Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Genes (Basel) ; 12(12)2021 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-34946920

RESUMO

Despite the significant progress that has been made in the genome sequencing of Prunus, this area of research has been lacking a systematic description of the mitochondrial genome of this genus for a long time. In this study, we assembled the mitochondrial genome of the Chinese plum (Prunus salicina) using Illumina and Oxford Nanopore sequencing data. The mitochondrial genome size of P. salicina was found to be 508,035 base pair (bp), which is the largest reported in the Rosaceae family to date, and P. salicina was shown to be 63,453 bp longer than sweet cherry (P. avium). The P. salicina mitochondrial genome contained 37 protein-coding genes (PCGs), 3 ribosomal RNA (rRNA) genes, and 16 transfer RNA (tRNA) genes. Two plastid-derived tRNA were identified. We also found two short repeats that captured the nad3 and nad6 genes and resulted in two copies. In addition, nine pairs of repeat sequences were identified as being involved in the mediation of genome recombination. This is crucial for the formation of subgenomic configurations. To characterize RNA editing sites, transcriptome data were used, and we identified 480 RNA editing sites in protein-coding sequences. Among them, the initiation codon of the nad1 gene confirmed that an RNA editing event occurred, and the genomic encoded ACG was edited as AUG in the transcript. Combined with previous reports on the chloroplast genome, our data complemented our understanding of the last part of the organelle genome of plum, which will facilitate our understanding of the evolution of organelle genomes.


Assuntos
Genoma Mitocondrial/genética , Prunus domestica/genética , Edição de RNA/genética , Recombinação Genética/genética , Evolução Molecular , Frutas/genética , Tamanho do Genoma/genética , Genoma de Cloroplastos/genética , Genômica/métodos , Filogenia , RNA de Transferência/genética , Sequências Repetitivas de Ácido Nucleico/genética
2.
Mitochondrion ; 51: 88-96, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31923469

RESUMO

Beauveria bassiana, Cordyceps militaris and Ophiocordyceps sinensis (Ascomycotina) are traditional Chinese medicines. Here, mitogenomes of these three Ascomycotina fungi were sequenced and de-novo assembled using single-molecule real-time sequencing. The results showed that their complete mitogenomes were 31,258, 31,854 and 157,584 bp, respectively, with sequencing depth approximately 278,760×, 326,283× and 69,385×. Types of repeat sequences were mainly (AA)n, (AAT)n, (TA)n and (TATT)n. DNA methylation motifs were revealed in DNA modifications of these three fungi. We discovered new models of RNA editing through analysis of transcriptomes from B. bassiana and C. militaris. These data lay a solid foundation for further genetic and biological studies about these three fungi, especially for elucidating the mitogenome evolution and exploring the regulatory mechanism of adapting environment.


Assuntos
Aclimatação/genética , Beauveria/genética , Cordyceps/genética , Metilação de DNA/genética , Genoma Mitocondrial/genética , Edição de RNA/genética , Aclimatação/fisiologia , Perfilação da Expressão Gênica , Variação Genética/genética , Medicina Tradicional Chinesa , Transcriptoma/genética
3.
J Biol Chem ; 295(11): 3497-3505, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-31996373

RESUMO

Pentatricopeptide repeat (PPR) proteins with C-terminal DYW domains are present in organisms that undergo C-to-U editing of organelle RNA transcripts. PPR domains act as specificity factors through electrostatic interactions between a pair of polar residues and the nitrogenous bases of an RNA target. DYW-deaminase domains act as the editing enzyme. Two moss (Physcomitrella patens) PPR proteins containing DYW-deaminase domains, PPR65 and PPR56, can convert Cs to Us in cognate, exogenous RNA targets co-expressed in Escherichia coli We show here that purified, recombinant PPR65 exhibits robust editase activity on synthetic RNAs containing cognate, mitochondrial PpccmFC sequences in vitro, indicating that a PPR protein with a DYW domain is solely sufficient for catalyzing C-to-U RNA editing in vitro Monomeric fractions possessed the highest conversion efficiency, and oligomeric fractions had reduced activity. Inductively coupled plasma (ICP)-MS analysis indicated a stoichiometry of two zinc ions per highly active PPR65 monomer. Editing activity was sensitive to addition of zinc acetate or the zinc chelators 1,10-o-phenanthroline and EDTA. Addition of ATP or nonhydrolyzable nucleotide analogs stimulated PPR65-catalyzed RNA-editing activity on PpccmFC substrates, indicating potential allosteric regulation of PPR65 by ATP. Unlike for bacterial cytidine deaminase, addition of two putative transition-state analogs, zebularine and tetrahydrouridine, failed to disrupt RNA-editing activity. RNA oligonucleotides with a single incorporated zebularine also did not disrupt editing in vitro, suggesting that PPR65 cannot bind modified bases due to differences in the structure of the active site compared with other zinc-dependent nucleotide deaminases.


Assuntos
Biocatálise , Bryopsida/metabolismo , Citosina/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Edição de RNA/genética , Sequências Repetitivas de Aminoácidos , Uracila/metabolismo , Trifosfato de Adenosina/farmacologia , Citidina/análogos & derivados , Citidina/farmacologia , Íons , Magnésio/farmacologia , Mutação/genética , Extratos Vegetais/química , Proteínas de Plantas/isolamento & purificação , Agregados Proteicos , Domínios Proteicos , Multimerização Proteica , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Temperatura , Tetra-Hidrouridina , Zea mays/química , Zinco/metabolismo
4.
New Phytol ; 220(3): 878-892, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30019754

RESUMO

The pentatricopeptide repeat (PPR) protein family is a large family characterized by tandem arrays of a degenerate 35-amino-acid motif whose members function as important regulators of organelle gene expression at the post-transcriptional level. Despite the roles of PPRs in RNA editing in organelles, their editing activities and the underlying mechanism remain obscure. Here, we show that a novel DYW motif-containing PPR protein, PPS1, is associated with five conserved RNA-editing sites of nad3 located in close proximity to each other in mitochondria, all of which involve conversion from proline to leucine in rice. Both pps1 RNAi and heterozygous plants are characterized by delayed development and partial pollen sterility at vegetative stages and reproductive stage. RNA electrophoresis mobility shift assays (REMSAs) and reciprocal competition assays using different versions of nad3 probes confirm that PPS1 can bind to cis-elements near the five affected sites, which is distinct from the existing mode of PPR-RNA binding because of the continuity of the editing sites. Loss of editing at nad3 in pps1 reduces the activity of several complexes in the mitochondrial electron transport chain and affects mitochondrial morphology. Taken together, our results indicate that PPS1 is required for specific editing sites in nad3 in rice.


Assuntos
Mitocôndrias/metabolismo , Oryza/genética , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Edição de RNA/genética , Motivos de Aminoácidos , Sequência de Bases , Núcleo Celular/metabolismo , Sequência Conservada , Transporte de Elétrons , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Mitocôndrias/ultraestrutura , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Oryza/ultraestrutura , Fenótipo , Pólen/metabolismo , Pólen/ultraestrutura , Ligação Proteica , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Tempo
5.
Sci Rep ; 7: 42250, 2017 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-28186130

RESUMO

Salvia miltiorrhiza is one of the most widely-used medicinal plants. Here, we systematically analyzed the RNA editing events in its mitochondria. We developed a pipeline using REDItools to predict RNA editing events from stand-specific RNA-Seq data. The predictions were validated using reverse transcription, RT-PCR amplification and Sanger sequencing experiments. Putative sequences motifs were characterized. Comparative analyses were carried out between S. miltiorrhiza, Arabidopsis thaliana and Oryza sativa. We discovered 1123 editing sites, including 225 "C to U" sites in the protein-coding regions. Fourteen of sixteen (87.5%) sites were validated. Three putative DNA motifs were identified around the predicted sites. The nucleotides on both strands at 115 of the 225 sites had undergone RNA editing, which we called symmetrical RNA editing (SRE). Four of six these SRE sites (66.7%) were experimentally confirmed. Re-examination of strand-specific RNA-Seq data from A. thaliana and O. sativa identified 327 and 369 SRE sites respectively. 78, 20 and 13 SRE sites were found to be conserved among A. thaliana, O. sativa and S. miltiorrhiza respectively. This study provides a comprehensive picture of RNA editing events in the mitochondrial genome of S. miltiorrhiza. We identified SREs for the first time, which may represent a universal phenomenon.


Assuntos
Mitocôndrias/metabolismo , Edição de RNA/genética , RNA de Plantas/genética , Salvia miltiorrhiza/genética , Análise de Sequência de RNA/métodos , Sequência de Bases , Núcleo Celular/genética , Sequência Conservada/genética , DNA Mitocondrial/genética , Genoma Mitocondrial , Genoma de Planta , Motivos de Nucleotídeos , Reprodutibilidade dos Testes
6.
Metab Eng ; 31: 13-21, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26141150

RESUMO

Engineering cellular metabolism for improved production of valuable chemicals requires extensive modulation of bacterial genome to explore complex genetic spaces. Here, we report the development of a CRISPR-Cas9 based method for iterative genome editing and metabolic engineering of Escherichia coli. This system enables us to introduce various types of genomic modifications with near 100% editing efficiency and to introduce three mutations simultaneously. We also found that cells with intact mismatch repair system had reduced chance to escape CRISPR mediated cleavage and yielded increased editing efficiency. To demonstrate its potential, we used our method to integrate the ß-carotene synthetic pathway into the genome and to optimize the methylerythritol-phosphate (MEP) pathway and central metabolic pathways for ß-carotene overproduction. We collectively tested 33 genomic modifications and constructed more than 100 genetic variants for combinatorially exploring the metabolic landscape. Our best producer contained15 targeted mutations and produced 2.0 g/L ß-carotene in fed-batch fermentation.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Escherichia coli/genética , Engenharia Metabólica , Edição de RNA/genética , Sistemas CRISPR-Cas , Reparo de Erro de Pareamento de DNA , Escherichia coli/metabolismo , Genoma Bacteriano , beta Caroteno/biossíntese
8.
Rev Neurol (Paris) ; 170(12): 799-807, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25459122

RESUMO

This review focuses on the most recent data on biotherapeutic approaches, using DNA, RNA, recombinant proteins, or cells as therapeutic tools or targets for the treatment of neuromuscular diseases. Many of these novel technologies have now reached the clinical stage and have or are about to move to the market. Others, like genome editing are still in an early stage but hold great promise.


Assuntos
Terapia Biológica/métodos , Doenças Neuromusculares/terapia , Animais , Anticorpos Monoclonais/uso terapêutico , Doenças Autoimunes/terapia , Terapia Genética , Humanos , Neurônios Motores/metabolismo , Músculo Esquelético/metabolismo , RNA/uso terapêutico , Edição de RNA/genética
9.
PLoS One ; 9(6): e99016, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24911363

RESUMO

The orchid family Orchidaceae is one of the largest angiosperm families, including many species of important economic value. While chloroplast genomes are very informative for systematics and species identification, there is very limited information available on chloroplast genomes in the Orchidaceae. Here, we report the complete chloroplast genomes of the medicinal plant Dendrobium officinale and the ornamental orchid Cypripedium macranthos, demonstrating their gene content and order and potential RNA editing sites. The chloroplast genomes of the above two species and five known photosynthetic orchids showed similarities in structure as well as gene order and content, but differences in the organization of the inverted repeat/small single-copy junction and ndh genes. The organization of the inverted repeat/small single-copy junctions in the chloroplast genomes of these orchids was classified into four types; we propose that inverted repeats flanking the small single-copy region underwent expansion or contraction among Orchidaceae. The AT-rich regions of the ycf1 gene in orchids could be linked to the recombination of inverted repeat/small single-copy junctions. Relative species in orchids displayed similar patterns of variation in ndh gene contents. Furthermore, fifteen highly divergent protein-coding genes were identified, which are useful for phylogenetic analyses in orchids. To test the efficiency of these genes serving as markers in phylogenetic analyses, coding regions of four genes (accD, ccsA, matK, and ycf1) were used as a case study to construct phylogenetic trees in the subfamily Epidendroideae. High support was obtained for placement of previously unlocated subtribes Collabiinae and Dendrobiinae in the subfamily Epidendroideae. Our findings expand understanding of the diversity of orchid chloroplast genomes and provide a reference for study of the molecular systematics of this family.


Assuntos
Evolução Molecular , Genoma de Cloroplastos/genética , Genoma de Planta/genética , Orchidaceae/genética , Orchidaceae/metabolismo , Fotossíntese/genética , Filogenia , Marcadores Genéticos/genética , Variação Genética/genética , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Edição de RNA/genética , Especificidade da Espécie
10.
BMC Plant Biol ; 14: 118, 2014 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-24885405

RESUMO

BACKGROUND: A major step in the higher plant life cycle is the decision to leave the mitotic cell cycle and begin the progression through the meiotic cell cycle that leads to the formation of gametes. The molecular mechanisms that regulate this transition and early meiosis remain largely unknown. To gain insight into gene expression features during the initiation of meiotic recombination, we profiled early prophase I meiocytes from maize (Zea mays) using capillary collection to isolate meiocytes, followed by RNA-seq. RESULTS: We detected ~2,000 genes as preferentially expressed during early meiotic prophase, most of them uncharacterized. Functional analysis uncovered the importance of several cellular processes in early meiosis. Processes significantly enriched in isolated meiocytes included proteolysis, protein targeting, chromatin modification and the regulation of redox homeostasis. The most significantly up-regulated processes in meiocytes were processes involved in carbohydrate metabolism. Consistent with this, many mitochondrial genes were up-regulated in meiocytes, including nuclear- and mitochondrial-encoded genes. The data were validated with real-time PCR and in situ hybridization and also used to generate a candidate maize homologue list of known meiotic genes from Arabidopsis. CONCLUSIONS: Taken together, we present a high-resolution analysis of the transcriptome landscape in early meiosis of an important crop plant, providing support for choosing genes for detailed characterization of recombination initiation and regulation of early meiosis. Our data also reveal an important connection between meiotic processes and altered/increased energy production.


Assuntos
Meiose/genética , Transcriptoma/genética , Zea mays/citologia , Zea mays/genética , Simulação por Computador , Elementos de DNA Transponíveis/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Genes Mitocondriais , Estudos de Associação Genética , Hibridização In Situ , Endogamia , Mitocôndrias/genética , Pólen/citologia , Pólen/metabolismo , Edição de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes , Plântula/genética , Análise de Sequência de RNA , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA