) and other minor cannabinoids, is garnering attention as an alternative treatment for NP. This paper reviews the clinical evidence for phytocannabinoid treatment of NP. RECENT FINDINGS: Seventeen randomised controlled trials (RCT) were identified for inclusion in this review. Of these, ten studies using phytocannabinoid preparations containing THC alone had the most evidence for pain relief. Four studies investigating THC/CBD combinations showed some reductions in pain scores, although not all findings were statistically significant, whereas studies investigating CBD (two studies) or cannabidivarin (one study) showed no analgesic effect over placebo. However, CBD studies were of small sample size when compared to other studies in the review and short duration. Results for treatment of diabetic peripheral neuropathy patients with THC showed better improvements over those for NP induced by chemotherapy and multiple sclerosis, with these trials using vaporised whole plant cannabis. This formulation may have trace amounts of other minor cannabinoids, compared with synthetic cannabinoids such as dronabinol or nabilone that were investigated in other studies. This review provides an overview of RCTs that have investigated phytocannabinoid use for the treatment of NP. There appears to be evidence to necessitate further high quality RCTs into novel formulations of phytocannabinoids for the treatment of NP.


Assuntos
Canabinoides , Cannabis , Maconha Medicinal , Neuralgia , Humanos , Dronabinol/uso terapêutico , Dronabinol/farmacologia , Canabinoides/uso terapêutico , Neuralgia/tratamento farmacológico , Maconha Medicinal/uso terapêutico , Ensaios Clínicos Controlados Aleatórios como Assunto
5.
Genes Genomics ; 45(12): 1463-1474, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37837516

RESUMO

BACKGROUND: Δ9-Tetrahydrocannabinol (Δ9-THC) is a principal psychoactive extract of Cannabis sativa and has been traditionally used as palliative medicine for neuropathic pain. Cannabidiol (CBD), an extract of hemp species, has recently attracted increased attention as a cancer treatment, but Δ9-THC is also requiring explored pharmacological application. OBJECTIVE: This study evaluated the pharmacological effects of Δ9-THC in two human colorectal cancer cell lines. We investigated whether Δ9-THC treatment induces cell death in human colorectal cancer cells. METHODS: We performed an MTT assay to determine the pharmacological concentration of Δ9-THC. Annxein V and Western blot analysis confirmed that Δ9-THC induced apoptosis in colorectal cancer cells. Metabolic activity was evaluated using MitoTracker staining and ATP determination. We investigated vesicle formation by Δ9-THC treatment using GW9662, known as a PPARγ inhibitor. RESULTS: The MTT assay showed that treatment with 40 µM Δ9-THC and above inhibited the proliferation of colorectal cancer cells. Multiple intracytoplasmic vesicles were detected upon microscopic observation, and fluorescence-activated cell sorting analysis showed cell death via G1 arrest. Δ9-THC treatment increased the expression of cell death marker proteins, including p53, cleaved PARP-1, RIP1, and RIP3, suggesting that Δ9-THC induced the death of colorectal cancer cells. Δ9-THC treatment also reduced ATP production via changes in Bax and Bcl-2. Δ9-THC regulated intracytoplasmic vesicle formation by modulating the expression of PPARγ and clathrin, adding that antiproliferative activity of Δ9-THC was also affected. CONCLUSION: In conclusion, Δ9-THC regulated two functional mechanisms, intracellular vesicle formation and cell death. These findings can help to determine how cannabinoids can be used most effectively to improve the efficacy of cancer treatment.


Assuntos
Cannabis , Neoplasias Colorretais , Humanos , Dronabinol/farmacologia , PPAR gama , Apoptose , Neoplasias Colorretais/tratamento farmacológico , Extratos Vegetais , Trifosfato de Adenosina
6.
Addict Biol ; 28(9): e13317, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37644897

RESUMO

The opioid and cannabinoid receptor systems are inextricably linked-overlapping at the anatomical, functional and behavioural levels. Preclinical studies have reported that cannabinoid and opioid agonists produce synergistic antinociceptive effects. Still, there are no experimental data on the effects of cannabinoid agonists among humans who receive opioid agonist therapies for opioid use disorder (OUD). We conducted an experimental study to investigate the acute effects of the delta-9-tetrahydrocannabinol (THC) among persons receiving methadone therapy for OUD. Using a within-subject, crossover, human laboratory design, 25 persons on methadone therapy for OUD (24% women) were randomly assigned to receive single oral doses of THC (10 or 20 mg, administered as dronabinol) or placebo, during three separate 5-h test sessions. Measures of experimental and self-reported pain sensitivity, abuse potential, cognitive performance and physiological effects were collected. Mixed-effects models examined the main effects of THC dose and interactions between THC (10 and 20 mg) and methadone doses (low-dose methadone defined as <90 mg/day; high dose defined as >90 mg/day). Results demonstrated that, for self-reported rather than experimental pain sensitivity measures, 10 mg THC provided greater relief than 20 mg THC, with no substantial evidence of abuse potential, and inconsistent dose-dependent cognitive adverse effects. There was no indication of any interaction between THC and methadone doses. Collectively, these results provide valuable insights for future studies aiming to evaluate the risk-benefit profile of cannabinoids to relieve pain among individuals receiving opioid agonist therapy for OUD, a timely endeavour amidst the opioid crisis.


Assuntos
Dronabinol , Transtornos Relacionados ao Uso de Opioides , Humanos , Feminino , Masculino , Dronabinol/farmacologia , Analgésicos Opioides/uso terapêutico , Transtornos Relacionados ao Uso de Opioides/tratamento farmacológico , Metadona/uso terapêutico , Dor
7.
Rev Invest Clin ; 75(3): 105-128, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37441766

RESUMO

The consumption of Cannabis sativa plant, known as marijuana in the Western world, for different purposes (therapeutic, intoxicating, and spiritual) due to its psychoactive effects, can be traced back to ancient times. Cannabis is the most used illicit drug worldwide; however, its legal status is changing rapidly. Cannabis regulation will allow a better understanding of its effects as a misused drug, including new challenges, such as the availability of highly potent Cannabis extracts. Furthermore, scientific research is making significant efforts to take advantage of the potential therapeutic uses of Cannabis active compounds. The science of Cannabis derivatives started with the identification of the phytocannabinoids Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD), allowing the formal study of the complex set of effects triggered by Cannabis consumption and the deciphering of its pharmacology. Δ9-THC is recognized as the compound responsible for the psychoactive and intoxicating effects of Cannabis. Its study led to the discovery of the endocannabinoid system, a neuromodulatory system widespread in the human body. CBD does not induce intoxication and for that reason, it is the focus of the search for cannabinoid potential clinical applications. This review examines the current state of knowledge about contrasting perspectives on the effects of Cannabis, Δ9-THC, and CBD: their abuse liability and potential therapeutic use; two sides of the same coin.


Assuntos
Canabidiol , Canabinoides , Cannabis , Humanos , Dronabinol/farmacologia , Dronabinol/uso terapêutico , Canabinoides/farmacologia , Canabinoides/uso terapêutico , Canabidiol/farmacologia , Canabidiol/uso terapêutico
8.
Clin Pharmacol Ther ; 114(3): 693-703, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37313955

RESUMO

Understanding cannabis-drug interactions is critical given regulatory changes that have increased access to and use of cannabis. Cannabidiol (CBD) and Δ-9-tetrahydrocannabinol (Δ9-THC), the most abundant phytocannabinoids, are in vitro reversible and time-dependent (CBD only) inhibitors of several cytochrome P450 (CYP) enzymes. Cannabis extracts were used to evaluate quantitatively potential pharmacokinetic cannabinoid-drug interactions in 18 healthy adults. Participant received, in a randomized cross-over manner (separated by ≥ 1 week), a brownie containing (i) no cannabis extract (ethanol/placebo), (ii) CBD-dominant cannabis extract (640 mg CBD + 20 mg Δ9-THC), or (iii) Δ9-THC-dominant cannabis extract (20 mg Δ9-THC and no CBD). After 30 minutes, participants consumed a cytochrome P450 (CYP) drug cocktail consisting of caffeine (CYP1A2), losartan (CYP2C9), omeprazole (CYP2C19), dextromethorphan (CYP2D6), and midazolam (CYP3A). Plasma and urine samples were collected (0-24 hours). The CBD + Δ9-THC brownie inhibited CYP2C19 > CYP2C9 > CYP3A > CYP1A2 (but not CYP2D6) activity, as evidenced by an increase in the geometric mean ratio of probe drug area under the plasma concentration-time curve (AUC) relative to placebo (AUCGMR ) of omeprazole, losartan, midazolam, and caffeine by 207%, 77%, 56%, and 39%, respectively. In contrast, the Δ9-THC brownie did not inhibit any of the CYPs. The CBD + Δ9-THC brownie increased Δ9-THC AUCGMR by 161%, consistent with CBD inhibiting CYP2C9-mediated oral Δ9-THC clearance. Except for caffeine, these interactions were well-predicted by our physiologically-based pharmacokinetic model (within 26% of observed interactions). Results can be used to help guide dose adjustment of drugs co-consumed with cannabis products and the dose of CBD in cannabis products to reduce interaction risk with Δ9-THC.


Assuntos
Canabidiol , Canabinoides , Cannabis , Alucinógenos , Humanos , Adulto , Canabinoides/farmacologia , Citocromo P-450 CYP1A2 , Citocromo P-450 CYP2C19 , Cafeína/farmacocinética , Midazolam/farmacocinética , Citocromo P-450 CYP3A , Losartan , Citocromo P-450 CYP2C9 , Sistema Enzimático do Citocromo P-450 , Citocromo P-450 CYP2D6 , Interações Medicamentosas , Omeprazol/farmacocinética , Extratos Vegetais/farmacocinética , Dronabinol/farmacologia
9.
Life Sci ; 327: 121825, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37270168

RESUMO

AIMS: Acute and chronic Δ9-THC exposure paradigms affect the body differently. More must be known about the impact of chronic Δ9-THC on cannabinoid-1 (CB1R) and mu-opioid (MOR) receptor levels in the brain. The present study examined chronic Δ9-THC's effects on CB1R and MOR levels and locomotor activity. MAIN METHODS: Adolescent Sprague-Dawley rats were given daily intraperitoneal injections of Δ9-THC [0.75mg/kg (low dose or LD) or 2.0 mg/kg (high dose or HD)] or vehicle for 24 days, and locomotion in the open field was tested after the first and fourth weeks of chronic Δ9-THC exposure. Brains were harvested at the end of treatment. [3H] SR141716A and [3H] DAMGO autoradiography assessed CB1R and MOR levels, respectively. KEY FINDINGS: Relative to each other, chronic HD rats showed reduced vertical plane (VP) entries and time, while LD rats had increased VP entries and time for locomotion, as assessed by open-field testing; no effects were found relative to the control. Autoradiography analyses showed that HD Δ9-THC significantly decreased CB1R binding relative to LD Δ9-THC in the cingulate (33%), primary motor (42%), secondary motor (33%) somatosensory (38%), rhinal (38%), and auditory (50%) cortices; LD Δ9-THC rats displayed elevated binding in the primary motor (33% increase) and hypothalamic (33% increase) regions compared with controls. No significant differences were observed in MOR binding for the LD or HD compared to the control. SIGNIFICANCE: These results demonstrate that chronic Δ9-THC dose-dependently altered CB1R levels throughout the brain and locomotor activity in the open field.


Assuntos
Canabinoides , Dronabinol , Ratos , Animais , Dronabinol/farmacologia , Rimonabanto/metabolismo , Rimonabanto/farmacologia , Ratos Sprague-Dawley , Comportamento Exploratório , Canabinoides/farmacologia , Encéfalo/metabolismo
10.
Mol Brain ; 16(1): 47, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37231418

RESUMO

Delta-9-tetrahydrocannabinol (Δ9-THC) is known to produce systemic analgesia that involves CB1 and CB2 cannabinoid receptors. However, there is compelling evidence that Δ9-THC can potently inhibit Cav3.2T-type calcium channels which are highly expressed in dorsal root ganglion neurons and in the dorsal horn of the spinal cord. Here, we investigated whether spinal analgesia produced by Δ9-THC involves Cav3.2 channels vis a vis cannabinoid receptors. We show that spinally delivered Δ9-THC produced dose-dependent and long-lasting mechanical anti-hyperalgesia in neuropathic mice, and showed potent analgesic effects in models of inflammatory pain induced by formalin or Complete Freund's Adjuvant (CFA) injection into the hind paw, with the latter showing no overt sex differences. The Δ9-THC mediated reversal of thermal hyperalgesia in the CFA model was abolished in Cav3.2 null mice, but was unaltered in CB1 and CB2 null animals. Hence, the analgesic effects of spinally delivered Δ9-THC are due to an action on T-type calcium channels, rather than activation of spinal cannabinoid receptors.


Assuntos
Analgesia , Canais de Cálcio Tipo T , Feminino , Camundongos , Masculino , Animais , Dronabinol/farmacologia , Dronabinol/uso terapêutico , Dor/tratamento farmacológico , Hiperalgesia/complicações , Hiperalgesia/tratamento farmacológico , Corno Dorsal da Medula Espinal , Analgésicos/farmacologia , Receptores de Canabinoides
11.
Transl Psychiatry ; 13(1): 131, 2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37085531

RESUMO

Cannabidiol (CBD) has shown promise in treating psychiatric disorders, including cannabis use disorder - a major public health burden with no approved pharmacotherapies. However, the mechanisms through which CBD acts are poorly understood. One potential mechanism of CBD is increasing levels of anandamide, which has been implicated in psychiatric disorders including depression and cannabis use disorder. However, there is a lack of placebo-controlled human trials investigating this in psychiatric disorders. We therefore assessed whether CBD affects plasma anandamide levels compared to placebo, within a randomised clinical trial of CBD for the treatment of cannabis use disorder. Individuals meeting criteria for cannabis use disorder and attempting cannabis cessation were randomised to 28-day administration with placebo (n = 23), 400 mg CBD/day (n = 24) or 800 mg CBD/day (n = 23). We estimated the effects of each CBD dose compared to placebo on anandamide levels from baseline to day 28. Analyses were conducted both unadjusted and adjusted for cannabis use during the trial to account for effects of cannabis on the endocannabinoid system. We also investigated whether changes in plasma anandamide levels were associated with clinical outcomes relevant for cannabis use disorder (cannabis use, withdrawal, anxiety, depression). There was an effect of 800 mg CBD compared to placebo on anandamide levels from baseline to day 28 after adjusting for cannabis use. Pairwise comparisons indicated that anandamide levels unexpectedly reduced from baseline to day 28 in the placebo group (-0.048, 95% CI [-0.089, -0.007]), but did not change in the 800 mg CBD group (0.005, 95% CI [-0.036, 0.047]). There was no evidence for an effect of 400 mg CBD compared to placebo. Changes in anandamide levels were not associated with clinical outcomes. In conclusion, this study found preliminary evidence that 28-day treatment with CBD modulates anandamide levels in individuals with cannabis use disorder at doses of 800 mg/day but not 400 mg/day compared to placebo.


Assuntos
Canabidiol , Cannabis , Alucinógenos , Abuso de Maconha , Humanos , Canabidiol/uso terapêutico , Canabidiol/farmacologia , Endocanabinoides , Abuso de Maconha/tratamento farmacológico , Dronabinol/farmacologia , Método Duplo-Cego
12.
Viruses ; 15(3)2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36992332

RESUMO

In this follow-up study, we investigated the abundance and compartmentalization of blood plasma extracellular miRNA (exmiRNA) into lipid-based carriers-blood plasma extracellular vesicles (EVs) and non-lipid-based carriers-extracellular condensates (ECs) during SIV infection. We also assessed how combination antiretroviral therapy (cART), administered in conjunction with phytocannabinoid delta-9-tetrahydrocannabinol (THC), altered the abundance and compartmentalization of exmiRNAs in the EVs and ECs of SIV-infected rhesus macaques (RMs). Unlike cellular miRNAs, exmiRNAs in blood plasma may serve as minimally invasive disease indicators because they are readily detected in stable forms. The stability of exmiRNAs in cell culture fluids and body fluids (urine, saliva, tears, cerebrospinal fluid (CSF), semen, blood) is based on their association with different carriers (lipoproteins, EVs, and ECs) that protect them from the activities of endogenous RNases. Here, we showed that in the blood plasma of uninfected control RMs, significantly less exmiRNAs were associated with EVs compared to the level (30% higher) associated with ECs, and that SIV infection altered the profile of EVs and ECs miRNAome (Manuscript 1). In people living with HIV (PLWH), host-encoded miRNAs regulate both host and viral gene expression, which may serve as indicators of disease or treatment biomarkers. The profile of miRNAs in blood plasma of PLWH (elite controllers versus viremic patients) are different, indicating that HIV may alter host miRNAome. However, there are no studies assessing the effect of cART or other substances used by PLWH, such as THC, on the abundance of exmiRNA and their association with EVs and ECs. Moreover, longitudinal exmiRNA profiles following SIV infection, treatment with THC, cART, or THC+cART remains unclear. Here, we serially analyzed miRNAs associated with blood plasma derived EVs and ECs. Methods: Paired EVs and ECs were separated from EDTA blood plasma of male Indian rhesus macaques (RMs) in five treatment groups, including VEH/SIV, VEH/SIV/cART, THC/SIV, THC/SIV/cART, or THC alone. Separation of EVs and ECs was achieved with the unparalleled nano-particle purification tool ─PPLC, a state-of-the-art, innovative technology equipped with gradient agarose bead sizes and a fast fraction collector that allows high resolution separation and retrieval of preparative quantities of sub-populations of extracellular structures. Global miRNA profiles of the paired EVs and ECs were determined with RealSeq Biosciences (Santa Cruz, CA) custom sequencing platform by conducting small RNA (sRNA)-seq. The sRNA-seq data were analyzed using various bioinformatic tools. Validation of key exmiRNA was performed using specific TaqMan microRNA stem-loop RT-qPCR assays. Results: We investigated the effect of cART, THC, or both cART and THC together on the abundance and compartmentalization of blood plasma exmiRNA in EVs and ECs in SIV-infected RMs. As shown in Manuscript 1 of this series, were in uninfected RMs, ~30% of exmiRNAs were associated with ECs, we confirmed in this follow up manuscript that exmiRNAs were present in both lipid-based carriers-EVs and non-lipid-based carriers-ECs, with 29.5 to 35.6% and 64.2 to 70.5 % being associated with EVs and ECs, respectively. Remarkably, the different treatments (cART, THC) have distinct effects on the enrichment and compartmentalization pattern of exmiRNAs. In the VEH/SIV/cART group, 12 EV-associated and 15 EC-associated miRNAs were significantly downregulated. EV-associated miR-206, a muscle-specific miRNA that is present in blood, was higher in the VEH/SIV/ART compared to the VEH/SIV group. ExmiR-139-5p that was implicated in endocrine resistance, focal adhesion, lipid and atherosclerosis, apoptosis, and breast cancer by miRNA-target enrichment analysis was significantly lower in VEH/SIV/cART compared to VEH/SIV, irrespective of the compartment. With respect to THC treatment, 5 EV-associated and 21 EC-associated miRNAs were significantly lower in the VEH/THC/SIV. EV-associated miR-99a-5p was higher in VEH/THC/SIV compared to VEH/SIV, while miR-335-5p counts were significantly lower in both EVs and ECs of THC/SIV compared to VEH/SIV. EVs from SIV/cART/THC combined treatment group have significant increases in the count of eight (miR-186-5p, miR-382-5p, miR-139-5p and miR-652, miR-10a-5p, miR-657, miR-140-5p, miR-29c-3p) miRNAs, all of which were lower in VEH/SIV/cART group. Analysis of miRNA-target enrichment showed that this set of eight miRNAs were implicated in endocrine resistance, focal adhesions, lipid and atherosclerosis, apoptosis, and breast cancer as well as cocaine and amphetamine addiction. In ECs and EVs, combined THC and cART treatment significantly increased miR-139-5p counts compared to VEH/SIV group. Significant alterations in these host miRNAs in both EVs and ECs in the untreated and treated (cART, THC, or both) RMs indicate the persistence of host responses to infection or treatments, and this is despite cART suppression of viral load and THC suppression of inflammation. To gain further insight into the pattern of miRNA alterations in EVs and ECs and to assess potential cause-and-effect relationships, we performed longitudinal miRNA profile analysis, measured in terms of months (1 and 5) post-infection (MPI). We uncovered miRNA signatures associated with THC or cART treatment of SIV-infected macaques in both EVs and ECs. While the number of miRNAs was significantly higher in ECs relative to EVs for all groups (VEH/SIV, SIV/cART, THC/SIV, THC/SIV/cART, and THC) longitudinally from 1 MPI to 5 MPI, treatment with cART and THC have longitudinal effects on the abundance and compartmentalization pattern of exmiRNAs in the two carriers. As shown in Manuscript 1 where SIV infection led to longitudinal suppression of EV-associated miRNA-128-3p, administration of cART to SIV-infected RMs did not increase miR-128-3p but resulted in longitudinal increases in six EV-associated miRNAs (miR-484, miR-107, miR-206, miR-184, miR-1260b, miR-6132). Furthermore, administration of cART to THC treated SIV-infected RMs resulted in a longitudinal decrease in three EV-associated miRNAs (miR-342-3p, miR-100-5p, miR181b-5p) and a longitudinal increase in three EC-associated miRNAs (miR-676-3p, miR-574-3p, miR-505-5p). The longitudinally altered miRNAs in SIV-infected RMs may indicate disease progression, while in the cART Group and the THC Group, the longitudinally altered miRNAs may serve as biomarkers of response to treatment. Conclusions: This paired EVs and ECs miRNAome analyses provided a comprehensive cross-sectional and longitudinal summary of the host exmiRNA responses to SIV infection and the impact of THC, cART, or THC and cART together on the miRNAome during SIV infection. Overall, our data point to previously unrecognized alterations in the exmiRNA profile in blood plasma following SIV infection. Our data also indicate that cART and THC treatment independently and in combination may alter both the abundance and the compartmentalization of several exmiRNA related to various disease and biological processes.


Assuntos
Vesículas Extracelulares , Infecções por HIV , MicroRNAs , Neoplasias , Animais , Masculino , Dronabinol/farmacologia , Dronabinol/uso terapêutico , Macaca mulatta , Estudos Transversais , Seguimentos , MicroRNAs/genética , Infecções por HIV/tratamento farmacológico , Plasma
13.
BMC Pharmacol Toxicol ; 24(1): 8, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36750905

RESUMO

WIN55, 212-2 mesylate is a synthetic cannabinoid (SC) agonist of CB1 and CB2 receptors with much higher affinity to CB1 receptor than tetrahydrocannabinol and many potential therapeutic effects. Few studies have evaluated SCs effects on more complex animal behavior and sex differences in cannabinoids toxicology. The current study was undertaken for determination of behavioral (Open Field test), biochemical (liver and kidney function test plus GABA & Glutamate levels), histopathological and CB1 immunohistochemistry risks of sub-chronic administration of SC WIN55, 212-2 mesylate in male and female mice. A total of 40 healthy adult mice were randomly divided into four groups (5 mice each): a negative control group, a vehicle group, a low dose (0.05 mg/kg) group and a high dose group (0.1 mg/kg) for each gender.Open Field Test revealed dose and gender-dependent anxiogenic effect with reduced locomotor activity in both sexes especially the higher doses with female mice being less compromised. GABA and glutamate levels increased significantly in both dose groups compared to controls alongside female mice versus males. No significant biochemical alterations were found in all groups with minimal histopathological changes. The CB1 receptors immunohistochemistry revealed a significant increase in the number of CB1 positive neurons in both low and high dose groups against controls with higher expression in female brains.ConclusionsThere were sexual dimorphism effects induced by sub-chronic exposure to WIN55, 212-2 with lesser female mice affection and dose-dependent influences.


Assuntos
Canabinoides , Animais , Feminino , Masculino , Camundongos , Benzoxazinas/farmacologia , Dronabinol/farmacologia , Ácido gama-Aminobutírico , Glutamatos , Neurônios , Receptor CB1 de Canabinoide , Receptor CB2 de Canabinoide
14.
Int J Mol Sci ; 24(4)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36835247

RESUMO

Cannabis has been used for decades as a palliative therapy in the treatment of cancer. This is because of its beneficial effects on the pain and nausea that patients can experience as a result of chemo/radiotherapy. Tetrahydrocannabinol and cannabidiol are the main compounds present in Cannabis sativa, and both exert their actions through a receptor-mediated mechanism and through a non-receptor-mediated mechanism, which modulates the formation of reactive oxygen species. These oxidative stress conditions might trigger lipidic changes, which would compromise cell membrane stability and viability. In this sense, numerous pieces of evidence describe a potential antitumor effect of cannabinoid compounds in different types of cancer, although controversial results limit their implementation. In order to further investigate the possible mechanism involved in the antitumoral effects of cannabinoids, three extracts isolated from Cannabis sativa strains with high cannabidiol content were analyzed. Cell mortality, cytochrome c oxidase activity and the lipid composition of SH-SY5Y cells were determined in the absence and presence of specific cannabinoid ligands, with and without antioxidant pre-treatment. The cell mortality induced by the extracts in this study appeared to be related to the inhibition of the cytochrome c oxidase activity and to the THC concentration. This effect on cell viability was similar to that observed with the cannabinoid agonist WIN55,212-2. The effect was partially blocked by the selective CB1 antagonist AM281, and the antioxidant α-tocopherol. Moreover, certain membrane lipids were affected by the extracts, which demonstrated the importance of oxidative stress in the potential antitumoral effects of cannabinoids.


Assuntos
Cannabis , Neuroblastoma , Extratos Vegetais , Humanos , Canabidiol/análise , Canabinoides/análise , Cannabis/química , Dronabinol/farmacologia , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Neuroblastoma/tratamento farmacológico , Extratos Vegetais/química , Extratos Vegetais/uso terapêutico
15.
Eur J Neurosci ; 57(7): 1068-1080, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36796802

RESUMO

By targeting the endocannabinoid system, delta-9-tetrahydrocannabinol (THC) modulates female motivated behaviours, influenced by sex hormones. Both medial preoptic nucleus (MPN) and ventromedial nucleus of the hypothalamus (VMN) are involved in the modulation of female sexual responses. The first triggers proceptivity, whereas the ventrolateral division of the latter (VMNvl) triggers receptivity. These nuclei are modulated by glutamate, which inhibits female receptivity, and GABA, which has a dichotomous action in female sexual motivation. Here, we evaluated the action of THC on the modulation of social and sexual behaviours, on signalling pathways of MPN and VMNvl and how sex hormones influence these parameters. Young ovariectomized female rats, given sex hormones (oestradiol benzoate, EB, and progesterone, P) and THC were used for behavioural testing and for immunofluorescence analyses of vesicular glutamate transporter 2 (VGlut2) and GAD (glutamic acid decarboxylase)67 expression. Results showed that females given EB + P exhibited a higher preference for male partner, as well as higher proceptivity and a higher receptivity than control or females given only EB. Females treated with THC presented similar responses in control or EB + P female rats and even more facilitated behavioural responses in EB females than the ones that did not receive THC. Immunofluorescence results in the MPN exhibited a decreased expression of GAD67 and VGlut2 in EB + THC-treated female rats. Within VMNvl of EB-primed rats no changes in the expression of both proteins were observed after THC exposure. This study demonstrates how the possible outcomes of endocannabinoid system instability within hypothalamic neuron connectivity can modify female rat sociosexual behaviour.


Assuntos
Dronabinol , Comportamento Sexual Animal , Ratos , Animais , Feminino , Masculino , Humanos , Dronabinol/farmacologia , Comportamento Sexual Animal/fisiologia , Endocanabinoides , Progesterona , Estradiol/farmacologia , Estradiol/fisiologia , Hipotálamo , Ovariectomia
16.
Int J Mol Sci ; 24(2)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36674832

RESUMO

The development of Cannabis sativa strains with high cannabidiol (CBD) and low tetrahydrocannabinol (THC) content is a growing field of research, both for medical and recreational use. However, the mechanisms behind clinical actions of cannabinoids are still under investigation, although there is growing evidence that mitochondria play an important role in many of them. Numerous studies have described that cannabinoids modulate mitochondrial activity both through activation of mitochondrial cannabinoid receptors and through direct action on other proteins such as mitochondrial complexes involved in cellular respiration. Thus, the aim of this study was to determine the actions of a panel of extracts, isolated from high-CBD varieties of Cannabis sativa, on the activity of the mitochondrial electron transport chain complex IV, cytochrome c oxidase (CCO), in order to select those with a safer profile. After demonstrating that Cannabis sativa strains could be identified by cannabinoids content, concentration-response curves were performed with a collection of extracts from strains with high-CBD and low-THC content using bovine CCO. The CCO rate was clearly modified by specific extracts of Cannabis sativa plants compared to others. Half maximal inhibitory concentrations (IC50) of extracts and the inhibitory effects evoked at 1 × 10-4 g/mL displayed a significant correlation with the THC. Therefore, the screening of extracts based on CCO activity provides a powerful and rapid methodology to identify those plants with higher mitochondrial toxicity or even mito-protective actions.


Assuntos
Canabidiol , Canabinoides , Cannabis , Animais , Bovinos , Dronabinol/farmacologia , Complexo IV da Cadeia de Transporte de Elétrons , Extratos Vegetais/farmacologia , Canabinoides/farmacologia , Canabidiol/farmacologia , Biomarcadores , Mitocôndrias
17.
Curr Pharm Des ; 29(6): 394-406, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36330630

RESUMO

Cannabis sativa L. has been used as medicine for thousands of years. Since the early identification of tetrahydrocannabinol (THC) in 1960, pharmacological activities were attributed to a group of unique structures named cannabinoids. For decades, research and development were applied to determine different cannabinoids and their medicinal properties. Nowadays there is evidence that the therapeutic benefits of the plant are based on the synergy of cannabinoids and other secondary metabolites such as terpenes and flavonoids. Differences between the medical performance of isolated compounds like cannabidiol (CBD) or THC and full-spectrum plant extracts are notable. Indeed, the superiority of the last one is provoked by the synergy between various different compounds. This improved medicinal effect is called the entourage effect. Chromatography has become the method of choice for the determination of cannabinoids, terpenes, and flavonoids, so it represents an excellent tool for a proper characterization of the plant and plant derived products. The objective of characterization relies not only in analyzing the fingerprint of cannabis, but also to identify different chemotypes for medical purposes. To understand the contributions of each natural product to this "entourage effect", this review presents an in-depth analysis of the utilization of High-performance liquid chromatography (HPLC), Gas chromatography (GC) and other methods for the analysis of phytocomponents of Cannabis sativa L. In this sense, a representative number of examples and advances made in the field together with limitations and future needs are provided. It can be concluded that standardized protocols and quality control policies and procedures are necessary for the comprehensive analysis of cannabis extracts and derivatives.


Assuntos
Canabidiol , Canabinoides , Cannabis , Humanos , Cannabis/química , Cannabis/metabolismo , Metabolismo Secundário , Canabinoides/análise , Canabinoides/química , Canabinoides/farmacologia , Canabidiol/farmacologia , Terpenos/análise , Flavonoides/metabolismo , Cromatografia Gasosa , Dronabinol/análise , Dronabinol/metabolismo , Dronabinol/farmacologia
18.
Mol Biol Rep ; 49(12): 11891-11899, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36239881

RESUMO

BACKGROUND: Hyperinsulinemia (HI) means that the amount of insulin in the blood is higher than normal and is often associated with type 2 diabetes. It is known that delta-9-tetrahydrocannabinol (THC) obtained from a medicinal plant, Cannabis sativa, has therapeutic effects on many diseases. OBJECTIVE: This study aimed to investigate the effects of THC on inflammatory and oxidant status in rat pancreas with HI. METHODS: Rats were divided into groups; Control, HI, THC and HI + THC. Each group consists of 8 animals. HI and HI + THC groups were given 10% fructose in the drinking water for 12 weeks. In the last four weeks of the experiment, 1.5 mg kg-1 THC was injected intraperitoneally daily into THC and HI + THC groups. The expression of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and nuclear factor-kappa B (NF-κB) were detected. JNK/SAPK and Grap2/p38 levels, total antioxidant and oxidant capacities (TAC and TOC) were analyzed in the pancreas. RESULTS: Levels of IL-6, NF-κß, and TNF-α mRNA expression were higher in the pancreas with HI than in the control (p < 0.001 for all). THC treatment reduced the expression of IL-6, NF-κß, and TNF-α mRNAs in the HI + THC group compared to the HI group (p < 0.001 for all). TOC increased in the HI group compared to the control group (p < 0.001). However, THC treatment reduced TOC levels in the HI + THC group compared to the HI group (p < 0.001). CONCLUSION: According to the results, the THC treatment may regulate inflammation and TOC in rats with hyperinsulinemia. Thus, we can say that THC may have anti-inflammatory and antioxidant potential in metabolic disorders.


Assuntos
Diabetes Mellitus Tipo 2 , Hiperinsulinismo , Ratos , Animais , Dronabinol/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6 , Antioxidantes/farmacologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , NF-kappa B/genética , NF-kappa B/metabolismo , Hiperinsulinismo/tratamento farmacológico , Oxidantes
19.
Int J Mol Sci ; 23(19)2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36232668

RESUMO

Purified cannabinoids have been shown to prevent proliferation and induce apoptosis in colorectal carcinoma cell lines. To assess the cytotoxic effect of cannabinoid extracts and purified cannabinoids on both colorectal polyps and normal colonic cells, as well as their synergistic interaction. Various blends were tested to identify the optimal synergistic effect. Methods: Biopsies from polyps and healthy colonic tissue were obtained from 22 patients undergoing colonic polypectomies. The toxicity of a variety of cannabinoid extracts and purified cannabinoids at different concentrations was evaluated. The synergistic effect of cannabinoids was calculated based on the cells' survival. Isolated cannabinoids illustrated different toxic effects on the viability of cells derived from colorectal polyps. THC-d8 and THC-d9 were the most toxic and exhibited persistent toxicity in all the polyps tested. CBD was more toxic to polypoid cells in comparison to normal colonic cells at a concentration of 15 µM. The combinations of the cannabinoids CBDV, THCV, CBDVA, CBCA, and CBGA exhibited a synergistic inhibitory effect on the viability of cells derived from colon polyps of patients. Isolated cannabinoid compounds interacted synergistically against colonic polyps, and some also possessed a differential toxic effect on polyp and adjacent colonic tissue, suggesting possible future therapeutic value.


Assuntos
Antineoplásicos , Canabidiol , Canabinoides , Cannabis , Pólipos do Colo , Neoplasias Colorretais , Canabidiol/farmacologia , Canabidiol/uso terapêutico , Canabinoides/farmacologia , Cannabis/metabolismo , Pólipos do Colo/tratamento farmacológico , Neoplasias Colorretais/tratamento farmacológico , Dronabinol/farmacologia , Humanos , Extratos Vegetais/farmacologia
20.
Molecules ; 27(18)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36144796

RESUMO

Cannabis sativa is one of the oldest cultivated plants. Many of the medicinal properties of cannabis are known, although very few cannabis-based formulations became prescribed drugs. Previous research demonstrated that cannabis varieties are very different in their medicinal properties, likely due to the entourage effect-the synergistic or antagonistic effect of various cannabinoids and terpenes. In this work, we analyzed 25 cannabis extracts containing high levels of delta-9-tetrahydrocannabinol (THC). We used HCC1806 squamous cell carcinoma and demonstrated various degrees of efficiency of the tested extracts, from 66% to 92% of growth inhibition of cancer cells. Inflammation was tested by induction of inflammation with TNF-α/IFN-γ in WI38 human lung fibroblasts. The efficiency of the extracts was tested by analyzing the expression of COX2 and IL6; while some extracts aggravated inflammation by increasing the expression of COX2/IL6 by 2-fold, other extracts decreased inflammation, reducing expression of cytokines by over 5-fold. We next analyzed the level of THC, CBD, CBG and CBN and twenty major terpenes and performed clustering and association analysis between the chemical composition of the extracts and their efficiency in inhibiting cancer growth and curbing inflammation. A positive correlation was found between the presence of terpinene (pval = 0.002) and anti-cancer property; eucalyptol came second, with pval of 0.094. p-cymene and ß-myrcene positively correlated with the inhibition of IL6 expression, while camphor correlated negatively. No significant correlation was found for COX2. We then performed a correlation analysis between cannabinoids and terpenes and found a positive correlation for the following pairs: α-pinene vs. CBD, p-cymene vs. CBGA, terpenolene vs. CBGA and isopulegol vs. CBGA. Our work, thus, showed that most of high-THC extracts demonstrate anti-cancer activity, while only certain selected extracts showed anti-inflammatory activity. Presence of certain terpenes, such as terpinene, eucalyptol, cymene, myrcene and camphor, appear to have modulating effects on the activity of cannabinoids.


Assuntos
Canabidiol , Canabinoides , Cannabis , Alucinógenos , Humanos , Anti-Inflamatórios/farmacologia , Cânfora , Canabidiol/análise , Agonistas de Receptores de Canabinoides , Canabinoides/análise , Canabinoides/farmacologia , Cannabis/química , Ciclo-Oxigenase 2 , Cimenos , Dronabinol/análise , Dronabinol/farmacologia , Eucaliptol , Inflamação/tratamento farmacológico , Interleucina-6 , Extratos Vegetais/química , Terpenos/farmacologia , Fator de Necrose Tumoral alfa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA