Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Tipo de documento
Intervalo de ano de publicação
1.
Elife ; 102021 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-34859782

RESUMO

Despite the small number of gustatory sense neurons, Drosophila larvae are able to sense a wide range of chemicals. Although evidence for taste multimodality has been provided in single neurons, an overview of gustatory responses at the periphery is missing and hereby we explore whole-organ calcium imaging of the external taste center. We find that neurons can be activated by different combinations of taste modalities, including opposite hedonic valence and identify distinct temporal dynamics of response. Although sweet sensing has not been fully characterized so far in the external larval gustatory organ, we recorded responses elicited by sugar. Previous findings established that larval sugar sensing relies on the Gr43a pharyngeal receptor, but the question remains if external neurons contribute to this taste. Here, we postulate that external and internal gustation use distinct and complementary mechanisms in sugar sensing and we identify external sucrose sensing neurons.


Assuntos
Drosophila melanogaster/fisiologia , Açúcares/metabolismo , Percepção Gustatória/fisiologia , Paladar/fisiologia , Animais , Drosophila melanogaster/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Larva/fisiologia , Sacarose/metabolismo
2.
J Insect Physiol ; 134: 104294, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34389412

RESUMO

In insects, some sterols are essential not only for cell membrane homeostasis, but for biosynthesis of the steroid hormone ecdysone. Dietary sterols are required for insect development because insects cannot synthesize sterols de novo. Therefore, sterol-like compounds that can compete with essential sterols are good candidates for insect growth regulators. In this study, we investigated the effects of the plant-derived triterpenoids, cucurbitacin B and E (CucB and CucE) on the development of the fruit fly, Drosophila melanogaster. To reduce the effects of supply with an excess of sterols contained in food, we reared D. melanogaster larvae on low sterol food (LSF) with or without cucurbitacins. Most larvae raised on LSF without supplementation or with CucE died at the second or third larval instar (L2 or L3) stages, whereas CucB-administered larvae mostly died without molting. The developmental arrest caused by CucB was partially rescued by ecdysone supplementation. Furthermore, we examined the effects of CucB on larval-prepupal transition by transferring larvae from LSF supplemented with cholesterol to that with CucB just after the L2/L3 molt. L3 larvae raised on LSF with CucB failed to pupariate, with a remarkable developmental delay. Ecdysone supplementation rescued the developmental delay but did not rescue the pupariation defect. Furthermore, we cultured the steroidogenic organ, the prothoracic gland (PG) of the silkworm Bombyx mori, with or without cucurbitacin. Ecdysone production in the PG was reduced by incubation with CucB, but not with CucE. These results suggest that CucB acts not only as an antagonist of the ecdysone receptor as previously reported, but also acts as an inhibitor of ecdysone biosynthesis.


Assuntos
Drosophila melanogaster , Ecdisona , Triterpenos/farmacologia , Animais , Bombyx/efeitos dos fármacos , Bombyx/metabolismo , Proteínas de Drosophila/efeitos dos fármacos , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Ecdisona/antagonistas & inibidores , Ecdisona/biossíntese , Regulação da Expressão Gênica no Desenvolvimento , Hormônios Juvenis/farmacologia , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Larva/metabolismo , Metamorfose Biológica/efeitos dos fármacos , Muda/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Extratos Vegetais/farmacologia , Pupa/efeitos dos fármacos , Pupa/crescimento & desenvolvimento , Pupa/metabolismo
3.
Food Funct ; 12(17): 7816-7824, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34232246

RESUMO

Gastrodin is the main bioactive ingredient of a famous Chinese herb Rhizoma Gastrodiae. Many studies have reported that gastrodin has antioxidative and neuroprotective effects, although its effect on longevity and the mechanism of neuroprotection have not been well studied. Here, we use Drosophila melanogaster as a model to investigate the longevity and neuroprotective effects of gastrodin. Gastrodin significantly extended the lifespan, increased the climbing ability, enhanced the resistance to oxidative stress, increased the enzyme activities of superoxide dismutase (SOD) and catalase (CAT), and promoted the expression of anti-oxidative genes in old flies. The food intake, reproduction and starvation resistance were not affected in flies treated with gastrodin. Moreover, gastrodin delayed the onset of Parkinson-like phenotypes in Pink1B9 mutant flies, including the prolongation of the lifespan, rescue of the climbing ability, rescue of the progressive loss of a cluster of dopaminergic neurons in the protocerebral posterial lateral 1 region, and increase of the dopamine content in the brain. Gastrodin did not ameliorate the tau-induced neurobehavioral deficits in the fly AD model of taupathy. Together, these results indicate that gastrodin could prolong the lifespan by regulating the antioxidant ability, and protect against neurodegeneration in the Pink1B9 model of PD. This suggests that gastrodin can be considered as an ideal therapeutic candidate for drug development towards anti-aging.


Assuntos
Álcoois Benzílicos/administração & dosagem , Drosophila melanogaster/efeitos dos fármacos , Medicamentos de Ervas Chinesas/administração & dosagem , Gastrodia/química , Glucosídeos/administração & dosagem , Fármacos Neuroprotetores/administração & dosagem , Doença de Parkinson/tratamento farmacológico , Animais , Modelos Animais de Doenças , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Feminino , Humanos , Longevidade/efeitos dos fármacos , Masculino , Neuroproteção/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/fisiopatologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
4.
Cell Rep ; 35(2): 108985, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33852843

RESUMO

Decreased cognitive performance is a hallmark of brain aging, but the underlying mechanisms and potential therapeutic avenues remain poorly understood. Recent studies have revealed health-protective and lifespan-extending effects of dietary spermidine, a natural autophagy-promoting polyamine. Here, we show that dietary spermidine passes the blood-brain barrier in mice and increases hippocampal eIF5A hypusination and mitochondrial function. Spermidine feeding in aged mice affects behavior in homecage environment tasks, improves spatial learning, and increases hippocampal respiratory competence. In a Drosophila aging model, spermidine boosts mitochondrial respiratory capacity, an effect that requires the autophagy regulator Atg7 and the mitophagy mediators Parkin and Pink1. Neuron-specific Pink1 knockdown abolishes spermidine-induced improvement of olfactory associative learning. This suggests that the maintenance of mitochondrial and autophagic function is essential for enhanced cognition by spermidine feeding. Finally, we show large-scale prospective data linking higher dietary spermidine intake with a reduced risk for cognitive impairment in humans.


Assuntos
Envelhecimento/genética , Proteína 7 Relacionada à Autofagia/genética , Disfunção Cognitiva/genética , Suplementos Nutricionais , Proteínas Quinases/genética , Espermidina/farmacologia , Ubiquitina-Proteína Ligases/genética , Envelhecimento/metabolismo , Animais , Proteína 7 Relacionada à Autofagia/metabolismo , Encéfalo/citologia , Encéfalo/efeitos dos fármacos , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Cognição/efeitos dos fármacos , Cognição/fisiologia , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/fisiopatologia , Disfunção Cognitiva/prevenção & controle , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Feminino , Regulação da Expressão Gênica , Humanos , Aprendizagem/efeitos dos fármacos , Aprendizagem/fisiologia , Masculino , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Proteínas Quinases/metabolismo , Transdução de Sinais , Memória Espacial/efeitos dos fármacos , Memória Espacial/fisiologia , Ubiquitina-Proteína Ligases/metabolismo
5.
Cell Rep ; 35(2): 108941, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33852845

RESUMO

Mitochondrial function declines during brain aging and is suspected to play a key role in age-induced cognitive decline and neurodegeneration. Supplementing levels of spermidine, a body-endogenous metabolite, has been shown to promote mitochondrial respiration and delay aspects of brain aging. Spermidine serves as the amino-butyl group donor for the synthesis of hypusine (Nε-[4-amino-2-hydroxybutyl]-lysine) at a specific lysine residue of the eukaryotic translation initiation factor 5A (eIF5A). Here, we show that in the Drosophila brain, hypusinated eIF5A levels decline with age but can be boosted by dietary spermidine. Several genetic regimes of attenuating eIF5A hypusination all similarly affect brain mitochondrial respiration resembling age-typical mitochondrial decay and also provoke a premature aging of locomotion and memory formation in adult Drosophilae. eIF5A hypusination, conserved through all eukaryotes as an obviously critical effector of spermidine, might thus be an important diagnostic and therapeutic avenue in aspects of brain aging provoked by mitochondrial decline.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Lisina/análogos & derivados , Mitocôndrias/metabolismo , Fatores de Iniciação de Peptídeos/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas de Ligação a RNA/metabolismo , Espermidina/farmacologia , Administração Oral , Senilidade Prematura/genética , Senilidade Prematura/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Respiração Celular/genética , Proteínas de Drosophila/classificação , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Locomoção/fisiologia , Lisina/metabolismo , Memória/fisiologia , Mitocôndrias/genética , Mitocôndrias/patologia , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Modelos Animais , Neurônios/metabolismo , Neurônios/patologia , Fatores de Iniciação de Peptídeos/genética , Proteínas de Ligação a RNA/genética , Espermidina/metabolismo , Fator de Iniciação de Tradução Eucariótico 5A
6.
J Appl Toxicol ; 41(8): 1188-1199, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33146454

RESUMO

Nanoscale materials display unique physical and chemical properties that enable their assimilation into a variety of industrial and consumer products. Amongst the widely used nanomaterials, silver nanoparticles (AgNPs) have gained tremendous recognition for various applications, owing to their extraordinary plasmonic and bactericidal properties. Despite of the extensive usage of AgNPs in various sectors, its impact on human health remains ambiguous. Several studies have established that higher doses of AgNPs are detrimental to organismal health. In order to attain the best from these versatile nanoparticles, a recent advent of green nanotechnology, that is, employment of metal nanoparticles synthesized using plant extracts, has emerged. Here, using Drosophila as a model system, we tested if adding curcumin, a biologically active polyphenolic compound present in turmeric, having multitudes of therapeutic properties, could mitigate AgNP-mediated biotoxicity. We found that co-administration of AgNPs with curcumin in the fly food could alleviate several harmful effects evoked by AgNPs ingestion in Drosophila model. Addition of curcumin superseded reduction in feeding, pupation, eclosion, pigmentation, and fertility caused by AgNPs ingestion. Interestingly, impairment in ovary development observed in flies reared on AgNPs-supplemented food was also partially restored by co-administration of AgNPs with curcumin. Furthermore, substantial alleviation of reactive oxygen species level and cell death was observed in larval tissues upon co-supplementation of AgNPs with curcumin. We therefore propose that curcumin, when administered with AgNPs, can abrogate the toxic manifestations of AgNPs ingestion and hence can be incorporated in various consumer products encompassing it.


Assuntos
Curcumina/farmacologia , Nanopartículas Metálicas/toxicidade , Animais , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/crescimento & desenvolvimento , Feminino , Masculino , Oviposição/efeitos dos fármacos , Pupa/efeitos dos fármacos , Pupa/crescimento & desenvolvimento , Prata
7.
Biochem Biophys Res Commun ; 533(4): 1004-1011, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33012507

RESUMO

Zinc is an essential trace element and participates in a variety of biological processes. ZnT (SLC30) family members are generally responsible for zinc efflux across the membrane regulating zinc homeostasis. In mammals, the only predominantly plasma membrane resident ZnT has been reported to be ZnT1, and ZnT1-/ZnT1- mice die at the embryonic stage. In Drosophila, knock down of ZnT1 homologue (dZnT1//ZnT63C/CG17723) results in growth arrest under zinc-limiting conditions. To investigate the essentiality of dZnT1 for zinc homeostasis, as well as its role in dietary zinc uptake especially under normal physiological conditions, we generated dZnT1 mutants by the CRISPER/Cas9 method. Homozygous mutant dZnT1 is lethal, with substantial zinc accumulation in the iron cell region, posterior midgut as well as gastric caeca. Expression of human ZnT1 (hZnT1), in the whole body or in the entire midgut, fully rescued the dZnT1 mutant lethality, whereas tissue-specific expression of hZnT1 in the iron cell region and posterior midgut partially rescued the developmental defect of the dZnT1 mutant. Supplementation of zinc together with clioquinol or hinokitiol conferred a limited but observable rescue upon dZnT1 loss. Our work demonstrated the absolute requirement of dZnT1 in Drosophila survival and indicated that the most essential role of dZnT1 is in the gut.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Zinco/metabolismo , Animais , Animais Geneticamente Modificados , Sistemas CRISPR-Cas , Proteínas de Transporte de Cátions/antagonistas & inibidores , Proteínas de Transporte de Cátions/genética , Dieta , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Feminino , Técnicas de Silenciamento de Genes , Genes de Insetos , Humanos , Absorção Intestinal/genética , Absorção Intestinal/fisiologia , Masculino , Mutação , Filogenia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Oligoelementos/administração & dosagem , Oligoelementos/metabolismo , Oligoelementos/farmacocinética , Zinco/administração & dosagem , Zinco/farmacocinética
8.
FASEB J ; 34(4): 5931-5950, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32157731

RESUMO

Parkinson's disease (PD) is the second most common neurodegenerative disease. Eigallocatechin-3-gallate (EGCG), the major polyphenol in green tea, is known to exert a beneficial effect on PD patients. Although some mechanisms were suggested to underlie this intervention, it remains unknown if the EGCG-mediated protection was achieved by remodeling gut microbiota. In the present study, 0.1 mM or 0.5 mM EGCG was administered to the Drosophila melanogaster with PINK1 (PTEN induced putative kinase 1) mutations, a prototype PD model, and their behavioral performances, as well as neuronal/mitochondrial morphology (only for 0.5 mM EGCG treatment) were determined. According to the results, the mutant PINK1B9 flies exhibited dopaminergic, survival, and behavioral deficits, which were rescued by EGCG supplementation. Meanwhile, EGCG resulted in profound changes in gut microbial compositions in PINK1B9 flies, restoring the abundance of a set of bacteria. Notably, EGCG protection was blunted when gut microbiota was disrupted by antibiotics. We further isolated four bacterial strains from fly guts and the supplementation of individual Lactobacillus plantarum or Acetobacter pomorum strain exacerbated the neuronal and behavioral dysfunction of PD flies, which could not be rescued by EGCG. Transcriptomic analysis identified TotM as the central gene responding to EGCG or microbial manipulations. Genetic ablation of TotM blocked the recovery activity of EGCG, suggesting that EGCG-mediated protection warrants TotM. Apart from familial form, EGCG was also potent in improving sporadic PD symptoms induced by rotenone treatment, wherein gut microbiota shared regulatory roles. Together, our results suggest the relevance of the gut microbiota-TotM pathway in EGCG-mediated neuroprotection, providing insight into indirect mechanisms underlying nutritional intervention of Parkinson's disease.


Assuntos
Comportamento Animal/efeitos dos fármacos , Catequina/análogos & derivados , Modelos Animais de Doenças , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Proteínas de Choque Térmico/metabolismo , Doença de Parkinson/tratamento farmacológico , Animais , Catequina/farmacologia , Proteínas de Drosophila/genética , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Drosophila melanogaster/microbiologia , Feminino , Proteínas de Choque Térmico/genética , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson/metabolismo , Doença de Parkinson/microbiologia , Doença de Parkinson/patologia
9.
Int J Mol Sci ; 21(3)2020 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-32023882

RESUMO

One of the greatest impacts on the gastrointestinal microbiome is diet because the host and microbiome share the same food source. In addition, the effect of diet can diverge depending on the host genotype. Diets supplemented with phytochemicals found in peppers might cause shifts in the microbiome. Thus, understanding how these interactions occur can reveal potential health implications associated with such changes. This study aims to explore the gut microbiome of different Drosophila genetic backgrounds and the effects of dietary pepper treatments on its composition and structure. We analyzed the gut microbiomes of three Drosophila melanogaster genetic backgrounds (Canton-S, Oregon-RC, and Berlin-K) reared on control and pepper-containing diets (bell, serrano, and habanero peppers). Results of 16S rRNA gene sequencing revealed that the variability of Drosophila gut microbiome can be driven mainly by genetic factors. When the abundance of these communities is considered, pepper-containing diets also appear to have an effect. The most relevant change in microbial composition was the increment of Lactobacillaceae and Acetobacteraceae abundance in the pepper-containing diets in comparison with the controls in Oregon-RC and Berlin-K. Regression analysis demonstrated that this enhancement was associated with the content of phenolic compounds and carotenoids of the peppers utilized in this study; specifically, to the concentration of ß-carotene, ß-cryptoxanthin, myricetin, quercetin, and apigenin.


Assuntos
Bactérias/classificação , Bactérias/genética , Dieta/métodos , Drosophila melanogaster/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Compostos Fitoquímicos/farmacologia , Piper nigrum/química , Animais , Bactérias/isolamento & purificação , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/crescimento & desenvolvimento , Feminino , Masculino
10.
Genome ; 63(2): 61-90, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31557446

RESUMO

Nucleobindin-1 is an EF-hand calcium-binding protein with a distinctive profile, predominantly localized to the Golgi in insect and wide-ranging vertebrate cell types, alike. Its putative involvements in intracellular calcium (Ca2+) homeostasis have never been phenotypically characterized in any model organism. We have analyzed an adult-viable mutant that completely disrupts the G protein α-subunit binding and activating (GBA) motif of Drosophila Nucleobindin-1 (dmNUCB1). Such disruption does not manifest any obvious fitness-related, morphological/developmental, or behavioral abnormalities. A single copy of this mutation or the knockdown of dmnucb1 in restricted sets of cells variously rescues pleiotropic mutant phenotypes arising from impaired inositol 1,4,5-trisphosphate receptor (IP3R) activity (in turn depleting cytoplasmic Ca2+ levels across diverse tissue types). Additionally, altered dmNUCB1 expression or function considerably reverses lifespan and mobility improvements effected by IP3R mutants, in a Drosophila model of amyotrophic lateral sclerosis. Homology modeling-based analyses further predict a high degree of conformational conservation in Drosophila, of biochemically validated structural determinants in the GBA motif that specify in vertebrates, the unconventional Ca2+-regulated interaction of NUCB1 with Gαi subunits. The broad implications of our findings are hypothetically discussed, regarding potential roles for NUCB1 in GBA-mediated, Golgi-associated Ca2+ signaling, in health and disease.


Assuntos
Proteínas de Ligação ao Cálcio/fisiologia , Cálcio/metabolismo , Proteínas de Drosophila/fisiologia , Receptores de Inositol 1,4,5-Trifosfato/genética , Nucleobindinas/fisiologia , Alelos , Motivos de Aminoácidos , Animais , Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Genes Letais , Pleiotropia Genética , Complexo de Golgi/metabolismo , Homeostase , Humanos , Inositol 1,4,5-Trifosfato/metabolismo , Mutação , Nucleobindinas/química , Nucleobindinas/genética , Nucleobindinas/metabolismo , Domínios Proteicos , Homologia Estrutural de Proteína
11.
J Infect Public Health ; 13(2): 177-185, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31582296

RESUMO

BACKGROUND: Environmental exposure to toxicants poses high risk to develop reproductive and developmental chronic toxicity in man. Toluene is one of the commonest industrial agents whose exposure is attributed with potential to induce reproductive and developmental toxicity. Since they contaminate the immediate environment of air and water to which humans are exposed, its containment is of great public health importance. Conventional treatment modalities fail owing to the difficulty to detect these highly volatile agents in environment and human body. The peril of such hazardous exposures is evident only when irreversible structural and functional damages have incurred. In such instances, prevention gains an upper hand when compared to therapeutic interventions. Several natural compounds derived from medicinal herbs possess potential to curb toxicities induced by such xenobiotic agents. Among them Boerhavia diffusa Linn. is a widely distributed and common herb attributed with antitoxic potential and capability for antioxidant defence. A study was performed on the prophylactic efficacy of aqueous extract of B. diffusa in curbing toluene induced developmental toxicity in Drosophila melanogaster. METHODS: The study consisted of a preliminary phytochemical screening and HPTLC profiling of B. diffusa aqueous extract (BDAE). LC50 of toluene was assessed and a sublethal dose of 200ppm was fixed for the study. Four doses of BDAE; 25, 50, 100 and 200mg/ml designated as Low dose, medium dose 1, medium dose 2 and high dose was used for the study. The parameters used for the study included the determination of larval period, pupal period, percentage of egg hatching, morphometric analysis of egg, larvae, pupae and adults, fertility, fecundity, lifespan and levels of antioxidant enzymes such as catalase, glutathione-S-transferase and superoxide dismutase. RESULTS: The phytochemical and HPTLC characters were as per the pharmacopoeial standards. LC50 of toluene was found to be 430ppm in this study. BDAE at medium dose 2 and high dose significantly prevented the deterioration of reproductive and developmental toxicity parameters of larval period, pupal period, percentage of egg hatching, morphometric characters of larva, pupa and adult, fertility, fecundity and lifespan in drosophila. Also the drug significantly elevated the levels of antioxidant enzymes. CONCLUSION: Toluene exposure during lifetime is inevitable. B. diffusa, equipped with its rich active ingredients prevented toluene induced developmental and reproductive toxicity in Drosophila. This medicinal herb provides a ray of hope in preventing environmental toxin induced reproductive and developmental toxicity.


Assuntos
Antioxidantes/farmacologia , Drosophila melanogaster/crescimento & desenvolvimento , Nyctaginaceae/química , Extratos Vegetais/farmacologia , Tolueno/toxicidade , Animais , Antioxidantes/administração & dosagem , Drosophila melanogaster/efeitos dos fármacos , Exposição Ambiental , Humanos , Extratos Vegetais/administração & dosagem , Profilaxia Pré-Exposição , Reprodução/efeitos dos fármacos
12.
J Food Biochem ; 43(3): e12744, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-31353567

RESUMO

Apple phlorizin has a lot of applications owing to its antioxidant and hepatoprotective properties. This study explored the antioxidant effects and life span-prolonging activity of apple phlorizin in Drosophila melanogaster. Treatment with apple phlorizin was found to significantly extend the life span and ameliorate the age-related decline of locomotor function. This life span-extending activity was associated with the increased activity of superoxide dismutase, catalase, mRNA expression of glutamate-cysteine ligase catalytic subunit, cap-n-collar (cnc, homologue of mammalian Nrf2 gene), Keap1, and deacetylase sir2, as well as the downregulation of methuselah. Computational analysis suggested phlorizin could work as a Nrf2 activator and exert its biological activities by interfering with the Keap1 and Nrf2 binding. Therefore, it was concluded that the antioxidant and anti-aging effects of phlorizin might, at least in part, be mediated through the cooperation with the endogenous stress defense system. PRACTICAL APPLICATIONS: Phlorizin, from apple peel, has been used as a nutrient for over 100 years. To date, despite extensive research on phlorizin, a report on its effect on the antioxidant system in fruit flies is yet lacking. This report demonstrates that phlorizin can exert a protective effect on antioxidant issues and prolong life in fruit flies, which is valuable in the rational utilization of phlorizin in functional foods.


Assuntos
Antioxidantes/administração & dosagem , Drosophila melanogaster/efeitos dos fármacos , Malus/química , Estresse Oxidativo/efeitos dos fármacos , Florizina/administração & dosagem , Extratos Vegetais/administração & dosagem , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Longevidade/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
13.
Methods Mol Biol ; 1965: 139-153, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31069673

RESUMO

Fruit flies, Drosophila melanogaster, have been traditionally valued as a simple model system due to their easy and inexpensive culture, their relatively compact genome, and the variety of available genetic tools. However, due to similarities of their neurological and developmental pathways with those of vertebrates, Drosophila also offers advantages for developmental toxicity assays. The ability to distinguish the effects of a toxicant on adult females, males, and the developing offspring adds to the usefulness of this model. Here we describe key techniques to screen chemicals and other potential emerging toxicants such as nanoparticles on adult Drosophila female and male reproductive success. In addition, assessments of relative toxicity can be revealed by viability assays at each developmental stage from the embryo to the pharate, or preemergent, adult.


Assuntos
Drosophila melanogaster/crescimento & desenvolvimento , Modelos Animais , Nanopartículas/toxicidade , Animais , Drosophila melanogaster/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Feminino , Masculino , Reprodução/efeitos dos fármacos , Testes de Toxicidade
14.
Phytochem Anal ; 30(6): 635-643, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31059202

RESUMO

INTRODUCTION: Talguenea quinquinervia has been used in folk medicine and to dye wool, and the main constituents are alkaloids and triterpenes. Identification of these type of compounds in this specie is a necessary step to understand the biological properties. OBJECTIVE: To evaluate the relationship between the chemical composition of root from T. quinquinervia and its insecticidal properties using liquid chromatography electrospray ionisation tandem mass spectrometry (LC-ESI-MS/MS). METHODS: Alkaloids were extracted using Soxhlet extraction with methanol. Total extract was partitioned at pH 2 and 12 to enrich alkaloid constituents and to remove interferences. The separation of alkaloids in the Talguenea extract was performed on a C18 column using gradient elution and their tandem mass spectra were obtained by quadrupole time-of-flight tandem mass spectrometry (QTOF-MS/MS) to perform accurate mass measurements of fragment ions for the alkaloid constituents. RESULTS: Several types of alkaloids were separated and identified by LC-ESI-MS/MS. The structural assignment of individual alkaloids was performed based on convergence of MS/MS spectral data, pH partitioning behaviour, LC retention behaviour, and accurate mass measurements. The pH partition of the extract provided structural information about unknown alkaloids extracted from T. quinquinervia. A total of 20 compounds were identified and tentatively characterised, and of these 15 alkaloids were reported for the first time in the investigated T. quinquinervia. CONCLUSION: The chemical profiling of alkaloids in T. quinquinervia with different origins was performed for the first time and provided diagnostic ions for diverse alkaloids in T. quinquinervia. Insecticidal activity observed can be explain by the presence of alkaloid and pentacyclic triterpenes on the fractions assayed.


Assuntos
Alcaloides/química , Alcaloides/farmacologia , Cromatografia Líquida de Alta Pressão/métodos , Inseticidas/farmacologia , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos , Animais , Drosophila melanogaster/crescimento & desenvolvimento , Larva/efeitos dos fármacos , Raízes de Plantas/química
15.
Benef Microbes ; 10(2): 179-188, 2019 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-30574803

RESUMO

In vitro models are frequently used in probiotic research. However, such models often fail to predict in vivo functionality and efficacy. This fact complicates the screening process for selecting the most suitable strains, prior to accomplish expensive animal studies and clinical intervention trials. Therefore, additional sensitive, discriminating and cost-effective models are needed to conduct preliminary assays before undertaking human intervention studies definitely proving efficacy. With this purpose in mind, we explored the potential of axenic Drosophila melanogaster populations as well as of these axenic flies treated with probiotic microbial strains as a model to test the effects of probiotics on a subset of developmental and behavioural traits. An axenic D. melanogaster progeny from the wild-type Canton S strain was obtained and its eggs were further developed until pupae eclosion occurred in growth medium containing either of two probiotic strains: Bifidobacterium animalis subsp. lactis Bb12 or Lactobacillus rhamnosus GG. Whereas B. animalis Bb12 colonised the flies, the capacity of L. rhamnosus LGG to colonise was considerably lower in our experimental conditions. Regarding the influence of microbial load on the flies' development, the axenic condition caused a decrease in egg survival, and lowered adults' average weight with respect to wild-type flies. Both probiotics were able to counteract these effects. An earlier emergence of adults was observed from eggs treated with L. rhamnosus GG in comparison to the other fly populations. The axenic condition did not influence negative geotaxis behaviour in Drosophila; however, flies mono-associated with B. animalis Bb12 moved faster than wild-type. Our results suggest that the use of axenic/probiotic-treated D. melanogaster populations may be an affordable model for preliminary testing of the effects of probiotics on developmental or behavioural aspects.


Assuntos
Drosophila melanogaster/crescimento & desenvolvimento , Avaliação Pré-Clínica de Medicamentos/métodos , Modelos Animais , Probióticos/administração & dosagem , Animais , Bifidobacterium animalis/crescimento & desenvolvimento , Peso Corporal , Feminino , Vida Livre de Germes , Lacticaseibacillus rhamnosus/crescimento & desenvolvimento , Masculino , Análise de Sobrevida , Resultado do Tratamento
16.
Biofactors ; 44(6): 577-587, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30488487

RESUMO

Harsh climate induces physiological stress thus compromising organismal survival. Our previous studies demonstrated that curcumin (CUR) supplementation increased survival of turtle under heat stress (HS). Here, we span this work to investigate the survival and lifespan of HS Drosophila fed a diet supplemented with CUR. For this purpose, female and male flies were fed basal diet (N) and CUR diet (0.2 mg/g), and exposed to three conditions: 25°C and 29°C continuously, and 34 °C for 2 h at days 1, 4, and 7, then kept at 25 °C. Lifespan analysis showed that, compared to N-25 °C flies, the mean lifespans of N-29 °C and N-34 °C flies were decreased significantly by 8.5-15.7% in males, and 3.7-7.9% in females. Conversely, in the CUR-supplemented diet, mean lifespans of C-29 °C and C-34 °C flies were significantly extended by 8.7-16.4% in males, and by 8.9-12.8% in females, compared to that of temperature-matched flies fed basal diets. The MDA levels of C-34 °C flies were significantly lower than those of N-34 °C flies, indicating CUR reduced oxidative stress caused by HS. Furthermore, CUR palliated the increased oxidative stress caused by HS, by increasing the expression of SOD1, CAT, and PHGPx and decreasing the expression of Hsp70 and Hsp83. Our results indicated that CUR supplementation increases the survival rate of Drosophila by enhancing thermal tolerance. © 2018 BioFactors, 44(6):577-587, 2018.


Assuntos
Antioxidantes/farmacologia , Curcumina/farmacologia , Suplementos Nutricionais , Drosophila melanogaster/efeitos dos fármacos , Longevidade/efeitos dos fármacos , Termotolerância/efeitos dos fármacos , Animais , Catalase/genética , Catalase/metabolismo , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Proteínas de Choque Térmico HSP70/antagonistas & inibidores , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico/antagonistas & inibidores , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Resposta ao Choque Térmico/efeitos dos fármacos , Longevidade/fisiologia , Masculino , Malondialdeído/antagonistas & inibidores , Malondialdeído/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Termotolerância/genética
17.
J Toxicol Environ Health A ; 81(18): 939-956, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30156999

RESUMO

The functional characterization of marine macroalgae toward their potential to strength genome protection is still scarce. Hence, the aim of this study was to assess the antigenotoxic potential of Ulva rigida, Fucus vesiculosus, and Gracilaria species in Drosophila melanogaster following dietary exposure and adopting the somatic mutation and recombination test (SMART). All macroalgae displayed a genoprotection activity, namely against an exogenous challenge (streptonigrin). The action against subtler endogenous pressures was also noted indicating that supplementation level is a critical factor. Gracilaria species provided ambivalent indications, since 10% of G. vermiculophylla inhibited the egg laying and/or larvae development, while 10% of G. gracilis promoted spontaneous genotoxicity. The effects of U. rigida were modulated (in intensity) by the growing conditions, demonstrating higher genoprotection against streptonigrin-induced damage when grown in an aquaculture-controlled system, while the effectiveness against spontaneous genotoxicity was more apparent in specimens grown under wild conditions. In contrast, F. vesiculosus did not produce significant differences in its potential under varying growing conditions. Overall, these findings shed some light on the macroalgae ability toward genome protection, contributing to the development of algaculture industry, and reinforcing the concept of functional food and its benefits.


Assuntos
Drosophila melanogaster/efeitos dos fármacos , Larva/efeitos dos fármacos , Mutagênicos/toxicidade , Substâncias Protetoras/metabolismo , Alga Marinha/química , Estreptonigrina/toxicidade , Ração Animal/análise , Animais , Dieta , Suplementos Nutricionais/análise , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Fucus/química , Gracilaria/química , Larva/genética , Larva/crescimento & desenvolvimento , Testes de Mutagenicidade , Substâncias Protetoras/administração & dosagem , Ulva/química
18.
Carbohydr Polym ; 185: 120-126, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29421048

RESUMO

The physicochemical characteristics and in vitro antioxidant and in vivo anti-ageing activities of partial purified Chlorella pyrenoidosa polysaccharides (PCPPs) were investigated. The building blocks of PCPPs were mainly composed of D-glucose, D-galactose and D-mannose. The average molecular weight of PCPPs was 9,950 Da. In vitro antioxidant activity assays showed that PCPPs could effectively scavenge hydroxyl, 1,1-diphenyl-2-picrylhydrazyl, and superoxide radicals, with stronger effect on hydroxyl radicals. Furthermore, the mean lifespan of the male and female Drosophila melanogaster was extended by 11.5% and 10.6%, respectively. This was accompanied by an increase in the total activity of the endogenous antioxidant enzymes, superoxide dismutase, glutathione peroxidase, and catalase in young or old D. melanogaster administered with PCPPs. Moreover, a gender-dependent difference was observed both in lifespan and antioxidant enzyme activities in D. melanogaster. The results indicated that C. pyrenoidosa polysaccharides are potential natural antioxidants in extending lifespan.


Assuntos
Envelhecimento/efeitos dos fármacos , Chlorella/química , Sequestradores de Radicais Livres/química , Extratos Vegetais/química , Polissacarídeos/química , Animais , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/crescimento & desenvolvimento , Feminino , Sequestradores de Radicais Livres/farmacologia , Galactose/análise , Glucose/análise , Masculino , Manose/análise , Extratos Vegetais/farmacologia , Polissacarídeos/farmacologia
19.
PLoS One ; 13(1): e0190821, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29338042

RESUMO

Ataxia-telangiectasia (A-T) is a neurodegenerative disease caused by mutation of the A-T mutated (ATM) gene. ATM encodes a protein kinase that is activated by DNA damage and phosphorylates many proteins, including those involved in DNA repair, cell cycle control, and apoptosis. Characteristic biological and molecular functions of ATM observed in mammals are conserved in Drosophila melanogaster. As an example, conditional loss-of-function ATM alleles in flies cause progressive neurodegeneration through activation of the innate immune response. However, unlike in mammals, null alleles of ATM in flies cause lethality during development. With the goals of understanding biological and molecular roles of ATM in a whole animal and identifying candidate therapeutics for A-T, we performed a screen of 2400 compounds, including FDA-approved drugs, natural products, and bioactive compounds, for modifiers of the developmental lethality caused by a temperature-sensitive ATM allele (ATM8) that has reduced kinase activity at non-permissive temperatures. Ten compounds reproducibly suppressed the developmental lethality of ATM8 flies, including Ronnel, which is an organophosphate. Ronnel and other suppressor compounds are known to cause mitochondrial dysfunction or to inhibit the enzyme acetylcholinesterase, which controls the levels of the neurotransmitter acetylcholine, suggesting that detrimental consequences of reduced ATM kinase activity can be rescued by inhibiting the function of mitochondria or increasing acetylcholine levels. We carried out further studies of Ronnel because, unlike the other compounds that suppressed the developmental lethality of homozygous ATM8 flies, Ronnel was toxic to the development of heterozygous ATM8 flies. Ronnel did not affect the innate immune response of ATM8 flies, and it further increased the already high levels of DNA damage in brains of ATM8 flies, but its effects were not harmful to the lifespan of rescued ATM8 flies. These results provide new leads for understanding the biological and molecular roles of ATM and for the treatment of A-T.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/genética , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/genética , Alelos , Animais , Dano ao DNA , Proteínas de Drosophila/genética , Drosophila melanogaster/crescimento & desenvolvimento , Avaliação Pré-Clínica de Medicamentos/métodos , Feminino , Genes de Insetos/efeitos dos fármacos , Genes Letais/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/genética , Masculino , Mutação , Degeneração Neural/genética , Compostos Organotiofosforados/farmacologia , Fenótipo , Proteínas Serina-Treonina Quinases
20.
Oxid Med Cell Longev ; 2018: 8952646, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30693067

RESUMO

Metal-induced toxicity in fruit fly (Drosophila melanogaster) is one of the established models for studying neurotoxicity and neurodegenerative diseases. Phytochemicals, especially alkaloids, have been reported to exhibit neuroprotection. Here, we assessed the protective effect of alkaloid extract from African Jointfir (Gnetum africanum) leaf on manganese- (Mn-) induced toxicity in wild type fruit fly. Flies were exposed to 10 mM Mn, the alkaloid extract and cotreatment of Mn plus extract, respectively. The survival rate and locomotor performance of the flies were assessed 5 days posttreatment, at which point the flies were homogenized and assayed for acetylcholinesterase (AChE) activity, nitric oxide (NO), and reactive oxygen species (ROS) levels. Results showed that the extract significantly reverted Mn-induced reduction in the survival rate and locomotor performance of the flies. Furthermore, the extract counteracted the Mn-induced elevation in AChE activity, NO, and ROS levels. The alkaloid extract of the African Jointfir leaf may hence be a source of useful phytochemicals for the development of novel therapies for the management of neurodegeneration.


Assuntos
Antioxidantes/farmacologia , Drosophila melanogaster/efeitos dos fármacos , Gnetum/química , Manganês/toxicidade , Fármacos Neuroprotetores/farmacologia , Extratos Vegetais/farmacologia , Folhas de Planta/química , Animais , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA