Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Viruses ; 13(9)2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34578374

RESUMO

Ebola virus (EBOV), one of the most infectious human viruses and a leading cause of viral hemorrhagic fever, imposes a potential public health threat with several recent outbreaks. Despite the difficulties associated with working with this pathogen in biosafety level-4 containment, a protective vaccine and antiviral therapeutic were recently approved. However, the high mortality rate of EBOV infection underscores the necessity to continuously identify novel antiviral strategies to help expand the scope of prophylaxis/therapeutic management against future outbreaks. This includes identifying antiviral agents that target EBOV entry, which could improve the management of EBOV infection. Herein, using EBOV glycoprotein (GP)-pseudotyped particles, we screened a panel of natural medicinal extracts, and identified the methanolic extract of Perilla frutescens (PFME) as a robust inhibitor of EBOV entry. We show that PFME dose-dependently impeded EBOV GP-mediated infection at non-cytotoxic concentrations, and exerted the most significant antiviral activity when both the extract and the pseudoparticles are concurrently present on the host cells. Specifically, we demonstrate that PFME could block viral attachment and neutralize the cell-free viral particles. Our results, therefore, identified PFME as a potent inhibitor of EBOV entry, which merits further evaluation for development as a therapeutic strategy against EBOV infection.


Assuntos
Antivirais/farmacologia , Ebolavirus/efeitos dos fármacos , Ebolavirus/fisiologia , Perilla frutescens/química , Extratos Vegetais/farmacologia , Proteínas do Envelope Viral , Internalização do Vírus/efeitos dos fármacos , Ebolavirus/química , Ebolavirus/genética , Células HEK293 , Humanos , Metanol/química , Metanol/farmacologia , Extratos Vegetais/química , Proteínas do Envelope Viral/genética
2.
Front Immunol ; 12: 721328, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34526994

RESUMO

The unprecedented 2013-2016 West Africa Ebola outbreak accelerated several medical countermeasures (MCMs) against Ebola virus disease (EVD). Several investigational products (IPs) were used throughout the outbreak but were not conclusive for efficacy results. Only the Randomized Controlled Trial (RCT) on ZMapp was promising but inconclusive. More recently, during the second-largest Ebola outbreak in North Kivu and Ituri provinces, Democratic Republic of the Congo (DRC), four IPs, including one small molecule (Remdesivir), two monoclonal antibody (mAb) cocktails (ZMapp and REGN-EB3) and a single mAb (mAb114), were evaluated in an RCT, the Pamoja Tulinde Maisha (PALM) study. Two products (REGN-EB3 and mAb114) demonstrated efficacy as compared to the control arm, ZMapp. There were remarkably few side effects recorded in the trial. The FDA approved both medications in this scientifically sound study, marking a watershed moment in the field of EVD therapy. These products can be produced relatively inexpensively and can be stockpiled. The administration of mAbs in EVD patients appears to be safe and effective, while several critical knowledge gaps remain; the impact of early administration of Ebola-specific mAbs on developing a robust immune response for future Ebola virus exposure is unknown. The viral mutation escape, leading to resistance, presents a potential limitation for single mAb therapy; further improvements need to be explored. Understanding the contribution of Fc-mediated antibody functions such as antibody-dependent cellular cytotoxicity (ADCC) of those approved mAbs is still critical. The potential merit of combination therapy and post-exposure prophylaxis (PEP) need to be demonstrated. Furthermore, the PALM trial has accounted for 30% of mortality despite the administration of specific treatments. The putative role of EBOV soluble Glycoprotein (sGP) as a decoy to the immune system, the virus persistence, and relapses might be investigated for treatment failure. The development of pan-filovirus or pan-species mAbs remains essential for protection. The interaction between FDA-approved mAbs and vaccines remains unclear and needs to be investigated. In this review, we summarize the efficacy and safety results of the PALM study and review current research questions for the further development of mAbs in pre-exposure or emergency post-exposure use.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Antivirais/uso terapêutico , Ebolavirus/efeitos dos fármacos , Doença pelo Vírus Ebola/tratamento farmacológico , Doença pelo Vírus Ebola/virologia , Animais , Anticorpos Monoclonais/farmacologia , Antígenos Virais/imunologia , Antivirais/farmacologia , Estudos Clínicos como Assunto , Aprovação de Drogas , Avaliação Pré-Clínica de Medicamentos , Vacinas contra Ebola , Ebolavirus/imunologia , Doença pelo Vírus Ebola/mortalidade , Doença pelo Vírus Ebola/prevenção & controle , Humanos , Prognóstico , Falha de Tratamento , Resultado do Tratamento , Estados Unidos , United States Food and Drug Administration , Vacinação
3.
Antiviral Res ; 186: 104990, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33249093

RESUMO

The endocytic pathway is a common strategy that several highly pathogenic viruses use to enter into the cell. To demonstrate the usefulness of this pathway as a common target for the development of broad-spectrum antivirals, the inhibitory effect of drug compounds targeting endosomal membrane proteins were investigated. This study entailed direct comparison of drug effectiveness against animal and human pathogenic viruses, namely Ebola (EBOV), African swine fever virus (ASFV), and the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). A panel of experimental and FDA-approved compounds targeting calcium channels and PIKfyve at the endosomal membrane caused potent reductions of entry up to 90% in SARS-CoV-2 S-protein pseudotyped retrovirus. Similar inhibition was observed against transduced EBOV glycoprotein pseudovirus and ASFV. SARS-CoV-2 infection was potently inhibited by selective estrogen receptor modulators in cells transduced with pseudovirus, among them Raloxifen inhibited ASFV with very low 50% inhibitory concentration. Finally, the mechanism of the inhibition caused by the latter in ASFV infection was analyzed. Overall, this work shows that cellular proteins related to the endocytic pathway can constitute suitable cellular targets for broad range antiviral compounds.


Assuntos
Vírus da Febre Suína Africana/efeitos dos fármacos , Antivirais/farmacologia , Ebolavirus/efeitos dos fármacos , Endossomos/efeitos dos fármacos , SARS-CoV-2/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos , Vírus da Febre Suína Africana/fisiologia , Animais , Cálcio/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Linhagem Celular , Linhagem Celular Tumoral , Chlorocebus aethiops , Colesterol/metabolismo , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Ebolavirus/fisiologia , Endocitose/efeitos dos fármacos , Endossomos/metabolismo , Humanos , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Cloridrato de Raloxifeno/farmacologia , Receptores de Estrogênio/metabolismo , SARS-CoV-2/fisiologia , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Células Vero
4.
Biochem Biophys Res Commun ; 522(4): 862-868, 2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-31806372

RESUMO

Ebola virus (EBOV), pathogen of Ebola hemorrhagic fever (EHF), is an enveloped filamental RNA virus. Recently, the EHF crisis occurred in the Democratic Republic of the Congo again highlights the urgency for its clinical treatments. However, no Food and Drug Administration (FDA)-approved therapeutics are currently available. Drug repurposing screening is a time- and cost-effective approach for identifying anti-EBOV therapeutics. Here, by combinatorial screening using pseudovirion and minigenome replicon systems we have identified several FDA-approved drugs with significant anti-EBOV activities. These potential candidates include azithromycin, clomiphene, chloroquine, digitoxin, epigallocatechin-gallate, fluvastatin, tetrandrine and tamoxifen. Mechanistic studies revealed that fluvastatin inhibited EBOV pseudovirion entry by blocking the pathway of mevalonate biosynthesis, while the inhibitory effect of azithromycin on EBOV maybe due to its intrinsic cationic amphiphilic structure altering the homeostasis of later endosomal vesicle similar as tamoxifen. Moreover, based on structure and pathway analyses, the anti-EBOV activity has been extended to other family members of statins, such as simvastatin, and multiple other cardiac glycoside drugs, some of which exhibited even stronger activities. More importantly, in searching for drug interaction, we found various synergy between several anti-EBOV drug combinations, showing substantial and powerful synergistic against EBOV infection. In conclusion, our work illustrates a successful and productive approach to identify new mechanisms and targets for treating EBOV infection by combinatorial screening of FDA-approved drugs.


Assuntos
Antivirais/análise , Antivirais/farmacologia , Técnicas de Química Combinatória , Aprovação de Drogas , Avaliação Pré-Clínica de Medicamentos , Ebolavirus/efeitos dos fármacos , Azitromicina/farmacologia , Glicosídeos Cardíacos/farmacologia , Linhagem Celular , Colesterol/biossíntese , Sinergismo Farmacológico , Ebolavirus/fisiologia , Fluvastatina/farmacologia , Humanos , Ácido Mevalônico/metabolismo , Modelos Biológicos , Tensoativos/química , Vírion/efeitos dos fármacos , Vírion/fisiologia , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
5.
Curr Mol Med ; 20(2): 102-115, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31622201

RESUMO

BACKGROUND: Infections are one of the leading causes of death worldwide and currently available treatments remain unsatisfactory due to rise in the cases of antimicrobial resistance. Thus, there is a need for the development of new drugs with different mechanisms of action. However, the development of new antimicrobials agents is a long and expensive process. Hence, most of the pharmaceutical companies are looking forward to repurposing the already available drugs against microbial infections. METHODOLOGY: The data related to SERMs and microbial infection has been extracted from Pub Med (from January 1997 to December 2018). A total of 101 studies have been published from 1997 -2018 regarding SERMs and microbial infections. RESULTS: On the basis of inclusion and exclusion criteria, 25 studies have been included for the analysis of level of evidence regarding antimicrobial effects of SERMs. Emerging reports have indicated the antimicrobial property of selective estrogen receptor modulators (SERMs) against normal and resistant strains under in vitro and in vivo conditions against wide variety of microorganisms through different mechanisms of action. CONCLUSION: In conclusion, SERMs could be developed as a broad spectrum antimicrobial agent alone or in combination with existing antimicrobial agents.


Assuntos
Anti-Infecciosos/farmacologia , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Animais , Anti-Infecciosos/uso terapêutico , Bactérias/efeitos dos fármacos , Cálcio/metabolismo , Parede Celular/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Reposicionamento de Medicamentos , Resistência Microbiana a Medicamentos , Sinergismo Farmacológico , Quimioterapia Combinada , Ebolavirus/efeitos dos fármacos , Fungos/efeitos dos fármacos , Humanos , Transporte de Íons/efeitos dos fármacos , Leishmania/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Moduladores Seletivos de Receptor Estrogênico/uso terapêutico , Toxoplasma/efeitos dos fármacos
6.
Viruses ; 13(1)2020 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-33396288

RESUMO

Filoviruses, such as Ebola virus and Marburg virus, are of significant human health concern. From 2013 to 2016, Ebola virus caused 11,323 fatalities in Western Africa. Since 2018, two Ebola virus disease outbreaks in the Democratic Republic of the Congo resulted in 2354 fatalities. Although there is progress in medical countermeasure (MCM) development (in particular, vaccines and antibody-based therapeutics), the need for efficacious small-molecule therapeutics remains unmet. Here we describe a novel high-throughput screening assay to identify inhibitors of Ebola virus VP40 matrix protein association with viral particle assembly sites on the interior of the host cell plasma membrane. Using this assay, we screened nearly 3000 small molecules and identified several molecules with the desired inhibitory properties. In secondary assays, one identified compound, sangivamycin, inhibited not only Ebola viral infectivity but also that of other viruses. This finding indicates that it is possible for this new VP40-based screening method to identify highly potent MCMs against Ebola virus and its relatives.


Assuntos
Antivirais/farmacologia , Ebolavirus/efeitos dos fármacos , Nucleoproteínas/antagonistas & inibidores , Proteínas do Core Viral/antagonistas & inibidores , Animais , Antivirais/química , Antivirais/uso terapêutico , Chlorocebus aethiops , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Ebolavirus/genética , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Doença pelo Vírus Ebola/tratamento farmacológico , Doença pelo Vírus Ebola/virologia , Humanos , Contramedidas Médicas , Estrutura Molecular , Nucleoproteínas/química , Nucleosídeos de Pirimidina/farmacologia , Células Vero , Proteínas do Core Viral/química , Liberação de Vírus/efeitos dos fármacos
7.
Nat Rev Microbiol ; 17(10): 593-606, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31341272

RESUMO

Following the Ebola virus disease epidemic in west Africa, there has been increased awareness of the need for improved therapies for emerging diseases, including viral haemorrhagic fevers such as those caused by Ebola virus and other filoviruses. Our continually improving understanding of the virus life cycle coupled with the increased availability of 'omics' analyses and high-throughput screening technologies has enhanced our ability to identify potential viral and host factors and aspects involved in the infection process that might be intervention targets. In this Review we address compounds that have shown promise to various degrees in interfering with the filovirus life cycle, including monoclonal antibodies such as ZMapp, mAb114 and REGN-EB3 and inhibitors of viral RNA synthesis such as remdesivir and TKM-Ebola. Furthermore, we discuss the general potential of targeting aspects of the virus life cycle such as the entry process, viral RNA synthesis and gene expression, as well as morphogenesis and budding.


Assuntos
Antivirais/isolamento & purificação , Antivirais/farmacologia , Ebolavirus/efeitos dos fármacos , Ebolavirus/crescimento & desenvolvimento , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos/métodos
8.
J Virol ; 93(15)2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31092576

RESUMO

A key step in the Ebola virus (EBOV) replication cycle involves conformational changes in viral glycoprotein 2 (GP2) which facilitate host-viral membrane fusion and subsequent release of the viral genome. Ebola GP2 plays a critical role in virus entry and has similarities in mechanism and structure to the HIV gp41 protein for which inhibitors have been successfully developed. In this work, a putative binding pocket for the C-terminal heptad repeat in the N-terminal heptad repeat trimer was targeted for identification of small molecules that arrest EBOV-host membrane fusion. Two computational structure-based virtual screens of ∼1.7 M compounds were performed (DOCK program) against a GP2 five-helix bundle, resulting in 165 commercially available compounds purchased for experimental testing. Based on assessment of inhibitory activity, cytotoxicity, and target specificity, four promising candidates emerged with 50% inhibitory concentration values in the 3 to 26 µM range. Molecular dynamics simulations of the two most potent candidates in their DOCK-predicted binding poses indicate that the majority of favorable interactions involve seven highly conserved residues that can be used to guide further inhibitor development and refinement targeting EBOV.IMPORTANCE The most recent Ebola virus disease outbreak, from 2014 to 2016, resulted in approximately 28,000 individuals becoming infected, which led to over 12,000 causalities worldwide. The particularly high pathogenicity of the virus makes paramount the identification and development of promising lead compounds to serve as inhibitors of Ebola infection. To limit viral load, the virus-host membrane fusion event can be targeted through the inhibition of the class I fusion glycoprotein of Ebolavirus In the current work, several promising small-molecule inhibitors that target the glycoprotein GP2 were identified through systematic application of structure-based computational and experimental drug design procedures.


Assuntos
Antivirais/farmacologia , Ebolavirus/efeitos dos fármacos , Mimetismo Molecular , Proteínas do Envelope Viral/antagonistas & inibidores , Internalização do Vírus/efeitos dos fármacos , Antivirais/química , Antivirais/isolamento & purificação , Linhagem Celular , Avaliação Pré-Clínica de Medicamentos , Humanos , Concentração Inibidora 50 , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica
9.
J Med Chem ; 62(6): 2928-2937, 2019 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-30785281

RESUMO

Potent Ebolavirus (EBOV) inhibitors will help to curtail outbreaks such as that which occurred in 2014-16 in West Africa. EBOV has on its surface a single glycoprotein (GP) critical for viral entry and membrane fusion. Recent high-resolution complexes of EBOV GP with a variety of approved drugs revealed that binding to a common cavity prevented fusion of the virus and endosomal membranes, inhibiting virus infection. We performed docking experiments, screening a database of natural compounds to identify those likely to bind at this site. Using both inhibition assays of HIV-1-derived pseudovirus cell entry and structural analyses of the complexes of the compounds with GP, we show here that two of these compounds attach in the common binding cavity, out of eight tested. In both cases, two molecules bind in the cavity. The two compounds are chemically similar, but the tighter binder has an additional chlorine atom that forms good halogen bonds to the protein and achieves an IC50 of 50 nM, making it the most potent GP-binding EBOV inhibitor yet identified, validating our screening approach for the discovery of novel antiviral compounds.


Assuntos
Antivirais/farmacologia , Ebolavirus/efeitos dos fármacos , Medicina Tradicional Chinesa , Antivirais/química , Antivirais/metabolismo , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Simulação por Computador , Cristalografia por Raios X , Descoberta de Drogas , Glicoproteínas/metabolismo , Células HEK293 , Ensaios de Triagem em Larga Escala , Humanos , Concentração Inibidora 50 , Testes de Sensibilidade Microbiana , Reprodutibilidade dos Testes
10.
Antiviral Res ; 162: 90-100, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30550800

RESUMO

Filoviruses, which include Ebola virus (EBOV) and Marburg virus, are negative-sense RNA viruses associated with sporadic outbreaks of severe viral hemorrhagic fever characterized by uncontrolled virus replication. The extreme virulence and emerging nature of these zoonotic pathogens make them a significant threat to human health. Replication of the filovirus genome and production of viral RNAs require the function of a complex of four viral proteins, the nucleoprotein (NP), viral protein 35 (VP35), viral protein 30 (VP30) and large protein (L). The latter performs the enzymatic activities required for production of viral RNAs and capping of viral mRNAs. Although it has been recognized that interactions between the virus-encoded components of the EBOV RNA polymerase complex are required for viral RNA synthesis reactions, specific molecular details have, until recently, been lacking. New efforts have combined structural biology and molecular virology to reveal in great detail the molecular basis for critical protein-protein interactions (PPIs) necessary for viral RNA synthesis. These efforts include recent studies that have identified a range of interacting host factors and in some instances demonstrated unique mechanisms by which they act. For a select number of these interactions, combined use of mutagenesis, over-expressing of peptides corresponding to PPI interfaces and identification of small molecules that disrupt PPIs have demonstrated the functional significance of virus-virus and virus-host PPIs and suggest several as potential targets for therapeutic intervention.


Assuntos
Filoviridae/fisiologia , Interações entre Hospedeiro e Microrganismos , RNA Viral/biossíntese , Proteínas Virais/metabolismo , Replicação Viral/efeitos dos fármacos , Animais , Ebolavirus/efeitos dos fármacos , Ebolavirus/fisiologia , Filoviridae/efeitos dos fármacos , Humanos , Marburgvirus/efeitos dos fármacos , Marburgvirus/fisiologia , Ligação Proteica , Proteínas Virais/antagonistas & inibidores , Viroses/tratamento farmacológico
11.
ACS Infect Dis ; 5(1): 35-48, 2019 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-30516045

RESUMO

The Ebola virus has a grave potential to destabilize civil society as we know it. The past few deadly Ebola outbreaks were unprecedented in size: The 2014-15 Ebola West Africa outbreak saw the virus spread from the epicenter through to Guinea, Sierra Leone, Nigeria, Congo, and Liberia. The 2014-15 Ebola West Africa outbreak was associated with almost 30,000 suspected or confirmed cases and over 11,000 documented deaths. The more recent 2018 outbreak in the Democratic Republic of Congo has so far resulted in 216 suspected or confirmed cases and 139 deaths. There is a general acceptance within the World Health Organization (WHO) and the Ebola outbreak response community that future outbreaks will become increasingly more frequent and more likely to involve intercontinental transmission. The magnitude of the recent outbreaks demonstrated in dramatic fashion the shortcomings of our mass casualty disease response capabilities and lack of therapeutic modalities for supporting Ebola outbreak prevention and control. Currently, there are no approved drugs although vaccines for human Ebola virus infection are in the trial phases and some potential treatments have been field tested most recently in the Congo Ebola outbreak. Treatment is limited to pain management and supportive care to counter dehydration and lack of oxygen. This underscores the critical need for effective antiviral drugs that specifically target this deadly disease. This review examines the current approaches for the discovery of anti-Ebola small molecule or biological therapeutics, their viral targets, mode of action, and contemporary platforms, which collectively form the backbone of the anti-Ebola drug discovery pipeline.


Assuntos
Antivirais/farmacologia , Terapia Biológica , Descoberta de Drogas , Doença pelo Vírus Ebola/tratamento farmacológico , Bibliotecas de Moléculas Pequenas/farmacologia , África Ocidental , Antivirais/isolamento & purificação , Ensaios Clínicos como Assunto , Surtos de Doenças/prevenção & controle , Ebolavirus/efeitos dos fármacos , Ebolavirus/genética , Humanos , Pesquisa
12.
Infect Disord Drug Targets ; 19(1): 17-29, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30101721

RESUMO

The constant Ebola epidemic outbreaks in Africa arisen in waves of panic worldwide. There is a high mortality rate (30-70%) among the Ebola-infected people in virus- stricken areas. Despite these horrors, the medical capabilities against this deadly viral disease were provided by limited therapeutic agents/options. As a result, several patented agents, biotherapies or prophylactic/therapeutic vaccines need to be reviving into the global markets-including patents of small molecular chemicals, short sequences or oligomers of DNA/RNA, linkages of chemicals with bio-molecules, herbal medicine and so on. In addition, the possible mechanisms of action of these therapeutic options are underway. To promote Ebola biomedical study, the multiple characters of Ebola infections-its origin, pathologic progress, genomic changes, therapeutic context and economic considerations are outlined in this review. Finally, a great difference can be expected after these types of efforts.


Assuntos
Antivirais/uso terapêutico , Ebolavirus/patogenicidade , Doença pelo Vírus Ebola/terapia , Vacinas Virais/uso terapêutico , África/epidemiologia , Surtos de Doenças/prevenção & controle , Ebolavirus/efeitos dos fármacos , Ebolavirus/imunologia , Ebolavirus/isolamento & purificação , Doença pelo Vírus Ebola/epidemiologia , Doença pelo Vírus Ebola/imunologia , Doença pelo Vírus Ebola/virologia , Humanos , Taxa de Sobrevida , Vacinas Virais/imunologia
13.
Viruses ; 10(12)2018 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-30513600

RESUMO

Ebola virus is the causative agent of Ebola virus disease in humans. The lethality of Ebola virus infection is about 50%, supporting the urgent need to develop anti-Ebola drugs. Glycoprotein (GP) is the only surface protein of the Ebola virus, which is functionally critical for the virus to attach and enter the host cells, and is a promising target for anti-Ebola virus drug development. In this study, using the recombinant HIV-1/Ebola pseudovirus platform we previously established, we evaluated a small molecule library containing various quinoline compounds for anti-Ebola virus entry inhibitors. Some of the quinoline compounds specifically inhibited the entry of the Ebola virus. Among them, compound SYL1712 was the most potent Ebola virus entry inhibitor with an IC50 of ~1 µM. The binding of SYL1712 to the vial glycoprotein was computationally modeled and was predicted to interact with specific residues of GP. We used the time of the addition assay to show that compound SYL1712 blocks Ebola GP-mediated entry. Finally, consistent with being an Ebola virus entry inhibitor, compound SYL1712 inhibited infectious Ebola virus replication in tissue culture under biosafety level 4 containment, with an IC50 of 2 µM. In conclusion, we identified several related molecules with a diaryl-quinoline scaffold as potential anti-EBOV entry inhibitors, which can be further optimized for anti-Ebola drug development.


Assuntos
Antivirais/farmacologia , Suplementos Nutricionais , Ebolavirus/efeitos dos fármacos , Ebolavirus/fisiologia , Doença pelo Vírus Ebola/virologia , Quinolinas/farmacologia , Internalização do Vírus/efeitos dos fármacos , Antivirais/química , Linhagem Celular , Avaliação Pré-Clínica de Medicamentos/métodos , Ensaios de Triagem em Larga Escala , Humanos , Concentração Inibidora 50 , Testes de Sensibilidade Microbiana , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Quinolinas/química , Relação Estrutura-Atividade , Replicação Viral/efeitos dos fármacos
14.
Biochemistry ; 57(44): 6367-6378, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30298725

RESUMO

Ebola virus (EBOV) is a filovirus that causes a severe and rapidly progressing hemorrhagic syndrome; a recent epidemic illustrated the urgent need for novel therapeutic agents because no drugs have been approved for treatment of Ebola virus. A key contribution to the high lethality observed during EBOV outbreaks comes from viral evasion of the host antiviral innate immune response in which viral protein VP35 plays a crucial role, blocking interferon type I production, first by masking the viral double-stranded RNA (dsRNA) and preventing its detection by the pattern recognition receptor RIG-I. Aiming to identify inhibitors of the interaction of VP35 with the viral dsRNA, counteracting the VP35 viral innate immune evasion, we established a new methodology for high-yield recombinant VP35 (rVP35) expression and purification and a novel and robust fluorescence-based rVP35-RNA interaction assay ( Z' factor of 0.69). Taking advantage of such newly established methods, we screened a small library of Sardinian natural extracts, identifying Limonium morisianum as the most potent inhibitor extract. A bioguided fractionation led to the identification of myricetin as the component that can inhibit rVP35-dsRNA interaction with an IC50 value of 2.7 µM. Molecular docking studies showed that myricetin interacts with the highly conserved region of the VP35 RNA binding domain, laying the basis for further structural optimization of potent inhibitors of VP35-dsRNA interaction.


Assuntos
Antivirais/farmacologia , Flavonoides/farmacologia , Fluorescência , Extratos Vegetais/farmacologia , RNA de Cadeia Dupla/antagonistas & inibidores , RNA Viral/antagonistas & inibidores , Proteínas Virais Reguladoras e Acessórias/antagonistas & inibidores , Ebolavirus/efeitos dos fármacos , Doença pelo Vírus Ebola/tratamento farmacológico , Doença pelo Vírus Ebola/virologia , Humanos , Simulação de Acoplamento Molecular , Plumbaginaceae/química , Conformação Proteica , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Proteínas Virais Reguladoras e Acessórias/genética , Proteínas Virais Reguladoras e Acessórias/metabolismo
15.
Antiviral Res ; 158: 226-237, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30149038

RESUMO

The massive epidemic of Ebola virus disease (EVD) in West Africa, followed in recent months by two outbreaks in the Democratic Republic of the Congo, underline the importance of this severe disease. Because Ebola virus (EBOV) must be manipulated under biosafety level 4 (BSL4) containment, the discovery and development of virus-specific therapies have been hampered. Recently, a transient transfection-based transcription- and replication competent virus-like particle (trVLP) system was described, enabling modeling of the entire EBOV life cycle under BSL2 conditions. Using this system, we optimized the condition for bulk co-transfection of multiple plasmids, developed a luciferase reporter-based assay in 384-well microtiter plates, and performed a high-throughput screening (HTS) campaign of an 8,354-compound collection consisting of U.S. Food & Drug Administration (FDA) -approved drugs, bioactives, kinase inhibitors, and natural products in duplicates. The HTS achieved a good signal-to-background ratio with a low percent coefficient of variation resulting in Z' = 0.7, and data points were reproducible with R2 = 0.89, indicative of a robust assay. After applying stringent hit selection criteria of ≥70% EBOV trVLP inhibition and ≥70% cell viability, 381 hits were selected targeting early, entry, and replication steps and 49 hits targeting late, maturation, and secretion steps in the viral life cycle. Of the total 430 hits, 220 were confirmed by dose-response analysis in the primary HTS assay. They were subsequently triaged by time-of-addition assays, then clustered and ranked according to their chemical structures, biological functions, therapeutic index, and maximum inhibition. Several novel drugs have been identified to very efficiently inhibit EBOV. Interestingly, most showed pharmacological activity in treatments for central nervous system-related diseases. We developed and screened an HTS assay using the novel EBOV trVLP system. Newly identified inhibitors are useful tools to study the poorly understood EBOV life cycle. In addition, they also provide opportunities to either repurpose FDA-approved drugs or develop novel viral interventions to combat EVD.


Assuntos
Antivirais/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Ebolavirus/efeitos dos fármacos , Doença pelo Vírus Ebola/tratamento farmacológico , Ensaios de Triagem em Larga Escala/métodos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Reposicionamento de Medicamentos , Ebolavirus/fisiologia , Células HEK293 , Doença pelo Vírus Ebola/virologia , Humanos , Estágios do Ciclo de Vida , Modelos Lineares , Luciferases , Neurotransmissores , Análise de Regressão , Estados Unidos , United States Food and Drug Administration
16.
Antiviral Res ; 158: 288-302, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30144461

RESUMO

Specific host pathways that may be targeted therapeutically to inhibit the replication of Ebola virus (EBOV) and other emerging viruses remain incompletely defined. A screen of 200,000 compounds for inhibition of an EBOV minigenome (MG) assay that measures the function of the viral polymerase complex identified as hits several compounds with an amino-tetrahydrocarbazole scaffold. This scaffold was structurally similar to GSK983, a compound previously described as having broad-spectrum antiviral activity due to its impairing de novo pyrimidine biosynthesis through inhibition of dihydroorotate dehydrogenase (DHODH). We generated compound SW835, the racemic version of GSK983 and demonstrated that SW835 and brequinar, another DHODH inhibitor, potently inhibit the MG assay and the replication of EBOV, vesicular stomatitis virus (VSV) and Zika (ZIKV) in vitro. Nucleoside and deoxynucleoside supplementation studies demonstrated that depletion of pyrimidine pools contributes to antiviral activity of these compounds. As reported for other DHODH inhibitors, SW835 and brequinar also induced expression of interferon stimulated genes (ISGs). ISG induction was demonstrated to occur without production of IFNα/ß and independently of the IFNα receptor and was not blocked by EBOV-encoded suppressors of IFN signaling pathways. Furthermore, we demonstrated that transcription factor IRF1 is required for this ISG induction, and that IRF1 induction requires the DNA damage response kinase ATM. Therefore, de novo pyrimidine biosynthesis is critical for the replication of EBOV and other RNA viruses and inhibition of this pathway activates an ATM and IRF1-dependent innate immune response that subverts EBOV immune evasion functions.


Assuntos
Ebolavirus/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos , Nucleosídeos/farmacologia , Pirimidinas/antagonistas & inibidores , Pirimidinas/biossíntese , Replicação Viral/efeitos dos fármacos , Células A549 , Antivirais/farmacologia , Compostos de Bifenilo/química , Compostos de Bifenilo/farmacologia , Carbazóis/química , Carbazóis/farmacologia , Dano ao DNA , Di-Hidro-Orotato Desidrogenase , Células HEK293 , Doença pelo Vírus Ebola/tratamento farmacológico , Doença pelo Vírus Ebola/virologia , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Evasão da Resposta Imune , Imunidade Inata/genética , Fator Regulador 1 de Interferon/metabolismo , Fator Regulador 1 de Interferon/farmacologia , Interferon-alfa/metabolismo , Interferon beta/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Vírus de RNA/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Vesiculovirus/efeitos dos fármacos , Zika virus/efeitos dos fármacos
17.
J Med Chem ; 61(14): 6293-6307, 2018 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-29920098

RESUMO

Previous studies identified an adamantane dipeptide piperazine 3.47 that inhibits Ebola virus (EBOV) infection by targeting the essential receptor Niemann-Pick C1 (NPC1). The physicochemical properties of 3.47 limit its potential for testing in vivo. Optimization by improving potency, reducing hydrophobicity, and replacing labile moieties identified 3.47 derivatives with improved in vitro ADME properties that are also highly active against EBOV infection, including when tested in the presence of 50% normal human serum (NHS). In addition, 3A4 was identified as the major cytochrome P450 isoform that metabolizes these compounds, and accordingly, mouse microsome stability was significantly improved when tested in the presence of the CYP3A4 inhibitor ritonavir that is approved for clinical use as a booster of anti-HIV drugs. Oral administration of the EBOV inhibitors with ritonavir resulted in a pharmacokinetic profile that supports a b.i.d. dosing regimen for efficacy studies in mice.


Assuntos
Ebolavirus/efeitos dos fármacos , Ebolavirus/fisiologia , Internalização do Vírus/efeitos dos fármacos , Animais , Chlorocebus aethiops , Avaliação Pré-Clínica de Medicamentos , Ésteres/química , Ésteres/farmacologia , Humanos , Interações Hidrofóbicas e Hidrofílicas , Células Vero
18.
J Med Chem ; 61(8): 3582-3594, 2018 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-29624387

RESUMO

The Ebola virus (EBOV) causes severe human infection that lacks effective treatment. A recent screen identified a series of compounds that block EBOV-like particle entry into human cells. Using data from this screen, quantitative structure-activity relationship models were built and employed for virtual screening of a ∼17 million compound library. Experimental testing of 102 hits yielded 14 compounds with IC50 values under 10 µM, including several sub-micromolar inhibitors, and more than 10-fold selectivity against host cytotoxicity. These confirmed hits include FDA-approved drugs and clinical candidates with non-antiviral indications, as well as compounds with novel scaffolds and no previously known bioactivity. Five selected hits inhibited BSL-4 live-EBOV infection in a dose-dependent manner, including vindesine (0.34 µM). Additional studies of these novel anti-EBOV compounds revealed their mechanisms of action, including the inhibition of NPC1 protein, cathepsin B/L, and lysosomal function. Compounds identified in this study are among the most potent and well-characterized anti-EBOV inhibitors reported to date.


Assuntos
Antivirais/farmacologia , Ebolavirus/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Antivirais/química , Chlorocebus aethiops , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Células HeLa , Humanos , Estrutura Molecular , Relação Quantitativa Estrutura-Atividade , Bibliotecas de Moléculas Pequenas/química , Células Vero , Internalização do Vírus/efeitos dos fármacos
19.
Viruses ; 10(4)2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29584652

RESUMO

The recent 2014-2016 West African Ebola virus epidemic underscores the need for the development of novel anti-Ebola therapeutics, due to the high mortality rates of Ebola virus infections and the lack of FDA-approved vaccine or therapy that is available for the prevention and treatment. Traditional Chinese medicines (TCMs) represent a huge reservoir of bioactive chemicals and many TCMs have been shown to have antiviral activities. 373 extracts from 128 TCMs were evaluated using a high throughput assay to screen for inhibitors of Ebola virus cell entry. Extract of Rhodiola rosea displayed specific and potent inhibition against cell entry of both Ebola virus and Marburg virus. In addition, twenty commercial compounds that were isolated from Rhodiola rosea were evaluated using the pseudotyped Ebola virus entry assay, and it was found that ellagic acid and gallic acid, which are two structurally related compounds, are the most effective ones. The activity of the extract and the two pure compounds were validated using infectious Ebola virus. The time-of-addition experiments suggest that, mechanistically, the Rhodiola rosea extract and the effective compounds act at an early step in the infection cycle following initial cell attachment, but prior to viral/cell membrane fusion. Our findings provide evidence that Rhodiola rosea has potent anti-filovirus properties that may be developed as a novel anti-Ebola treatment.


Assuntos
Antivirais/farmacologia , Ebolavirus/efeitos dos fármacos , Ácido Elágico/farmacologia , Marburgvirus/efeitos dos fármacos , Extratos Vegetais/farmacologia , Rhodiola/química , Internalização do Vírus/efeitos dos fármacos , Células A549 , Antivirais/toxicidade , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Ácido Elágico/toxicidade , Ácido Gálico/farmacologia , Ácido Gálico/toxicidade , Células HeLa , Doença pelo Vírus Ebola/tratamento farmacológico , Doença pelo Vírus Ebola/virologia , Ensaios de Triagem em Larga Escala , Humanos , Concentração Inibidora 50 , Medicina Tradicional Chinesa , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/toxicidade
20.
PLoS One ; 13(3): e0194880, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29566079

RESUMO

Identifying effective antivirals for treating Ebola virus disease (EVD) and minimizing transmission of such disease is critical. A variety of cell-based assays have been developed for evaluating compounds for activity against Ebola virus. However, very few reports discuss the variable assay conditions that can affect the results obtained from these drug screens. Here, we describe variable conditions tested during the development of our cell-based drug screen assays designed to identify compounds with anti-Ebola virus activity using established cell lines and human primary cells. The effect of multiple assay readouts and variable assay conditions, including virus input, time of infection, and the cell passage number, were compared, and the impact on the effective concentration for 50% and/ or 90% inhibition (EC50, EC90) was evaluated using the FDA-approved compound, toremifene citrate. In these studies, we show that altering cell-based assay conditions can have an impact on apparent drug potency as measured by the EC50. These results further support the importance of developing standard operating procedures for generating reliable and reproducible in vitro data sets for potential antivirals.


Assuntos
Antivirais/uso terapêutico , Técnicas de Cultura de Células , Descoberta de Drogas/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Doença pelo Vírus Ebola/tratamento farmacológico , Animais , Técnicas de Cultura de Células/métodos , Células Cultivadas , Chlorocebus aethiops , Avaliação Pré-Clínica de Medicamentos/normas , Ebolavirus/efeitos dos fármacos , Ebolavirus/fisiologia , Ensaios de Triagem em Larga Escala/métodos , Humanos , Resultado do Tratamento , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA