Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cereb Cortex ; 34(2)2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38183184

RESUMO

Auditory sensory processing is assumed to occur in a hierarchical structure including the primary auditory cortex (A1), superior temporal gyrus, and frontal areas. These areas are postulated to generate predictions for incoming stimuli, creating an internal model of the surrounding environment. Previous studies on mismatch negativity have indicated the involvement of the superior temporal gyrus in this processing, whereas reports have been mixed regarding the contribution of the frontal cortex. We designed a novel auditory paradigm, the "cascade roving" paradigm, which incorporated complex structures (cascade sequences) into a roving paradigm. We analyzed electrocorticography data from six patients with refractory epilepsy who passively listened to this novel auditory paradigm and detected responses to deviants mainly in the superior temporal gyrus and inferior frontal gyrus. Notably, the inferior frontal gyrus exhibited broader distribution and sustained duration of deviant-elicited responses, seemingly differing in spatio-temporal characteristics from the prediction error responses observed in the superior temporal gyrus, compared with conventional oddball paradigms performed on the same participants. Moreover, we observed that the deviant responses were enhanced through stimulus repetition in the high-gamma range mainly in the superior temporal gyrus. These features of the novel paradigm may aid in our understanding of auditory predictive coding.


Assuntos
Córtex Auditivo , Eletrocorticografia , Humanos , Eletroencefalografia , Potenciais Evocados Auditivos/fisiologia , Córtex Auditivo/fisiologia , Lobo Temporal/fisiologia , Estimulação Acústica , Percepção Auditiva/fisiologia
2.
J Neural Eng ; 20(5)2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37666246

RESUMO

Objective.Invasive brain-computer interfaces (BCIs) have shown promise in restoring motor function to those paralyzed by neurological injuries. These systems also have the ability to restore sensation via cortical electrostimulation. Cortical stimulation produces strong artifacts that can obscure neural signals or saturate recording amplifiers. While front-end hardware techniques can alleviate this problem, residual artifacts generally persist and must be suppressed by back-end methods.Approach.We have developed a technique based on pre-whitening and null projection (PWNP) and tested its ability to suppress stimulation artifacts in electroencephalogram (EEG), electrocorticogram (ECoG) and microelectrode array (MEA) signals from five human subjects.Main results.In EEG signals contaminated by narrow-band stimulation artifacts, the PWNP method achieved average artifact suppression between 32 and 34 dB, as measured by an increase in signal-to-interference ratio. In ECoG and MEA signals contaminated by broadband stimulation artifacts, our method suppressed artifacts by 78%-80% and 85%, respectively, as measured by a reduction in interference index. When compared to independent component analysis, which is considered the state-of-the-art technique for artifact suppression, our method achieved superior results, while being significantly easier to implement.Significance.PWNP can potentially act as an efficient method of artifact suppression to enable simultaneous stimulation and recording in bi-directional BCIs to biomimetically restore motor function.


Assuntos
Artefatos , Terapia por Estimulação Elétrica , Humanos , Eletrocorticografia , Eletroencefalografia , Amplificadores Eletrônicos
3.
J Neurosci ; 43(20): 3696-3707, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37045604

RESUMO

During rest, intrinsic neural dynamics manifest at multiple timescales, which progressively increase along visual and somatosensory hierarchies. Theoretically, intrinsic timescales are thought to facilitate processing of external stimuli at multiple stages. However, direct links between timescales at rest and sensory processing, as well as translation to the auditory system are lacking. Here, we measured intracranial EEG in 11 human patients with epilepsy (4 women), while listening to pure tones. We show that, in the auditory network, intrinsic neural timescales progressively increase, while the spectral exponent flattens, from temporal to entorhinal cortex, hippocampus, and amygdala. Within the neocortex, intrinsic timescales exhibit spatial gradients that follow the temporal lobe anatomy. Crucially, intrinsic timescales at baseline can explain the latency of auditory responses: as intrinsic timescales increase, so do the single-electrode response onset and peak latencies. Our results suggest that the human auditory network exhibits a repertoire of intrinsic neural dynamics, which manifest in cortical gradients with millimeter resolution and may provide a variety of temporal windows to support auditory processing.SIGNIFICANCE STATEMENT Endogenous neural dynamics are often characterized by their intrinsic timescales. These are thought to facilitate processing of external stimuli. However, a direct link between intrinsic timing at rest and sensory processing is missing. Here, with intracranial EEG, we show that intrinsic timescales progressively increase from temporal to entorhinal cortex, hippocampus, and amygdala. Intrinsic timescales at baseline can explain the variability in the timing of intracranial EEG responses to sounds: cortical electrodes with fast timescales also show fast- and short-lasting responses to auditory stimuli, which progressively increase in the hippocampus and amygdala. Our results suggest that a hierarchy of neural dynamics in the temporal lobe manifests across cortical and limbic structures and can explain the temporal richness of auditory responses.


Assuntos
Córtex Auditivo , Lobo Temporal , Humanos , Feminino , Lobo Temporal/fisiologia , Percepção Auditiva/fisiologia , Tonsila do Cerebelo/fisiologia , Hipocampo/fisiologia , Eletrocorticografia , Córtex Auditivo/fisiologia , Estimulação Acústica
4.
Cortex ; 163: 57-65, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37060887

RESUMO

The medial side of the operculum is invisible from the lateral surface of cerebral cortex, and its functions remain largely unexplored using direct evidence. Non-invasive and invasive studies have proved functions on peri-sylvian area including the inferior frontal gyrus (IFG) and superior temporal gyrus within the language-dominant hemisphere for semantic processing during verbal communication. However, within the non-dominant hemisphere, there was less evidence of its functions except for pitch or prosody processing. Here we add direct evidence for the functions of the non-dominant hemisphere, the causal involvement of the medial IFG for subjective auditory perception, which is affected by the context of the condition, regarded as a contribution in higher order auditory perception. The phenomenon was clearly distinguished from absolute and invariant pitch perception which is regarded as lower order auditory perception. Electrical stimulation of the medial surface of pars triangularis of IFG in non-dominant hemisphere via depth electrode in an epilepsy patient rapidly and reproducibly elicited perception of pitch changes of auditory input. Pitches were perceived as either higher or lower than those given without stimulation and there was no selectivity for sound type. The patient perceived sounds as higher when she had greater control over the situation when her eyes were open and there were self-cues, and as lower when her eyes were closed and there were investigator-cues. Time-frequency analysis of electrocorticography signals during auditory naming demonstrated medial IFG activation, characterized by low-gamma band augmentation during her own vocal response. The overall evidence provides a neural substrate for altered perception of other vocal tones according to the condition context.


Assuntos
Mapeamento Encefálico , Epilepsia , Humanos , Feminino , Percepção Auditiva/fisiologia , Córtex Pré-Frontal , Eletrocorticografia , Estimulação Acústica , Imageamento por Ressonância Magnética
5.
Epilepsia ; 64(7): 1925-1938, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37119434

RESUMO

OBJECTIVE: We aimed to identify corticothalamic areas and electrical stimulation paradigms that optimally enhance breathing. METHODS: Twenty-nine patients with medically intractable epilepsy were prospectively recruited in an epilepsy monitoring unit while undergoing stereoelectroencephalographic evaluation. Direct electrical stimulation in cortical and thalamic regions was carried out using low (<1 Hz) and high (≥10 Hz) frequencies, and low (<5 mA) and high (≥5 mA) current intensities, with pulse width of .1 ms. Electrocardiography, arterial oxygen saturation (SpO2 ), end-tidal carbon dioxide (ETCO2 ), oronasal airflow, and abdominal and thoracic plethysmography were monitored continuously during stimulations. Airflow signal was used to estimate breathing rate, tidal volume, and minute ventilation (MV) changes during stimulation, compared to baseline. RESULTS: Electrical stimulation increased MV in the amygdala, anterior cingulate, anterior insula, temporal pole, and thalamus, with an average increase in MV of 20.8% ± 28.9% (range = 0.2%-165.6%) in 19 patients. MV changes were associated with SpO2 and ETCO2 changes (p < .001). Effects on respiration were parameter and site dependent. Within amygdala, low-frequency stimulation of the medial region produced 78.49% greater MV change (p < .001) compared to high-frequency stimulation. Longer stimulation produced greater MV changes (an increase of 4.47% in MV for every additional 10 s, p = .04). SIGNIFICANCE: Stimulation of amygdala, anterior cingulate gyrus, anterior insula, temporal pole, and thalamus, using certain stimulation paradigms, enhances respiration. Among tested paradigms, low-frequency, low-intensity, long-duration stimulation of the medial amygdala is the most effective breathing enhancement stimulation strategy. Such approaches may pave the way for the future development of neuromodulatory techniques that aid rescue from seizure-related apnea, potentially as a targeted sudden unexpected death in epilepsy prevention method.


Assuntos
Eletrocorticografia , Epilepsia , Taxa Respiratória , Respiração , Taxa Respiratória/fisiologia , Tonsila do Cerebelo , Lobo Temporal , Tálamo , Estudos Prospectivos
6.
J Neurosci ; 43(13): 2338-2348, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36849414

RESUMO

Photoaffinity ligands are best known as tools used to identify the specific binding sites of drugs to their molecular targets. However, photoaffinity ligands have the potential to further define critical neuroanatomic targets of drug action. In the brains of WT male mice, we demonstrate the feasibility of using photoaffinity ligands in vivo to prolong anesthesia via targeted yet spatially restricted photoadduction of azi-m-propofol (aziPm), a photoreactive analog of the general anesthetic propofol. Systemic administration of aziPm with bilateral near-ultraviolet photoadduction in the rostral pons, at the border of the parabrachial nucleus and locus coeruleus, produced a 20-fold increase in the duration of sedative and hypnotic effects compared with control mice without UV illumination. Photoadduction that missed the parabrachial-coerulean complex also failed to extend the sedative or hypnotic actions of aziPm and was indistinguishable from nonadducted controls. Paralleling the prolonged behavioral and EEG consequences of on target in vivo photoadduction, we conducted electrophysiologic recordings in rostral pontine brain slices. Using neurons within the locus coeruleus to further highlight the cellular consequences of irreversible aziPm binding, we demonstrate transient slowing of spontaneous action potentials with a brief bath application of aziPm that becomes irreversible on photoadduction. Together, these findings suggest that photochemistry-based strategies are a viable new approach for probing CNS physiology and pathophysiology.SIGNIFICANCE STATEMENT Photoaffinity ligands are drugs capable of light-induced irreversible binding, which have unexploited potential to identify the neuroanatomic sites of drug action. We systemically administer a centrally acting anesthetic photoaffinity ligand in mice, conduct localized photoillumination within the brain to covalently adduct the drug at its in vivo sites of action, and successfully enrich irreversible drug binding within a restricted 250 µm radius. When photoadduction encompassed the pontine parabrachial-coerulean complex, anesthetic sedation and hypnosis was prolonged 20-fold, thus illustrating the power of in vivo photochemistry to help unravel neuronal mechanisms of drug action.


Assuntos
Anestésicos Intravenosos , Encéfalo , Hipnose , Hipnóticos e Sedativos , Ligantes , Marcadores de Fotoafinidade , Propofol , Animais , Masculino , Camundongos , Neurônios Adrenérgicos/efeitos dos fármacos , Anestesia Intravenosa , Encéfalo/citologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/efeitos da radiação , Eletrocorticografia , Eletroencefalografia , Hipnose/métodos , Hipnóticos e Sedativos/administração & dosagem , Hipnóticos e Sedativos/química , Hipnóticos e Sedativos/farmacologia , Hipnóticos e Sedativos/efeitos da radiação , Locus Cerúleo/citologia , Locus Cerúleo/efeitos dos fármacos , Locus Cerúleo/metabolismo , Locus Cerúleo/efeitos da radiação , Camundongos Endogâmicos C57BL , Núcleos Parabraquiais/efeitos dos fármacos , Núcleos Parabraquiais/metabolismo , Núcleos Parabraquiais/efeitos da radiação , Marcadores de Fotoafinidade/química , Marcadores de Fotoafinidade/efeitos da radiação , Propofol/administração & dosagem , Propofol/análogos & derivados , Propofol/farmacologia , Propofol/efeitos da radiação , Fatores de Tempo , Raios Ultravioleta , Anestésicos Intravenosos/administração & dosagem , Anestésicos Intravenosos/química , Anestésicos Intravenosos/farmacologia , Anestésicos Intravenosos/efeitos da radiação
7.
Epilepsia ; 63(9): e106-e111, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35751497

RESUMO

Seizure clusters are seizures that occur in rapid succession during periods of heightened seizure risk and are associated with substantial morbidity and sudden unexpected death in epilepsy. The objective of this feasibility study was to evaluate the performance of a novel seizure cluster forecasting algorithm. Chronic ambulatory electrocorticography recorded over an average of 38 months in 10 subjects with drug-resistant epilepsies was analyzed pseudoprospectively by dividing data into training (first 85%) and validation periods. For each subject, the probability of seizure clustering, derived from the Kolmogorov-Smirnov statistic using a novel algorithm, was forecasted in the validation period using individualized autoregressive models that were optimized from training data. The primary outcome of this study was the mean absolute scaled error (MASE) of 1-day horizon forecasts. From 10 subjects, 394 ± 142 (mean ± SD) electrocorticography-based seizure events were extracted for analysis, representing a span of 38 ± 27 months of recording. MASE across all subjects was .74 ± .09, .78 ± .09, and .83 ± .07 at .5-, 1-, and 2-day horizons. The feasibility study demonstrates that seizure clusters are quasiperiodic and can be forecasted to clinically meaningful horizons. Pending validation in larger cohorts, the forecasting approach described herein may herald chronotherapy during imminent heightened seizure vulnerability.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia , Eletrocorticografia , Previsões , Humanos , Convulsões/diagnóstico
8.
Neuroimage ; 258: 119342, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35654375

RESUMO

PURPOSE: A prominent view of language acquisition involves learning to ignore irrelevant auditory signals through functional reorganization, enabling more efficient processing of relevant information. Yet, few studies have characterized the neural spatiotemporal dynamics supporting rapid detection and subsequent disregard of irrelevant auditory information, in the developing brain. To address this unknown, the present study modeled the developmental acquisition of cost-efficient neural dynamics for auditory processing, using intracranial electrocorticographic responses measured in individuals receiving standard-of-care treatment for drug-resistant, focal epilepsy. We also provided evidence demonstrating the maturation of an anterior-to-posterior functional division within the superior-temporal gyrus (STG), which is known to exist in the adult STG. METHODS: We studied 32 patients undergoing extraoperative electrocorticography (age range: eight months to 28 years) and analyzed 2,039 intracranial electrode sites outside the seizure onset zone, interictal spike-generating areas, and MRI lesions. Patients were given forward (normal) speech sounds, backward-played speech sounds, and signal-correlated noises during a task-free condition. We then quantified sound processing-related neural costs at given time windows using high-gamma amplitude at 70-110 Hz and animated the group-level high-gamma dynamics on a spatially normalized three-dimensional brain surface. Finally, we determined if age independently contributed to high-gamma dynamics across brain regions and time windows. RESULTS: Group-level analysis of noise-related neural costs in the STG revealed developmental enhancement of early high-gamma augmentation and diminution of delayed augmentation. Analysis of speech-related high-gamma activity demonstrated an anterior-to-posterior functional parcellation in the STG. The left anterior STG showed sustained augmentation throughout stimulus presentation, whereas the left posterior STG showed transient augmentation after stimulus onset. We found a double dissociation between the locations and developmental changes in speech sound-related high-gamma dynamics. Early left anterior STG high-gamma augmentation (i.e., within 200 ms post-stimulus onset) showed developmental enhancement, whereas delayed left posterior STG high-gamma augmentation declined with development. CONCLUSIONS: Our observations support the model that, with age, the human STG refines neural dynamics to rapidly detect and subsequently disregard uninformative acoustic noises. Our study also supports the notion that the anterior-to-posterior functional division within the left STG is gradually strengthened for efficient speech-sound perception after birth.


Assuntos
Córtex Auditivo , Epilepsia Resistente a Medicamentos , Percepção da Fala , Estimulação Acústica/métodos , Adulto , Córtex Auditivo/diagnóstico por imagem , Percepção Auditiva/fisiologia , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Epilepsia Resistente a Medicamentos/cirurgia , Eletrocorticografia/métodos , Humanos , Lactente , Idioma
9.
Curr Biol ; 32(11): 2548-2555.e5, 2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35487221

RESUMO

Recent studies have shown that stimulus history can be decoded via the use of broadband sensory impulses to reactivate mnemonic representations.1-4. However, memories of previous stimuli can also be used to form sensory predictions about upcoming stimuli.5,6 Predictive mechanisms allow the brain to create a probable model of the outside world, which can be updated when errors are detected between the model predictions and external inputs. 7-10 Direct recordings in the auditory cortex of awake mice established neural mechanisms for how encoding mechanisms might handle working memory and predictive processes without "overwriting" recent sensory events in instances where predictive mechanisms are triggered by oddballs within a sequence.11 However, it remains unclear whether mnemonic and predictive information can be decoded from cortical activity simultaneously during passive, implicit sequence processing, even in anesthetized models. Here, we recorded neural activity elicited by repeated stimulus sequences using electrocorticography (ECoG) in the auditory cortex of anesthetized rats, where events within the sequence (referred to henceforth as "vowels," for simplicity) were occasionally replaced with a broadband noise burst or omitted entirely. We show that both stimulus history and predicted stimuli can be decoded from neural responses to broadband impulses, at overlapping latencies but based on independent and uncorrelated data features. We also demonstrate that predictive representations are dynamically updated over the course of stimulation.


Assuntos
Córtex Auditivo , Estimulação Acústica , Animais , Córtex Auditivo/fisiologia , Percepção Auditiva/fisiologia , Eletrocorticografia , Memória de Curto Prazo/fisiologia , Camundongos , Ratos
10.
Hum Brain Mapp ; 43(8): 2460-2477, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35119173

RESUMO

Epilepsy is recognised as a dynamic disease, where both seizure susceptibility and seizure characteristics themselves change over time. Specifically, we recently quantified the variable electrographic spatio-temporal seizure evolutions that exist within individual patients. This variability appears to follow subject-specific circadian, or longer, timescale modulations. It is therefore important to know whether continuously recorded interictaliEEG features can capture signatures of these modulations over different timescales. In this study, we analyse continuous intracranial electroencephalographic (iEEG) recordings from video-telemetry units and find fluctuations in iEEG band power over timescales ranging from minutes up to 12 days. As expected and in agreement with previous studies, we find that all subjects show a circadian fluctuation in their iEEG band power. We additionally detect other fluctuations of similar magnitude on subject-specific timescales. Importantly, we find that a combination of these fluctuations on different timescales can explain changes in seizure evolutions in most subjects above chance level. These results suggest that subject-specific fluctuations in iEEG band power over timescales of minutes to days may serve as markers of seizure modulating processes. We hope that future study can link these detected fluctuations to their biological driver(s). There is a critical need to better understand seizure modulating processes, as this will enable the development of novel treatment strategies that could minimise the seizure spread, duration or severity and therefore the clinical impact of seizures.


Assuntos
Eletroencefalografia , Epilepsia , Eletrocorticografia/métodos , Eletroencefalografia/métodos , Humanos , Probabilidade , Convulsões/diagnóstico
11.
Neurosci Lett ; 766: 136345, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34785313

RESUMO

PURPOSE: Intracranial electroencephalography (iEEG) offers a unique window on brain dynamics with excellent temporal and spatial resolution and is less prone to recording artefacts than surface EEG. This study used a within-subject design to explore the feasibility to compare iEEG data during mind wandering, mindfulness meditation and hypnosis. RESULTS: Three patients who had iEEG for clinical monitoring and who were new to mindfulness meditation and hypnosis were able to enter these states. We found non-specific and wide-spread amplitude modulations. Data-driven connectivity analysis revealed widespread connectivity patterns that were common across the three conditions. These were predominant in the low frequencies (delta, theta and alpha) and characterised by positively correlated activity. Connectivity patterns that were unique to the three conditions predominated in the gamma band, one third of the correlations in these patterns were negative. CONCLUSIONS: This study is the first to support the feasibility of a direct comparison of the neural correlates of mindfulness meditation and hypnosis using iEEG. These modulations may reflect the complex interplay between different known brain networks, and warrant further functional investigations in particular in the gamma band.


Assuntos
Encéfalo/fisiologia , Eletrocorticografia , Hipnose , Meditação , Atenção Plena , Adulto , Estudos de Viabilidade , Humanos , Masculino , Pessoa de Meia-Idade
12.
Neurosci Res ; 175: 62-72, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34699860

RESUMO

Patients with schizophrenia exhibit impaired performance in tone-matching or voice discrimination tests. However, there is no animal model recapitulating these pathophysiological traits. Here, we tested the representation of auditory recognition deficits in an animal model of schizophrenia. We established a rat model for schizophrenia using a perinatal challenge of epidermal growth factor (EGF), exposed adult rats to 55 kHz sine tones, rat calls (50-60 kHz), or reversely played calls, analyzed electrocorticography (ECoG) of the auditory and frontal cortices. Grand averages of event-related responses (ERPs) in the auditory cortex showed between-group size differences in the P1 component, whereas the P2 component differed among sound stimulus types. In EGF model rats, gamma band amplitudes were decreased in the auditory cortex and were enhanced in the frontal cortex with sine stimulus. The model rats also exhibited a reduction in rat call-triggered intercortical phase synchrony in the beta range. Risperidone administration restored normal phase synchrony. These findings suggest that perinatal exposure to the cytokine impairs tone/call recognition processes in these neocortices. In conjunction with previous studies using this model, our findings indicate that perturbations in ErbB/EGF signaling during development exert a multiscale impact on auditory functions at the cellular, circuit, and cognitive levels.


Assuntos
Córtex Auditivo , Citocinas , Modelos Animais de Doenças , Esquizofrenia , Estimulação Acústica , Animais , Córtex Auditivo/fisiologia , Eletrocorticografia , Eletroencefalografia , Potenciais Evocados Auditivos/fisiologia , Ratos
13.
Brain ; 144(12): 3651-3663, 2021 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-34623400

RESUMO

Brain-machine interfaces allow neuroscientists to causally link specific neural activity patterns to a particular behaviour. Thus, in addition to their current clinical applications, brain-machine interfaces can also be used as a tool to investigate neural mechanisms of learning and plasticity in the brain. Decades of research using such brain-machine interfaces have shown that animals (non-human primates and rodents) can be operantly conditioned to self-regulate neural activity in various motor-related structures of the brain. Here, we ask whether the human brain, a complex interconnected structure of over 80 billion neurons, can learn to control itself at the most elemental scale-a single neuron. We used the unique opportunity to record single units in 11 individuals with epilepsy to explore whether the firing rate of a single (direct) neuron in limbic and other memory-related brain structures can be brought under volitional control. To do this, we developed a visual neurofeedback task in which participants were trained to move a block on a screen by modulating the activity of an arbitrarily selected neuron from their brain. Remarkably, participants were able to volitionally modulate the firing rate of the direct neuron in these previously uninvestigated structures. We found that a subset of participants (learners), were able to improve their performance within a single training session. Successful learning was characterized by (i) highly specific modulation of the direct neuron (demonstrated by significantly increased firing rates and burst frequency); (ii) a simultaneous decorrelation of the activity of the direct neuron from the neighbouring neurons; and (iii) robust phase-locking of the direct neuron to local alpha/beta-frequency oscillations, which may provide some insights in to the potential neural mechanisms that facilitate this type of learning. Volitional control of neuronal activity in mnemonic structures may provide new ways of probing the function and plasticity of human memory without exogenous stimulation. Furthermore, self-regulation of neural activity in these brain regions may provide an avenue for the development of novel neuroprosthetics for the treatment of neurological conditions that are commonly associated with pathological activity in these brain structures, such as medically refractory epilepsy.


Assuntos
Encéfalo/fisiologia , Aprendizagem/fisiologia , Neurorretroalimentação/métodos , Neurônios/fisiologia , Volição/fisiologia , Adulto , Interfaces Cérebro-Computador , Eletrocorticografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
14.
Commun Biol ; 4(1): 1210, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34675341

RESUMO

The return of consciousness after traumatic brain injury (TBI) is associated with restoring complex cortical dynamics; however, it is unclear what interactions govern these complex dynamics. Here, we set out to uncover the mechanism underlying the return of consciousness by measuring local field potentials (LFP) using invasive electrophysiological recordings in patients recovering from TBI. We found that injury to the thalamus, and its efferent projections, on MRI were associated with repetitive and low complexity LFP signals from a highly structured phase space, resembling a low-dimensional ring attractor. But why do thalamic injuries in TBI patients result in a cortical attractor? We built a simplified thalamocortical model, which connotes that thalamic input facilitates the formation of cortical ensembles required for the return of cognitive function and the content of consciousness. These observations collectively support the view that thalamic input to the cortex enables rich cortical dynamics associated with consciousness.


Assuntos
Lesões Encefálicas Traumáticas/fisiopatologia , Eletrocorticografia , Tálamo/fisiopatologia , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
15.
J Neurophysiol ; 126(5): 1723-1739, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34644179

RESUMO

The progress of therapeutic neuromodulation greatly depends on improving stimulation parameters to most efficiently induce neuroplasticity effects. Intermittent θ-burst stimulation (iTBS), a form of electrical stimulation that mimics natural brain activity patterns, has proved to efficiently induce such effects in animal studies and rhythmic transcranial magnetic stimulation studies in humans. However, little is known about the potential neuroplasticity effects of iTBS applied through intracranial electrodes in humans. This study characterizes the physiological effects of intracranial iTBS in humans and compare them with α-frequency stimulation, another frequently used neuromodulatory pattern. We applied these two stimulation patterns to well-defined regions in the sensorimotor cortex, which elicited contralateral hand muscle contractions during clinical mapping, in patients with epilepsy implanted with intracranial electrodes. Treatment effects were evaluated using oscillatory coherence across areas connected to the treatment site, as defined with corticocortical-evoked potentials. Our results show that iTBS increases coherence in the ß-frequency band within the sensorimotor network indicating a potential neuroplasticity effect. The effect is specific to the sensorimotor system, the ß band, and the stimulation pattern and outlasted the stimulation period by ∼3 min. The effect occurred in four out of seven subjects depending on the buildup of the effect during iTBS treatment and other patterns of oscillatory activity related to ceiling effects within the ß band and to preexistent coherence within the α band. By characterizing the neurophysiological effects of iTBS within well-defined cortical networks, we hope to provide an electrophysiological framework that allows clinicians/researchers to optimize brain stimulation protocols which may have translational value.NEW & NOTEWORTHY θ-Burst stimulation (TBS) protocols in transcranial magnetic stimulation studies have shown improved treatment efficacy in a variety of neuropsychiatric disorders. The optimal protocol to induce neuroplasticity in invasive direct electrical stimulation approaches is not known. We report that intracranial TBS applied in human sensorimotor cortex increases local coherence of preexistent ß rhythms. The effect is specific to the stimulation frequency and the stimulated network and outlasts the stimulation period by ∼3 min.


Assuntos
Ritmo beta/fisiologia , Terapia por Estimulação Elétrica , Estimulação Elétrica , Eletrocorticografia , Rede Nervosa/fisiologia , Plasticidade Neuronal/fisiologia , Córtex Sensório-Motor/fisiologia , Adulto , Feminino , Humanos , Masculino , Adulto Jovem
16.
J Neurosci ; 41(45): 9374-9391, 2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34645605

RESUMO

Detection of statistical irregularities, measured as a prediction error response, is fundamental to the perceptual monitoring of the environment. We studied whether prediction error response is associated with neural oscillations or asynchronous broadband activity. Electrocorticography was conducted in three male monkeys, who passively listened to the auditory roving oddball stimuli. Local field potentials (LFPs) recorded over the auditory cortex underwent spectral principal component analysis, which decoupled broadband and rhythmic components of the LFP signal. We found that the broadband component captured the prediction error response, whereas none of the rhythmic components were associated with statistical irregularities of sounds. The broadband component displayed more stochastic, asymmetrical multifractal properties than the rhythmic components, which revealed more self-similar dynamics. We thus conclude that the prediction error response is captured by neuronal populations generating asynchronous broadband activity, defined by irregular dynamic states, which, unlike oscillatory rhythms, appear to enable the neural representation of auditory prediction error response.SIGNIFICANCE STATEMENT This study aimed to examine the contribution of oscillatory and asynchronous components of auditory local field potentials in the generation of prediction error responses to sensory irregularities, as this has not been directly addressed in the previous studies. Here, we show that mismatch negativity-an auditory prediction error response-is driven by the asynchronous broadband component of potentials recorded in the auditory cortex. This finding highlights the importance of nonoscillatory neural processes in the predictive monitoring of the environment. At a more general level, the study demonstrates that stochastic neural processes, which are often disregarded as neural noise, do have a functional role in the processing of sensory information.


Assuntos
Córtex Auditivo/fisiologia , Percepção Auditiva/fisiologia , Modelos Neurológicos , Estimulação Acústica/métodos , Animais , Callithrix , Eletrocorticografia/métodos , Masculino
17.
Neuroimage ; 243: 118498, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34428572

RESUMO

Despite significant interest in the neural underpinnings of behavioral variability, little light has been shed on the cortical mechanism underlying the failure to respond to perceptual-level stimuli. We hypothesized that cortical activity resulting from perceptual-level stimuli is sensitive to the moment-to-moment fluctuations in cortical excitability, and thus may not suffice to produce a behavioral response. We tested this hypothesis using electrocorticographic recordings to follow the propagation of cortical activity in six human subjects that responded to perceptual-level auditory stimuli. Here we show that for presentations that did not result in a behavioral response, the likelihood of cortical activity decreased from auditory cortex to motor cortex, and was related to reduced local cortical excitability. Cortical excitability was quantified using instantaneous voltage during a short window prior to cortical activity onset. Therefore, when humans are presented with an auditory stimulus close to perceptual-level threshold, moment-by-moment fluctuations in cortical excitability determine whether cortical responses to sensory stimulation successfully connect auditory input to a resultant behavioral response.


Assuntos
Excitabilidade Cortical/fisiologia , Estimulação Acústica , Adulto , Idoso , Ritmo alfa/fisiologia , Córtex Auditivo/fisiologia , Mapeamento Encefálico/métodos , Eletrocorticografia/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
18.
Elife ; 102021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34338632

RESUMO

Rapid progress in technologies such as calcium imaging and electrophysiology has seen a dramatic increase in the size and extent of neural recordings. Even so, interpretation of this data requires considerable knowledge about the nature of the representation and often depends on manual operations. Decoding provides a means to infer the information content of such recordings but typically requires highly processed data and prior knowledge of the encoding scheme. Here, we developed a deep-learning framework able to decode sensory and behavioral variables directly from wide-band neural data. The network requires little user input and generalizes across stimuli, behaviors, brain regions, and recording techniques. Once trained, it can be analyzed to determine elements of the neural code that are informative about a given variable. We validated this approach using electrophysiological and calcium-imaging data from rodent auditory cortex and hippocampus as well as human electrocorticography (ECoG) data. We show successful decoding of finger movement, auditory stimuli, and spatial behaviors - including a novel representation of head direction - from raw neural activity.


Assuntos
Estimulação Acústica , Córtex Auditivo/fisiologia , Aprendizado Profundo , Hipocampo/fisiologia , Movimento , Redes Neurais de Computação , Comportamento Espacial , Animais , Eletrocorticografia , Dedos , Humanos , Masculino , Camundongos , Ratos
19.
Front Neural Circuits ; 15: 692923, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34276316

RESUMO

We have previously reported different spike firing correlation patterns among pairs of adjacent pyramidal neurons within the same layer of S1 cortex in vivo, which was argued to suggest that acquired synaptic weight modifications would tend to differentiate adjacent cortical neurons despite them having access to near-identical afferent inputs. Here we made simultaneous single-electrode loose patch-clamp recordings from 14 pairs of adjacent neurons in the lateral thalamus of the ketamine-xylazine anesthetized rat in vivo to study the correlation patterns in their spike firing. As the synapses on thalamic neurons are dominated by a high number of low weight cortical inputs, which would be expected to be shared for two adjacent neurons, and as far as thalamic neurons have homogenous membrane physiology and spike generation, they would be expected to have overall similar spike firing and therefore also correlation patterns. However, we find that across a variety of thalamic nuclei the correlation patterns between pairs of adjacent thalamic neurons vary widely. The findings suggest that the connectivity and cellular physiology of the thalamocortical circuitry, in contrast to what would be expected from a straightforward interpretation of corticothalamic maps and uniform intrinsic cellular neurophysiology, has been shaped by learning to the extent that each pair of thalamic neuron has a unique relationship in their spike firing activity.


Assuntos
Potenciais de Ação/fisiologia , Eletrocorticografia/métodos , Neurônios/fisiologia , Núcleos Talâmicos/fisiologia , Animais , Estimulação Elétrica/métodos , Masculino , Ratos , Ratos Sprague-Dawley , Tálamo/fisiologia
20.
Clin Neurophysiol ; 132(7): 1416-1432, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34023624

RESUMO

OBJECTIVE: Neuromonitoring of primary motor regions allows preservation of motor strength and is frequently employed during cranial procedures. Less is known about protection of sensory function and ability to modulate movements, both of which rely on integrity of thalamocortical afferents (TCA) to fronto-parietal regions. We describe our experience with TCA monitoring and their cortical relays during brain tumor surgery. METHODOLOGY: To study its feasibility and usefulness, continuous somatosensory evoked potentials (SSEP) recording via a subdural electrode was attempted in 32 consecutive patients. RESULTS: Median and posterior tibial SSEP were successfully monitored in 31 and 17 patients respectively. SSEP improved lesion localization and prevented unnecessary cortical stimulation in 9 and 16 cases respectively. A threshold of ≥30% SSEP amplitude decrease influenced management in 10 patients while a decrement of ≥50 % had a sensitivity of 0.89 and specificity of 1 in detecting worsening of sensory function. Simultaneous motor evoked potentials (MEP) and SSEP monitoring were performed in 10 cases, 9 of which showed short-lived fluctuations of the former. CONCLUSION: Direct cortical SSEP monitoring is feasible, informs management and predicts outcome. SIGNIFICANCE: Early intervention prevents sensory deficit. Concomitant MEP fluctuations may reflect modulation of motor activity by TCA.


Assuntos
Neoplasias Encefálicas/cirurgia , Craniotomia/métodos , Potenciais Somatossensoriais Evocados/fisiologia , Monitorização Neurofisiológica Intraoperatória/métodos , Córtex Motor/fisiologia , Tálamo/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias Encefálicas/fisiopatologia , Eletrocorticografia/métodos , Estudos de Viabilidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA