Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 189
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(11): 16725-16734, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38326678

RESUMO

Eisenia andrei is considered in OECD and ISO guidelines to be a suitable replacement for Eisenia fetida in ecotoxicological assays. This suggests that other alternative materials and methods could also be used in standard procedures for toxicity testing. The guidelines also favor using less time-consuming procedures and reducing costs and other limitations to ecotoxicological assessments. In recent years, spent coffee grounds (SCG) have been used to produce vermicompost and biochar and as an additive to organic fertilizers. In addition, the physicochemical characteristics of SCG indicate that the material is a suitable substrate for earthworms, with the organisms performing as well as in natural soil. In the present study, a battery of ecotoxicological tests was established with unwashed and washed SCG and a natural reference soil (LUFA 2.2). The test substrates were spiked with different concentrations of silver nitrate. Survival and reproduction of the earthworm E. andrei were assessed under different conditions, along with substrate basal respiration (SBR) as a proxy for microbial activity. Seedling emergence and the germination index of Lepidium sativum were also determined, following standard guidelines. Exposure to silver nitrate had similar effects on earthworm survival and reproduction, as the estimated effective concentrations (EC10 and EC50) in unwashed SCG and LUFA 2.2 overlapped. A hormetic effect was observed for SBR in LUFA 2.2 spiked with 12.8 mg/kg but not in unwashed SCG. Both SBR and root development were inhibited by similar concentrations of silver nitrate in washed SCG. The findings indicate that unwashed SCG could potentially be used as a substrate in E. andrei toxicity tests and support the eventual inclusion of this material in the standard guidelines.


Assuntos
Oligoquetos , Poluentes do Solo , Animais , Solo/química , Café , Nitrato de Prata/farmacologia , Poluentes do Solo/análise , Ecotoxicologia
2.
Ecotoxicology ; 32(5): 618-627, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37269410

RESUMO

The aim of this study is to investigate for the first time the uptake and ecotoxicological effects of nanoplastics (NPs) in a marine cnidarian. Ephyrae of the moon jellyfish Aurelia sp. of different ages (0 and 7 days old) were exposed to negatively charged polystyrene NPs for 24 h; then, the uptake was assessed through traditional and novel techniques, namely microscopy and three-dimensional (3D) holotomography. Immobility and behavioral responses (frequency of pulsations) of ephyrae were also investigated to clarify if NP toxicity differed along the first life stages. NP uptake was observed in ephyrae thanks to the 3D technique. Such internalization did not affect survival, but it temporarily impaired the pulsation mode only in 0 day old ephyrae. This may be ascribed to the negative charged NPs, contributing to jellyfish behavioral alteration. These findings promote 3D holotomography as a suitable tool to detect NPs in marine organisms. Moreover, this study recommends the use of cnidarians of different ages to better assess NP ecotoxicological effects in these organisms, key components of the marine food web.


Assuntos
Cifozoários , Animais , Cifozoários/fisiologia , Microplásticos/farmacologia , Poliestirenos/farmacologia , Ecotoxicologia
3.
Mar Pollut Bull ; 190: 114829, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36958116

RESUMO

Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) is currently the gold-standard technique for detecting and quantifying messenger RNA. However, without proper validation, the method may produce artefactual and non-reproducible cycle threshold values generating poor-quality data. The newer droplet digital PCR (ddPCR) method allows for the absolute quantification of targeted nucleic acids providing more sensitive and accurate measurements without requiring external standards. This study compared these two PCR-based methods to measure the expression of well-documented genes used in ecotoxicology studies. We exposed Mediterranean mussels (Mytilus galloprovincialis) to copper and analyzed gene expression in gills and digestive glands using RT-qPCR and ddPCR assays. A step-by-step methodology to optimize and compare the two technologies is described. After ten-fold serial complementary DNA dilution, both RT-qPCR and ddPCR exhibited comparable linearity and efficiency and produced statistically similar results. We conclude that ddPCR is a suitable method to assess gene expression in an ecotoxicological context. However, RT-qPCR has a shorter processing time and remains more cost-effective.


Assuntos
Ecotoxicologia , Transcrição Reversa , Animais , Reação em Cadeia da Polimerase em Tempo Real/métodos , Biomarcadores
4.
Integr Environ Assess Manag ; 19(4): 949-960, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36967619

RESUMO

Governments commit to ensuring the welfare of their citizens by drafting and enforcing regulations that ultimately ensure the sustainability of mining. This study contributes to improving the sustainability of mining throughout the mine's lifecycle until the final destination of the mining products. We propose recommendations that address the sustainability of mining from a global perspective, framed around the United Nations Sustainable Development Goals (SDGs), following waste hierarchy with Common Agricultural Policies, and policies from the Green Deal on climate, energy, transport, and taxation. Tailings are the most significant source of environmental impact in mining operations and, therefore, must comply with controlling regulations through Tailings Management Facilities (TMFs). However, there have been several mining accidents involving TMFs worldwide. The recommendations begin during planning, preconstruction, and construction with practices such as fair consultations, tax revenue fairness, and mandatory insurance. The operation and management support parallel industries to mining and supporting health and education. Emergency planning involves the surrounding communities in mock drills and environmental monitoring. In the closure and rehabilitation, remediation technologies such as phytoremediation, carbon sequestration incentives, and biomass valorization are recommended. Finally, supporting a circular economy by prioritizing ethical consumption, resource reduction, material recovery, and replacing toxic minerals and materials from the start with "benign by design" is recommended. The strategies involve stakeholders directly or indirectly related to the mining companies' contamination and demonstrate a commitment to the SDGs, offering a holistic perspective on scientific, social, and regulatory issues. Integr Environ Assess Manag 2023;19:949-960. © 2023 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Assuntos
Ecotoxicologia , Monitoramento Ambiental , Desenvolvimento Sustentável , Biodegradação Ambiental , Mineração
5.
Chemosphere ; 324: 138352, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36898436

RESUMO

Over time multiple lines of research have been integrated as important components of evidence for assessing the ecological quality status of water bodies within the framework of Environmental Risk Assessment (ERA) approaches. One of the most used integrative approaches is the triad which combines, based on the weight-of-evidence, three lines of research, the chemical (to identify what is causing the effect), the ecological (to identify the effects at the ecosystem level) and the ecotoxicological (to ascertain the causes of ecological damage), with the agreement between the different lines of risk evidence increasing the confidence in the management decisions. Although the triad approach has proven greatly strategic in ERA processes, new assessment (and monitoring) integrative and effective tools are most welcome. In this regard, the present study is an appraisal on the boost that passive sampling, by allowing to increase information reliability, can give within each of the triad lines of evidence, for more integrative ERA frameworks. In parallel to this appraisal, examples of works that used passive samplers within the triad are presented providing support for the use of these devices in a complementary form to generate holistic information for ERA and ease the process of decision-making.


Assuntos
Ecossistema , Poluentes Químicos da Água , Monitoramento Ambiental , Reprodutibilidade dos Testes , Medição de Risco , Ecotoxicologia , Poluentes Químicos da Água/análise
6.
Aquat Toxicol ; 256: 106417, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36805195

RESUMO

Cyanobacteria are ubiquitously globally present in both freshwater and marine environments. Ample reports have been documented by researchers worldwide for pros and cons of cyanobacterial toxins. The implications of cyanobacterial toxin on health have received much attention in recent decades. Microcystins (MCs) represent the unique class of toxic metabolites produced by cyanobacteria. Although the beneficial aspects of cyanobacterial are numerous, the deleterious effect of MCs overlooked. Several studies on MCs evidently reported that MCs exhibit a plethora of harmful effect on animals, plants, and cell lines. Accordingly, numerous histopathological studies have also found that MCs cause detrimental effects to cells by damaging cellular organelles, including nuclear envelope, Golgi apparatus, endoplasmic reticulum, mitochondria, plastids, flagellum, pilus membrane structures and integrity, vesicle structures, and autolysosomes and autophagosomes. Such ultrastructural cellular damages holistically influence the morphological, biochemical, physiological, and genetic status of the host. Indeed, MCs have also been found to cause the deleterious effect to different animals and plants. Such deleterious effects of MCs have greater impact on agriculture, public health which in turn influences ecotoxicology and economic consequences. The impairments correspond to oxidative stress, organ failure, carcinogenesis, aquaculture loss, with an emphasis for blooms and respective bioaccumulation prospects. The preservation of mortality among life forms is addressed in a critical cellular perspective for multitude benefits. The comprehensive cellular assessment could provide opportunity to develop strategy for therapeutic implications.


Assuntos
Cianobactérias , Poluentes Químicos da Água , Animais , Microcistinas/metabolismo , Ecotoxicologia , Poluentes Químicos da Água/toxicidade , Toxinas de Cianobactérias , Cianobactérias/metabolismo
7.
J Expo Sci Environ Epidemiol ; 33(6): 980-993, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36681733

RESUMO

BACKGROUND: The European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC) Targeted Risk Assessment (TRA) Consumer tool was developed to fill in a methodology gap for a high throughput, screening level tool to support industry compliance with the European Union's Registration, Evaluation, Authorization, and Restriction of Chemicals (REACH) regulation. OBJECTIVE: To evaluate if the TRA Consumer tool has met its design of being a screening level tool (i.e., one which does not under-predict potential exposures). METHODS: The TRA Consumer tool algorithms and defaults were reviewed and performance benchmarked vs. other consumer models and/or empirical data. Findings from existing reviews of the TRA consumer tool were also considered and addressed. RESULTS: TRA predictions based on its default inputs exceeded measured exposures when available, typically by orders of magnitude, and were generally greater than or similar to those of other consumer exposure tools. For dermal exposure from articles, there was no evidence that a diffusivity approach would provide more appropriate exposure estimates than those of the TRA. When default values are refined using more specific data, the refined values must be considered holistically to reflect the situation being modeled as some parameters may be correlated. SIGNIFICANCE: This is the first evaluation of the ECETOC TRA consumer tool in its entirety, considering algorithms, input defaults, and associated predictions for consumer products and articles. The evaluation confirmed its design as a screening level tool. IMPACT STATEMENT: The ECETOC TRA Consumer tool has been widely applied to generate exposure estimates to support chemical registrations under the EU REACH regulation. This evaluation supports the appropriateness of the TRA as a screening level exposure assessment tool. It also warrants additional measurements of consumer exposure, especially for article use scenarios, to aid the development of consumer exposure tools and chemical risk assessment.


Assuntos
Ecotoxicologia , Exposição Ocupacional , Humanos , Exposição Ocupacional/análise , Algoritmos , Medição de Risco/métodos , Indústrias
8.
Integr Environ Assess Manag ; 19(1): 24-31, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35656908

RESUMO

Effects-based methods (EBMs) are considered part of a more integrative strategy for regulating substances of concern under the European Union Water Framework Directive. In general, EBMs have been demonstrated as useful indicators of effects on biota, although links to population and community-level effects are sometimes uncertain. When EBMs are sufficiently specific and sensitive, and links between measured endpoints and apical or higher level effects are established, they can be a useful tool in assessing effects from a specific toxicant or class of toxicants. This is particularly valuable for toxicants that are difficult to measure and for assessing the effects of toxicant mixtures. This paper evaluates 12 EBMs that have been proposed for potential use in the assessment of metals. Each EBM was evaluated with respect to metal specificity and sensitivity, sensitivity to other classes of toxicants, and the strength of the relationship between EBM endpoints and effects observed at the whole organism or population levels of biological organization. The evaluation concluded that none of the EBMs evaluated meet all three criteria of being sensitive to metals, insensitive to other classes of toxicants, and a strong indicator of effects at the whole organism or population level. Given the lack of suitable EBMs for metals, we recommended that the continued development of mixture biotic ligand models (mBLMs) may be the most effective way to achieve the goal of a more holistic approach to regulating metals in aquatic ecosystems. Given the need to further develop and validate mBLMs, we suggest an interim weight-of-evidence approach that includes mBLMs, macroinvertebrate community bioassessment, and measurement of metals in key macroinvertebrate species. This approach provides a near-term solution and simultaneously generates data needed for the refinement and validation of mBLMs. Once validated, it should be possible to rely primarily on mBLMs as an alternative to EBMs for metals. Integr Environ Assess Manag 2023;19:24-31.  © 2022 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Assuntos
Ecossistema , Meio Ambiente , Ecotoxicologia , União Europeia , Monitoramento Ambiental , Medição de Risco/métodos
9.
Water Environ Res ; 94(8): e10782, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36029154

RESUMO

The intensive human activities extensively contaminated water sources making its treatment a problem of paramount importance, especially with the increasing of global population and water scarcity. The application of natural coagulants has become a promising and environmentally friendly alternative to conventional ones. This study was aimed at evaluating the efficiency of four plant extracts namely Agave americana, Carpobrotus acinaciformis, Austrocylindropuntia subulate, and Senicio anteuphorbium as natural coagulants to remove Microcystis aeruginosa cyanobacterium from water. The effects of pH (4, 5, 6, 7, 8 9, and 10) and coagulant dose (5, 10, 15, 20, 25, and 30 mg/L) on the coagulation efficiency were investigated. Results showed that plant-based extracts exhibited high coagulant abilities significantly contributing to the removal of M. aeruginosa cells up to 80% on a case-by-case basis. The ecotoxicity (Daphnia magna, Aliivibrio fischeri, Raphidocelis subcapitata, and Sorghum saccharatum) was absent or presented very slight acute toxicity up to 12.5 mg/L being S. anteuphorbium the least toxic. PRACTITIONER POINTS: Nature-based plant extracts showed removal rates up to 80%. Lower pH and A. subulate and S. anteuphorbium were the most efficient coagulants Toxicity effects were plant extracts-based and dose function. A. subulate and S. anteuphorbium were the least toxic extracts.


Assuntos
Água Potável , Poluentes Químicos da Água , Purificação da Água , Animais , Daphnia , Ecotoxicologia , Humanos , Extratos Vegetais
10.
Int. j. high dilution res ; 21(1): 13-13, May 6, 2022.
Artigo em Inglês | LILACS, HomeoIndex | ID: biblio-1396581

RESUMO

Artemia salina, an ecotoxicity bioindicator, isa microcrustacean belonging to the order Anostraca. Glyphosate is an herbicide widely used to control weeds. However, its intoxication can cause serious damage to human health and the balance of the environment, given its effects as an endocrine disruptor.Objective:verify the possible protection of the artemia exposed to glyphosate by the addition of its isotherapic into water, by means of the evaluation of the behavioral and morphological features of nauplii and of the physical properties of remedies andtreated water, to elucidate the involved mechanisms. Methods:Artemia salinacysts were kept in culture bottles containing artificial seawatercontaining glyphosate at LC 10 (lethal concentration 10%), to promote hatching within 48 hours. The isotherapic preparations were inserted in each bottle in a 10% of the total water volume. Part of the nauplii was distributed in transparent tubes, being 10 nauplii per tube and 6 tubes per group, for behavioral analysis, and part were collected for a detailed morphological analysis, under an optical microscope. About 80 to 270 nauplii were analyzed per group. The reserved water was divided into aliquots for physicochemical analysis, that is, evaluation of the water dipole behavior by Cartwright ́s method.Results:Gly 6cH presented selective effects on nauplii hatching (p=0.02) and on defected/healthy ratio (p=0.001), representing some protective action. This result was dependent of the salinity of water and presented correspondence with the effects on solvatochromic dyes, indicating that charges and ions can be critical factors involved in the mechanism of action. We concluded that the use of isotherapics could be a plausible tool to reduce the environmental impact of the indiscriminate use of glyphosate, since these results can be reproduced in further studies.


Assuntos
Artemia , Isoterapia , Ecotoxicologia , Homeopatia
11.
Int. j. high dilution res ; 21(1): 9-9, May 6, 2022.
Artigo em Inglês | LILACS, HomeoIndex | ID: biblio-1396587

RESUMO

Different environmental conditions can influence the effects of toxic agents on living beings. Recently, a series of experiments performed in Artemia salina submitted to different kinds of intoxication have shown that both, isotherapic and succussed watercan change Artemia salina ́s bio resilience at different levels. Moreover, it seems to vary according to the circalunar cycle. Objective:To verify if circalunar phases and water agitation can modify the toxicity of lead chloride on Artemia salina in vitro. Methodology:Artemia salina cysts were exposed to seawater containing 0.04% of lead chloride (equal to EC10 or 10% effective concentration, previously determined in a pilot study) in 96-well culture plates. Thirty-six experimental repetitions were performed in four series to observe the possible effects of adding stirred water, the so-called succussed water, and the moon phases. The hatched cysts were recorded after 48 hours using a digital microscope (1000x magnification) to identify the hatching percentage and the viability and mobility of the born nauplii. Results:The exposition of cysts to PbCl2 led to an increase in the hatching rate, and it was more evident during the full moon (p = 0.00014) The addition of succussed water into the seawater medium reduced this effect to the baseline levels. An increase in mobility was seen in nauplii born from exposed cysts during the full moon (p = 0.00077), but this effect was not affected by the treatment with succussed water. Discussion:Although the effects of lead chloride EC10 on the increase of nauplii hatching were expected, two environmental variables changed the sensitivity of cysts to this harmful stimulus. The circalunar cycle varied the hatching rate according to the moon phase, even in laboratory conditions, and the addition of succussed water into the medium reduced the hatching rate, even with different intensities according to the moon phase. The organization of nano and microbubbles generated after the succussion of water could be related to this protective effect and can explain, at least partially the effects of high diluted preparations on this biological context. Conclusion:Environmental factors, such as the circalunar cycle and products of water agitation, can modulate the adaptative control of hatching in Artemia salina exposed to lead chloride at EC10.


Assuntos
Animais , Artemia , Cloretos/análise , Ecotoxicologia
12.
Int. j. high dilution res ; 21(2): 6-6, May 6, 2022.
Artigo em Inglês | LILACS | ID: biblio-1396757

RESUMO

Isotherapics preparedfromtoxic substances have been described as attenuation factors for heavy metal intoxicationin aquatic animals. Herein, Artemia salinaand mercury chloride were usedas a model to identify treatment-related bioresilience. The aim was to describe the effects of Mercurius corrosivus(MC) in different potencies on Artemia salinacyst hatching and on mercury bioavailability. Artemia salinacysts were exposed to 5.0 µg/mL of mercury chloride during the hatching phase. MC6cH, 30cH, and 200cHwere prepared and poured into artificial seawater. Different controls were used (nonchallenged cysts and challenged cysts treated with water, succussed water, and Ethilicum 1cH). Four series of nine experiments were performed for4 weeks to evaluate the percentage of cyst hatchingconsidering all moon phases. Soluble total mercury (THg) levels and precipitated mercury content were also evaluated. Solvatochromic dyes were used to check for eventual physicochemical markers of MCbiological activity. Two-way analysis of variance (ANOVA) with mixed modelswas used for evaluating the effect of different treatments andthe simultaneous influence of the moon phases on the cystshatching rate, at both observation times (24 and 48 hours).When necessary, outliers were removed, using the Tukeycriterion.Thelevel of significance αwas set at 5%. Significant delay (p<0.0001) in cyst hatching was observed after treatment with MC30cH, compared with the controls. An increase inTHg concentration in seawater (p<0.0018) and of chlorine/oxygen ratio (p<0.0001) in suspended micro-aggregateswas also seen, with possiblerelation with mercury bioavailability. Specific interaction of MC30cH with the solvatochromic dye ET33 (p<0.0017) was found. The other observed potencies of Mercurius corrosivus6 and 200 cH were not significant in relation to the observed groups.The results werepostulated as being protective effects of MC30cH on Artemia salina, by improving its bioresilience.


Assuntos
Artemia , Ecotoxicologia , Homeopatia , Mercúrio
13.
Methods Mol Biol ; 2425: 589-636, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35188648

RESUMO

This chapter aims to introduce the reader to the basic principles of environmental risk assessment of chemicals and highlights the usefulness of tiered approaches within weight of evidence approaches in relation to problem formulation i.e., data availability, time and resource availability. In silico models are then introduced and include quantitative structure-activity relationship (QSAR) models, which support filling data gaps when no chemical property or ecotoxicological data are available. In addition, biologically-based models can be applied in more data rich situations and these include generic or species-specific models such as toxicokinetic-toxicodynamic models, dynamic energy budget models, physiologically based models, and models for ecosystem hazard assessment i.e. species sensitivity distributions and ultimately for landscape assessment i.e. landscape-based modeling approaches. Throughout this chapter, particular attention is given to provide practical examples supporting the application of such in silico models in real-world settings. Future perspectives are discussed to address environmental risk assessment in a more holistic manner particularly for relevant complex questions, such as the risk assessment of multiple stressors and the development of harmonized approaches to ultimately quantify the relative contribution and impact of single chemicals, multiple chemicals and multiple stressors on living organisms.


Assuntos
Ecossistema , Ecotoxicologia , Simulação por Computador , Relação Quantitativa Estrutura-Atividade , Medição de Risco
14.
Integr Environ Assess Manag ; 18(6): 1454-1487, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34989108

RESUMO

The evaluation of a chemical substance's persistence is key to understanding its environmental fate, exposure concentration, and, ultimately, environmental risk. Traditional biodegradation test methods were developed many years ago for soluble, nonvolatile, single-constituent test substances, which do not represent the wide range of manufactured chemical substances. In addition, the Organisation for Economic Co-operation and Development (OECD) screening and simulation test methods do not fully reflect the environmental conditions into which substances are released and, therefore, estimates of chemical degradation half-lives can be very uncertain and may misrepresent real environmental processes. In this paper, we address the challenges and limitations facing current test methods and the scientific advances that are helping to both understand and provide solutions to them. Some of these advancements include the following: (1) robust methods that provide a deeper understanding of microbial composition, diversity, and abundance to ensure consistency and/or interpret variability between tests; (2) benchmarking tools and reference substances that aid in persistence evaluations through comparison against substances with well-quantified degradation profiles; (3) analytical methods that allow quantification for parent and metabolites at environmentally relevant concentrations, and inform on test substance bioavailability, biochemical pathways, rates of primary versus overall degradation, and rates of metabolite formation and decay; (4) modeling tools that predict the likelihood of microbial biotransformation, as well as biochemical pathways; and (5) modeling approaches that allow for derivation of more generally applicable biotransformation rate constants, by accounting for physical and/or chemical processes and test system design when evaluating test data. We also identify that, while such advancements could improve the certainty and accuracy of persistence assessments, the mechanisms and processes by which they are translated into regulatory practice and development of new OECD test guidelines need improving and accelerating. Where uncertainty remains, holistic weight of evidence approaches may be required to accurately assess the persistence of chemicals. Integr Environ Assess Manag 2022;18:1454-1487. © 2022 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Assuntos
Ecotoxicologia , Organização para a Cooperação e Desenvolvimento Econômico , Medição de Risco/métodos , Biodegradação Ambiental
15.
Integr Environ Assess Manag ; 18(2): 407-427, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34224211

RESUMO

Historically, environmental research and monitoring in the Alberta oil sands region (OSR) located in northeastern Alberta, Canada, have largely neglected, meaningful Indigenous participation. Through years of experience on the land, Indigenous knowledge (IK) holders recognize change on the landscape, drawing on inextricable links between environmental health and practicing traditional rights. The cumulative impacts of crude oil production are of great concern to Indigenous communities, and monitoring initiatives in the OSR provide unique opportunities to develop Indigenous community-based monitoring (ICBM). A review of ICBM literature on the OSR from 2009 to 2020 was completed. Based on this review, we identify best practices in ICBM and propose governance structures and a framework to support meaningful integration of ICBM into regulatory environmental monitoring. Because it involves multimedia monitoring and produces data and insights that integrate many aspects of the environment, ICBM is important for natural science research. ICBM can enhance the relevance of environmental monitoring by examining relationships between physical and chemical stressors and culturally relevant indicators, so improving predictions of long-term changes in the environment. Unfortunately, many Indigenous communities distrust researchers owing to previous experiences of exploitive use of IK. In the present paper, we recommend important practices for the integration of IK into regional environmental monitoring programs. ICBM is important to communities because it includes conditions to which communities can exercise traditional rights, and highlight how industrial activities affect this ability. Equally important, ICBM can generate a resurgence of Indigenous languages and subsequently traditional practices; it can also revive the connection with traditional lands and improve food security. Integr Environ Assess Manag 2022;18:407-427. © 2021 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Assuntos
Monitoramento Ambiental , Campos de Petróleo e Gás , Alberta , Ecotoxicologia , Óleo de Brassica napus
16.
Integr Environ Assess Manag ; 18(3): 664-673, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34396697

RESUMO

Deep-sea mineral extraction is a fledgling industry whose guiding principles, legislation, protocols, and regulations are still evolving. Responsible management of the industry is difficult when it is not clearly understood what biological and environmental diversity or ecosystem services may be at risk. But the industry's infancy provides an opportunity to address this challenge by stakeholder-led development and implementation of a multidisciplinary risk assessment framework. This article aims to present the findings of a workshop held in New Zealand that hosted stakeholders from a broad range of interests and regions in the South Pacific associated with the deep-sea mineral activity. The outputs provide stakeholder-informed ecological risk assessment approaches for deep-sea mining activities, identifying tools and techniques to improve the relevance of risk assessment of deep seabed mining projects to communities in the South Pacific. Discussions highlighted the importance of trust or respect among stakeholders, valuing the "life force" of the ocean, the importance of scientific data, and the complications associated with defining acceptable change. This research highlighted the need for a holistic transdisciplinary approach that connects science, management, industry, and community, an approach most likely to provide a "social license" to operate. There is also a need to revise traditional risk assessment methods to make them more relevant to stakeholders. The development of ecotoxicological tools and approaches is an example of how existing practices could be improved to better support deep-sea mineral management. A case study is provided that highlights the current challenges within the legislative framework of New Zealand. Integr Environ Assess Manag 2022;18:664-673. © 2021 SETAC.


Assuntos
Ecossistema , Mineração , Ecotoxicologia , Minerais , Medição de Risco
17.
Integr Environ Assess Manag ; 18(4): 868-887, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34730270

RESUMO

Assessing the persistence of chemicals in the environment is a key element in existing regulatory frameworks to protect human health and ecosystems. Persistence in the environment depends on many fate processes, including abiotic and biotic transformations and physical partitioning, which depend on substances' physicochemical properties and environmental conditions. A main challenge in persistence assessment is that existing frameworks rely on simplistic and reductionist evaluation schemes that may lead substances to be falsely assessed as persistent or the other way around-to be falsely assessed as nonpersistent. Those evaluation schemes typically assess persistence against degradation half-lives determined in single-compartment simulation tests or against degradation levels measured in stringent screening tests. Most of the available test methods, however, do not apply to all types of substances, especially substances that are poorly soluble, complex in composition, highly sorptive, or volatile. In addition, the currently applied half-life criteria are derived mainly from a few legacy persistent organic pollutants, which do not represent the large diversity of substances entering the environment. Persistence assessment would undoubtedly benefit from the development of more flexible and holistic evaluation schemes including new concepts and methods. A weight-of-evidence (WoE) approach incorporating multiple influencing factors is needed to account for chemical fate and transformation in the whole environment so as to assess overall persistence. The present paper's aim is to begin to develop an integrated assessment framework that combines multimedia approaches to organize and interpret data using a clear WoE approach to allow for a more consistent, transparent, and thorough assessment of persistence. Integr Environ Assess Manag 2022;18:868-887. © 2021 ExxonMobil Biomedical Sciences, Inc. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Assuntos
Ecotoxicologia , Monitoramento Ambiental , Ecossistema , Monitoramento Ambiental/métodos , Poluição Ambiental/análise , Humanos , Medição de Risco/métodos
18.
Integr Environ Assess Manag ; 18(2): 308-313, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34241949

RESUMO

Bees foraging in agricultural habitats can be exposed to plant protection products. To limit the risk of adverse events, a robust risk assessment is needed, which requires reliable estimates for the expected exposure. The exposure pathways to developing solitary bees in particular are not well described and, in the currently proposed form, rely on limited information. To build a scaling model predicting the amount of protein developing solitary bees need based on adult body weight, we used published data on the volume of pollen solitary bees provide for their offspring. This model was tested against and ultimately updated with additional literature data on bee weight and protein content of emerged bees. We rescaled this model, based on the known pollen protein content of bee-visited flowers, to predict the expected amount of pollen a generalist solitary bee would likely provide based on its adult body weight, and tested these predictions in the field. We found overall agreement between the models' predictions and the measured values in the field, but additional data are needed to confirm these initial results. Our study suggests that scaling models in the bee risk assessment could complement existing risk assessment approaches and facilitate the further development of accurate risk characterization for solitary bees; ultimately the models will help to protect them during their foraging activity in agricultural settings. Integr Environ Assess Manag 2022;18:308-313. © 2021 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Assuntos
Magnoliopsida , Pólen , Animais , Abelhas , Ecotoxicologia , Larva , Pólen/química , Polinização , Medição de Risco
19.
Sci Rep ; 11(1): 17841, 2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34497319

RESUMO

Scientific investigations on levels of Organochlorine Pesticide (OCP) residues in plants largely consider the edible parts (crops, vegetables, and fruit plants). Though the non-edible parts of plants are not eaten by human beings directly, these parts are consumed by livestock and other animals, thereby facilitating the flow of chemical residues through the food chain. The objective of the present investigation was to evaluate the concentration of OCP residues in non-edible plant parts to provide insights on their potential ecotoxicological impacts. Eighteen OCP residues were extracted in nine different plant species (banana Musa acuminate, brinjal Solanum melongena, Casuarina equisetifolia, Eucalyptus globulus, lotus Nelumbo nucifera, paddy Oryza sativa, sugarcane Saccharum officinarum, tapioca Manihot esculenta, tomato Lycopersicon esculentum) following QuEChERS method. The concentrations of OCP residues in plant extracts were determined using Gas Chromatography coupled with Mass Spectrometry (GC-MS). The OCP residues, namely: γ-HCH (lindane), heptachlor epoxide isomer, dieldrin, endrin, endrin aldehyde and endrin ketone were found predominantly in seven plant species. Residues of γ-HCH (lindane) were reported in different parts of plant species such as stem (581.14 ng/g in paddy and 585.82 ng/g in tapioca) and leaf (583.3 ng/g in tomato). Seven samples contained residues of heptachlor epoxide isomer (512.53 to 1173.8 ng/g). Dieldrin was found in paddy stem (489.97 ng/g), tapioca stem (490.21 ng/g) and tapioca leaf (490.32 ng/g). The detected OCPs in the present study were 10-50 times higher than the Maximum Residue Limits (MRL, 0.01-0.1 mg/Kg) as prescribed in the Codex Alimentarius of the FAO/WHO. Their elevated concentrations in the plant parts therefore pose risk of contamination to the consumers in the food chain, including human beings those are dependent on the animals as source of protein. The findings of this study are the first report on residue levels of OCPs in non-edible plant parts in the agricultural landscape of Puducherry region, India. Since, this study assumes significance for the strategic location of Oussudu Lake, an interstate lake spread over Puducherry and Tamil Nadu states, regular monitoring of OCP residues in different environmental segments in strategic locations in both the states is suggested, which will help the authorities in devising a comprehensive environmental management plan aiming at the ecosystem at large.


Assuntos
Agricultura , Contaminação de Alimentos/análise , Hidrocarbonetos Clorados/análise , Resíduos de Praguicidas/análise , Plantas/química , Ecossistema , Ecotoxicologia , Monitoramento Ambiental/métodos
20.
J Nanobiotechnology ; 19(1): 163, 2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34059056

RESUMO

BACKGROUND: Ascorbic acid (AA) is a micronutrient essential for the mechanisms of reproduction, growth, and defense in fish. However, the biosynthesis of this micronutrient does not occur in fish, so it must be supplied with food. A difficulty is that plain AA is unstable, due to the effects of light, high temperature, and oxygen, among others. The use of nanoencapsulation may provide protection and preserve the physicochemical characteristics of AA for extended periods of time, decreasing losses due to environmental factors. METHOD: This study evaluated the protective effect of nanoencapsulation in polymeric nanoparticles (chitosan and polycaprolactone) against AA degradation. Evaluation was made of the physicochemical stability of the nanoformulations over time, as well as the toxicological effects in zebrafish (Danio rerio), considering behavior, development, and enzymatic activity. For the statistical tests, ANOVA (two-way, significance of p < 0.05) was used. RESULTS: Both nanoparticle formulations showed high encapsulation efficiency and good physicochemical stability during 90 days. Chitosan (CS) and polycaprolactone (PCL) nanoparticles loaded with AA had mean diameters of 314 and 303 nm and polydispersity indexes of 0.36 and 0.28, respectively. Both nanosystems provided protection against degradation of AA exposed to an oxidizing agent, compared to plain AA. Total degradation of AA was observed after 7, 20, and 480 min for plain AA, the CS nanoparticle formulation, and the PCL nanoparticle formulation, respectively. For zebrafish larvae, the LC50 values were 330.7, 57.4, and 179.6 mg/L for plain AA, the CS nanoparticle formulation, and the PCL nanoparticle formulation, respectively. In toxicity assays using AA at a concentration of 50 mg/L, both types of nanoparticles loaded with AA showed lower toxicity towards the development of the zebrafish, compared to plain AA at the same concentration. Although decreased activity of the enzyme acetylcholinesterase (AChE) did not affect the swimming behavior of zebrafish larvae in the groups evaluated, it may have been associated with the observed morphometric changes, such as curvature of the tail. CONCLUSIONS: This study showed that the use of nanosystems is promising for fish nutritional supplementation in aquaculture. In particular, PCL nanoparticles loaded with AA seemed to be most promising, due to higher protection against AA degradation, as well as lower toxicity to zebrafish, compared to the chitosan nanoparticles. The use of nanotechnology opens new perspectives for aquaculture, enabling the reduction of feed nutrient losses, leading to faster fish growth and improved sustainability of this activity.


Assuntos
Ácido Ascórbico/toxicidade , Nanopartículas/toxicidade , Polímeros/toxicidade , Animais , Aquicultura , Quitosana , Portadores de Fármacos , Ecotoxicologia , Cinética , Micronutrientes , Tamanho da Partícula , Poliésteres/toxicidade , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA