Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Arterioscler Thromb Vasc Biol ; 31(10): 2172-80, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21817093

RESUMO

OBJECTIVE: Smooth muscle calponin (CNN1) contains multiple conserved intronic CArG elements that bind serum response factor and display enhancer activity in vitro. The objectives here were to evaluate these CArG elements for activity in transgenic mice and determine the effect of human CNN1 on injury-induced vascular remodeling. METHODS AND RESULTS: Mice carrying a lacZ reporter under control of intronic CArG elements in the human CNN1 gene failed to show smooth muscle cell (SMC)-restricted activity. However, deletion of the orthologous sequences in mice abolished endogenous Cnn1 promoter activity, suggesting their necessity for in vivo Cnn1 expression. Mice carrying a 38-kb bacterial artificial chromosome (BAC) harboring the human CNN1 gene displayed SMC- restricted expression of the corresponding CNN1 protein, as measured by immunohistochemistry and Western blotting. Extensive BAC recombineering studies revealed the absolute necessity of a single intronic CArG element for correct SMC-restricted expression of human CNN1. Overexpressing human CNN1 suppressed neointimal formation following arterial injury. Mice with an identical BAC carrying mutations in CArG elements that inhibit human CNN1 expression showed outward remodeling and neointimal formation. CONCLUSIONS: A single intronic CArG element is necessary but insufficient for proper CNN1 expression in vivo. CNN1 overexpression antagonizes arterial injury-induced neointimal formation.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Lesões das Artérias Carótidas/metabolismo , Proliferação de Células , Proteínas dos Microfilamentos/genética , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Regiões Promotoras Genéticas , Túnica Íntima/metabolismo , Animais , Sítios de Ligação , Western Blotting , Proteínas de Ligação ao Cálcio/deficiência , Proteínas de Ligação ao Cálcio/metabolismo , Artérias Carótidas/metabolismo , Artérias Carótidas/patologia , Lesões das Artérias Carótidas/genética , Lesões das Artérias Carótidas/patologia , Linhagem Celular , Cromossomos Artificiais Bacterianos , Modelos Animais de Doenças , Regulação da Expressão Gênica , Genes Reporter , Humanos , Imuno-Histoquímica , Íntrons , Óperon Lac , Luciferases/genética , Luciferases/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Proteínas dos Microfilamentos/deficiência , Proteínas dos Microfilamentos/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Ratos , Elemento de Resposta Sérica , Fator de Resposta Sérica/metabolismo , Transfecção , Túnica Íntima/patologia , Calponinas
2.
Endocr J ; 56(3): 335-44, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19352056

RESUMO

The hypothalamic-pituitary-adrenal (HPA) axis is activated under various stressors. Corticotropin-releasing factor (CRF) plays a central role in controlling stress response, and regulating the HPA axis. CRF, produced in the hypothalamic paraventricular nucleus (PVN), stimulates adrenocorticotropic hormone (ACTH) production via CRF receptor type 1 (CRF(1) receptor) from the corticotrophs of the anterior pituitary (AP). Cyclic AMP (cAMP)-protein kinase A (PKA) pathway takes a main role in stimulating CRF gene transcription. Forskolin and pituitary adenylate cyclase-activating polypeptide (PACAP) stimulate adenylate cyclase, intracellular cAMP production, and then CRF and arginine vasopressin (AVP) gene expression in hypothalamic 4B cells. Interleukin (IL)-6, produced in the PVN, both directly and indirectly stimulates CRF and AVP gene expression. Estradiol may enhance the activation of CRF gene expression in response to stress. The HPA axis is regulated by a negative feedback mechanism, because glucocorticoids inhibit both CRF production in the hypothalamic PVN and ACTH production in the pituitary. Hypothalamic parvocellular neurons in the PVN are known to express glucocorticoid receptors, and glucocorticoids are able to regulate CRF gene transcription and expression levels directly in the PVN. Glucocorticoids-dependent repression of cAMP-stimulated CRF promoter activity is mainly localized to promoter sequences between -278 and -233 bp. Both negative glucocorticoid regulatory element (nGRE) and serum response element (SRE) are involved in the repression of the CRF gene in the hypothalamic cells.


Assuntos
Hormônio Liberador da Corticotropina/biossíntese , Regulação da Expressão Gênica , Hipotálamo/metabolismo , Animais , Arginina Vasopressina/fisiologia , Colforsina/farmacologia , Hormônio Liberador da Corticotropina/genética , AMP Cíclico/fisiologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Dexametasona/farmacologia , Receptor alfa de Estrogênio/fisiologia , Receptor beta de Estrogênio/fisiologia , Estrogênios/fisiologia , Retroalimentação , Humanos , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/fisiologia , Interleucina-6/fisiologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/fisiologia , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Sistema Hipófise-Suprarrenal/fisiologia , Regiões Promotoras Genéticas/efeitos dos fármacos , Elemento de Resposta Sérica/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/fisiologia
3.
Biochem Biophys Res Commun ; 346(4): 1191-9, 2006 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-16806083

RESUMO

Mitogen-activated protein kinase (MAPK) signal transduction pathways are among the most widespread mechanisms of eukaryotic cell regulation. The zinc-finger-containing transcription factors have been previously revealed to be involved in the regulation of the MAPK signaling pathways. Here, we have identified a novel human zinc-finger transcriptional repressor, ZNF325, that contains a RBaK-like RB-binding domain and 15 tandem repeated C2H2 type zinc fingers. Northern blot analysis indicates that a 2.7 kb transcript specific for ZNF325 is widely expressed in all tissues examined at adult stage and in most of the embryonic tissues. Overexpression of ZNF325 in COS-7 cells inhibits the transcriptional activities of AP-1 and SRE. The deletion and RNAi analysis indicate that the C2H2 zinc finger motifs represent the basal transcriptional repressive activity. These results indicate that the ZNF325 protein may act as a novel transcription repressor in MAPK signaling pathway to mediate cellular functions.


Assuntos
Proteínas de Ligação a DNA/genética , Fator de Transcrição AP-1/antagonistas & inibidores , Fatores de Transcrição/genética , Transcrição Gênica/fisiologia , Sequência de Aminoácidos , Sequência de Bases , Sítios de Ligação , DNA Complementar/análise , Humanos , Fatores de Transcrição Kruppel-Like , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Dados de Sequência Molecular , Proteína do Retinoblastoma/metabolismo , Elemento de Resposta Sérica/fisiologia , Transdução de Sinais/fisiologia , Dedos de Zinco
4.
Nucleic Acids Res ; 33(16): 5271-90, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16170155

RESUMO

CFTR expression is tightly controlled by a complex network of ubiquitous and tissue-specific cis-elements and trans-factors. To better understand mechanisms that regulate transcription of CFTR, we examined transcription factors that specifically bind a CFTR CArG-like motif we have previously shown to modulate CFTR expression. Gel mobility shift assays and chromatin immunoprecipitation analyses demonstrated the CFTR CArG-like motif binds serum response factor both in vitro and in vivo. Transient co-transfections with various SRF expression vector, including dominant-negative forms and small interfering RNA, demonstrated that SRF significantly increases CFTR transcriptional activity in bronchial epithelial cells. Mutagenesis studies suggested that in addition to SRF other co-factors, such as Yin Yang 1 (YY1) previously shown to bind the CFTR promoter, are potentially involved in the CFTR regulation. Here, we show that functional interplay between SRF and YY1 might provide interesting perspectives to further characterize the underlying molecular mechanism of the basal CFTR transcriptional activity. Furthermore, the identification of multiple CArG binding sites in highly conserved CFTR untranslated regions, which form specific SRF complexes, provides direct evidence for a considerable role of SRF in the CFTR transcriptional regulation into specialized epithelial lung cells.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulação da Expressão Gênica , Mucosa Respiratória/metabolismo , Elemento de Resposta Sérica , Fator de Resposta Sérica/metabolismo , Animais , Sequência de Bases , Sítios de Ligação , Brônquios/citologia , Linhagem Celular , Cromatina/metabolismo , Sequência Conservada , Proteínas de Ligação a DNA/metabolismo , Células Epiteliais/metabolismo , Fatores de Ligação de DNA Eritroide Específicos , Humanos , Dados de Sequência Molecular , Células Musculares/metabolismo , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo , Transcrição Gênica , Fator de Transcrição YY1
5.
J Bone Miner Res ; 18(10): 1825-33, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14584893

RESUMO

UNLABELLED: The molecular mechanism of sensing extracellular cations in osteoblasts is controversial. Using an expression-cloning strategy, the calcium-binding protein calcyclin was found to mediate the response of MC3T3-E1 osteoblasts to extracellular cations, but not the calcimimetic NPS-568, indicating the presence of another cation-sensing mechanism. Further understanding of calcyclin function in osteoblasts may identify novel targets for regulating bone formation. INTRODUCTION: Extracellular calcium and other cations seem to regulate the function of osteoblasts through a distinct calcium-sensing mechanism that is coupled to activation of c-fos gene transcription. The identity of this calcium-sensing mechanism is unknown. METHODS: To identify molecules that participate in this extracellular cation-sensing pathway, we developed an expression cloning strategy in COS-7 cells using cation stimulation of a serum response element (SRE) luciferase reporter derived from the c-fos promoter to screen a mouse MC3T3-E1 osteoblast cDNA library. RESULTS AND CONCLUSIONS: We identified calcyclin (S100A6), a calcium-binding protein of the EF-hand type belonging to the S100 family, as being responsible for transferring a cation-sensing response from osteoblasts to COS-7 cells. Transfection of the calcyclin cDNA into COS-7 and HEK-293 cells confirmed that the overexpression of calcylin caused these cells to gain the ability to sense extracellular cations, including aluminum, gadolinium, calcium, and magnesium. Conversely, we found that an antisense calcyclin construct reduced calcyclin expression and partially inhibited the cation-sensing response in MC3T3-E1 osteoblasts. These results implicate calcyclin in the activation of SRE and establish a role for calcyclin as an accessory protein involved in the cation-sensing pathway in osteoblasts.


Assuntos
Cátions/metabolismo , Proteínas de Ciclo Celular , Osteoblastos/metabolismo , Proteínas S100/metabolismo , Elemento de Resposta Sérica , Sequência de Aminoácidos , Compostos de Anilina/farmacologia , Animais , Sequência de Bases , Western Blotting , Células COS , Cálcio/metabolismo , Linhagem Celular , Clonagem Molecular , DNA Complementar/metabolismo , Relação Dose-Resposta a Droga , Biblioteca Gênica , Humanos , Luciferases/metabolismo , Camundongos , Dados de Sequência Molecular , Oligonucleotídeos Antissenso/farmacologia , Fenetilaminas , Propilaminas , Ligação Proteica , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteína A6 Ligante de Cálcio S100 , Transdução de Sinais , Distribuição Tecidual , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA