Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.277
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
J Neural Transm (Vienna) ; 131(4): 359-367, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38456947

RESUMO

The different peaks of somatosensory-evoked potentials (SEP) originate from a variety of anatomical sites in the central nervous system. The origin of the median nerve subcortical N18 SEP has been studied under various conditions, but the exact site of its generation is still unclear. While it has been claimed to be located in the thalamic region, other studies indicated its possible origin below the pontomedullary junction. Here, we scrutinized and compared SEP recordings from median nerve stimulation through deep brain stimulation (DBS) electrodes implanted in various subcortical targets. We studied 24 patients with dystonia, Parkinson's disease, and chronic pain who underwent quadripolar electrode implantation for chronic DBS and recorded median nerve SEPs from globus pallidus internus (GPi), subthalamic nucleus (STN), thalamic ventral intermediate nucleus (Vim), and ventral posterolateral nucleus (VPL) and the centromedian-parafascicular complex (CM-Pf). The largest amplitude of the triphasic potential of the N18 complex was recorded in Vim. Bipolar recordings confirmed the origin to be close to Vim electrodes (and VPL/CM-Pf) and less close to STN electrodes. GPi recorded only far-field potentials in unipolar derivation. Recordings from DBS electrodes located in different subcortical areas allow determining the origin of certain subcortical SEP waves more precisely. The subcortical N18 of the median nerve SEP-to its largest extent-is generated ventral to the Vim in the region of the prelemniscal radiation/ zona incerta.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Potenciais Somatossensoriais Evocados/fisiologia , Núcleo Subtalâmico/fisiologia , Tálamo/fisiologia , Doença de Parkinson/terapia , Eletrodos , Globo Pálido , Eletrodos Implantados
2.
Environ Pollut ; 346: 123688, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38431247

RESUMO

One challenge of the citrus industry is the treatment and disposal of its effluents due to their high toxicity, substantial organic load, and consequent resistance to conventional biotechnological processes. This study introduces a novel approach, using electrochemical oxidation with a boron-doped diamond anode to efficiently remove organic compounds from biodegraded pulp wash (treated using the fungus Pleurotus sajor-caju.) The findings reveal that employing a current density of 20 mA cm-2 achieves notable results, including a 44.1% reduction in color, a 70.0% decrease in chemical oxygen demand, an 88.0% reduction in turbidity, and an impressive 99.7% removal of total organic carbon (TOC) after 6 h of electrolysis. The energy consumption was estimated at 2.93 kWh g-1 of removed TOC. This sequential biological-electrochemical procedure not only significantly reduced the mortality rate (85%) of Danio rerio embryos but also reduced the incidence of morphologically altered parameters. Regarding acute toxicity (LC50) of the residue, the process demonstrated a mortality reduction of 6.97% for D. rerio and a 40.88% lethality decrease for Lactuca sativa seeds. The substantial reduction in toxicity and organic load observed in this study highlights the potential applicability of combined biological and electrochemical treatments for real agroindustrial residues or their effluents.


Assuntos
Diamante , Poluentes Químicos da Água , Diamante/química , Poluentes Químicos da Água/análise , Eletrólise/métodos , Compostos Orgânicos , Eletrodos , Oxirredução
3.
PLoS One ; 19(3): e0298331, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38530838

RESUMO

Electrochemical measurements, which exhibit high accuracy and sensitivity under low contamination, controlled electrolyte concentration, and pH conditions, have been used in determining various compounds. The electrochemical quantification capability decreases with an increase in the complexity of the measurement object. Therefore, solvent pretreatment and electrolyte addition are crucial in performing electrochemical measurements of specific compounds directly from beverages owing to the poor measurement quality caused by unspecified noise signals from foreign substances and unstable electrolyte concentrations. To prevent such signal disturbances from affecting quantitative analysis, spectral data of voltage-current values from electrochemical measurements must be used for principal component analysis (PCA). Moreover, this method enables highly accurate quantification even though numerical data alone are challenging to analyze. This study utilized boron-doped diamond (BDD) single-chip electrochemical detection to quantify caffeine content in commercial beverages without dilution. By applying PCA, we integrated electrochemical signals with known caffeine contents and subsequently utilized principal component regression to predict the caffeine content in unknown beverages. Consequently, we addressed existing research problems, such as the high quantification cost and the long measurement time required to obtain results after quantification. The average prediction accuracy was 93.8% compared to the actual content values. Electrochemical measurements are helpful in medical care and indirectly support our lives.


Assuntos
Cafeína , Café , Cafeína/análise , Boro/química , Eletrodos , Aprendizado de Máquina , Eletrólitos
4.
Talanta ; 273: 125883, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38521023

RESUMO

Quercetin (QUE) is a powerful antioxidant and one of the common phenolic compounds found in plants, vegetables, and fruits, which has shown many pharmacological activities. The complex nature of the matrix in which QUE is found and its importance and potential uses in diverse applications force the researchers to develop selective and sensitive sensors. In the present work, a novel molecularly imprinted polymer (MIP)-based electrochemical sensor was fabricated for the selective and sensitive determination of the QUE in plant extracts and food supplements. Tryptophan methacrylate (TrpMA) was chosen as the functional monomer, whereas the photopolymerization (PP) method was applied using a glassy carbon electrode (GCE). Electrochemical and morphological characterizations of the developed sensor (TrpMA@QUE/MIP-GCE) were performed using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and scanning electron microscopy (SEM). The linear range of the developed sensor was determined to be in the range of 1.0-25 pM, while the limit of detection (LOD) was calculated to be 0.235 pM. In conclusion, The TrpMA@QUE/MIP-GCE sensor might be classified as a promising platform for selective and sensitive determination of QUE not only in plant extracts but also in commercial food supplements because of its reliability, reproducibility, repeatability, stability, and fast response time.


Assuntos
Fragaria , Impressão Molecular , Rubus , Polímeros/química , Quercetina , Reprodutibilidade dos Testes , Metanol , Técnicas Eletroquímicas/métodos , Carbono/química , Limite de Detecção , Polímeros Molecularmente Impressos , Eletrodos , Extratos Vegetais
5.
Biomater Sci ; 12(9): 2180-2202, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38358306

RESUMO

Electrical activity underpins all life, but is most familiar in the nervous system, where long range electrical signalling is essential for function. When this is lost (e.g., traumatic injury) or it becomes inefficient (e.g., demyelination), the use of external fields can compensate for at least some functional deficits. However, its potential to also promote biological repair at the cell level is underplayed despite abundant in vitro evidence for control of neuron growth. This perspective article considers specifically the emerging possibility of achieving cell growth through the interaction of external electric fields using conducting materials as unwired bipolar electrodes, and without intending stimulation of neuron electrical activity to be the primary consequence. The use of a wireless method to create electrical interactions represents a paradigm shift and may allow new applications in vivo where physical wiring is not possible. Within that scheme of thought an evaluation of specific materials and their dynamic responses as bipolar unwired electrodes is summarized and correlated with changes in dynamic nerve growth during stimulation, suggesting possible future schemes to achieve neural growth using bipolar unwired electrodes with specific characteristics. This strategy emphasizes how nerve growth can be encouraged at injury sites wirelessly to induce repair, as opposed to implanting devices that may substitute the neural signals.


Assuntos
Estimulação Elétrica , Eletrodos , Tecnologia sem Fio , Humanos , Animais , Neurônios/fisiologia
6.
Environ Sci Technol ; 58(6): 3031-3040, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38299499

RESUMO

In this study, we used a membrane capacitive deionization device with a reservoir (R-MCDI) to enrich phosphorus (P) from synthetic wastewater. This R-MCDI had two small-volume electrode chambers, and most of the electrolyte was contained in the reservoir, which was circulated along the electrode chambers. Compared with conventional MCDI, R-MCDI exhibited a phosphate removal rate of 0.052 µmol/(cm2·min), approximately double that of MCDI. This was attributed to R-MCDI's utilization of OH- alternative adsorption to remove phosphate from the influent. Noticing that around 73.9% of the removed phosphate was stored in the electrolyte in R-MCDI, we proposed a novel off-flow desorption operation to enrich the removed phosphate in the reservoir. Exciting results from the multicycle experiment (∼8 h) of R-MCDI showed that the PO43--P concentration in the reservoir increased all the way from the initial 152 mg/L to the final 361 mg/L, with the increase in the P charge efficiency from 5.5 to 22.9% and the decrease in the energy consumption from 28.2 to 6.8 kW h/kg P. The P recovery performance of R-MCDI was evaluated by viewing other similar studies, which revealed that R-MCDI in this study achieved superior P enrichment with low energy consumption and that the off-flow desorption proposed here considerably simplified the operation and enabled continuous P enrichment.


Assuntos
Fósforo , Purificação da Água , Purificação da Água/métodos , Eletrólitos , Águas Residuárias , Adsorção , Eletrodos , Fosfatos
7.
J Environ Radioact ; 273: 107398, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38346378

RESUMO

Enzymatically catalyzed reduction of metals by bacteria has potential application value to uranium-mine wastewater. However, its practical implementation has long been restricted by its intrinsic drawbacks such as low efficiency and long treatment-time. This study aims to explore the effect of electrodes on U (VI) removal efficiency by a purified indigenous bacteria isolated from a uranium mining waste pile in China. The effects of current intensity, pH, initial U (Ⅵ) concentration, initial dosage of bacteria and contact time on U (Ⅵ) removal efficiency were investigated via static experiments. The results show that U(VI) removal rate was stabilized above 90% and the contact time sharply shortened within 1 h when utilized nickel-graphite electrode as an electron donor. Over the treatment ranges investigated maximum removal of U (Ⅵ) was 96.04% when the direct current was 10 mA, pH was 5, initial U (Ⅵ) concentration was 10 mg/L, and dosage of Leifsonia sp. was 0.25 g/L. In addition, it is demonstrated that U (VI) adsorption by Leifsonia sp. is mainly chemisorption and/or reduction as the quasi-secondary kinetics is more suitable for fitting the process. FTIR results indicated that amino, amide, aldehyde and phosphate -containing groups played a role in the immobilization of U (VI) more or less. SEM and EDS measurements revealed that U appeared to be more obviously aggregated on the surface of cells. A plausible explanation for this, supported by XPS, is that U (VI) was partially reduced to U (IV) by direct current then precipitated on the cells surface. These observations reveal that Nickel-graphite electrode exhibited good electro-chemical properties and synergistic capacity with Leifsonia sp. which potentially provides a new avenue for uranium enhanced removal/immobilization by indigenous bacteria.


Assuntos
Grafite , Monitoramento de Radiação , Urânio , Níquel , Urânio/análise , Elétrons , Bactérias , Eletrodos , Adsorção , Cinética
8.
Anal Sci ; 40(4): 701-707, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38316711

RESUMO

In this work, a novel zirconium phosphonate (ZrPR1R2) was prepared by decorating both the aminoethoxy- group (R1) and the carboxypropyl- group (R2) on the zirconium phosphate layers in order to manipulate further the immobilization of the peroxidase (POD), and an antioxidant biosensor with higher sensitivity was constructed by dropping the POD/ZrPR1R2 composite onto the glassy carbon electrode surface. The activity of the POD/ZrPR1R2 composite was detected by Uv-vis spectra. The direct electrochemical behavior, the electrocatalytic response to dissolved oxygen and hydrogen peroxide, as well as the ability to detect total antioxidant capacity in tea sample were investigated by the methods of cyclic voltammetry. The results indicated that the immobilization of POD in ZrPR1R2 nanosheets matrix enhanced the enzymatic activity, and achieved the fast and direct electron transfer between POD and glassy carbon electrode. Moreover, the POD/ZrPR1R2 composite modified electrode show the electrocatalytic response to hydrogen peroxide in the linear range of 8.8×10-8 to 8.8×10-7 mol L-1, with the detection limit of 3.3×10-8 mol L-1. Attributing to the sensitive response to dissolved oxygen, the total antioxidant capacity can be detected directly in the real tea water by this POD/ZrPR1R2 composite modified electrode.


Assuntos
Antioxidantes , Técnicas Biossensoriais , Peroxidase , Peróxido de Hidrogênio/análise , Zircônio , Carbono , Eletrodos , Peroxidases , Oxigênio , Chá , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos
9.
J Neural Eng ; 21(1)2024 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-38277703

RESUMO

Objective.The wide detection volume of surface electromyogram (EMG) makes it prone to crosstalk, i.e. the signal from other muscles than the target one. Removing this perturbation from bipolar recordings is an important open problem for many applications.Approach.An innovative nonlinear spatio-temporal filter is developed to estimate the EMG generated by the target muscle by processing noisy signals from two bipolar channels, placed over the target and the crosstalk muscle, respectively. The filter is trained on some calibration data and then can be applied on new signals. Tests are provided in simulations (considering different thicknesses of the subcutaneous tissue, inter-electrode distances, locations of the EMG channels, force levels) and experiments (from pronator teres and flexor carpi radialis of 8 healthy subjects).Main results.The proposed filter allows to reduce the effect of crosstalk in all investigated conditions, with a statistically significant reduction of its root mean squared of about 20%, both in simulated and experimental data. Its performances are also superior to those of a blind source separation method applied to the same data.Significance.The proposed filter is simple to be applied and feasible in applications in which single bipolar channels are placed over the muscles of interest. It can be useful in many fields, such as in gait analysis, tests of myoelectric fatigue, rehabilitation with EMG biofeedback, clinical studies, prosthesis control.


Assuntos
Antebraço , Músculo Esquelético , Humanos , Eletromiografia/métodos , Músculo Esquelético/fisiologia , Eletrodos , Biorretroalimentação Psicológica
10.
JACC Clin Electrophysiol ; 10(4): 637-650, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38276927

RESUMO

BACKGROUND: Voltage mapping to detect ventricular scar is important for guiding catheter ablation, but the field-of-view of unipolar, bipolar, conventional, and microelectrodes as it relates to the extent of viable myocardium (VM) is not well defined. OBJECTIVES: The purpose of this study was to evaluate electroanatomic voltage-mapping (EAVM) with different-size electrodes for identifying VM, validated against high-resolution ex-vivo cardiac magnetic resonance (HR-LGE-CMR). METHODS: A total of 9 swine with early-reperfusion myocardial infarction were mapped with the QDOT microcatheter. HR-LGE-CMR (0.3-mm slices) were merged with EAVM. At each EAVM point, the underlying VM in multisize transmural cylinders and spheres was quantified from ex vivo CMR and related to unipolar and bipolar voltages recorded from conventional and microelectrodes. RESULTS: In each swine, 220 mapping points (Q1, Q3: 216, 260 mapping points) were collected. Infarcts were heterogeneous and nontransmural. Unipolar and bipolar voltage increased with VM volumes from >175 mm3 up to >525 mm3 (equivalent to a 5-mm radius cylinder with height >6.69 mm). VM volumes in subendocardial cylinders with 1- or 3-mm depth correlated poorly with all voltages. Unipolar voltages recorded with conventional and microelectrodes were similar (difference 0.17 ± 2.66 mV) and correlated best to VM within a sphere of radius 10 and 8 mm, respectively. Distance-weighting did not improve the correlation. CONCLUSIONS: Voltage increases with transmural volume of VM but correlates poorly with small amounts of VM, which limits EAVM in defining heterogeneous scar. Microelectrodes cannot distinguish thin from thick areas of subendocardial VM. The field-of-view for unipolar recordings for microelectrodes and conventional electrodes appears to be 8 to 10 mm, respectively, and unexpectedly similar.


Assuntos
Infarto do Miocárdio , Animais , Suínos , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Gadolínio , Técnicas Eletrofisiológicas Cardíacas/instrumentação , Técnicas Eletrofisiológicas Cardíacas/métodos , Microeletrodos , Eletrodos , Miocárdio/patologia , Meios de Contraste
11.
Bioelectrochemistry ; 156: 108621, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38042068

RESUMO

In this study, we investigated the binding mode between double-stranded deoxyribonucleic acid (dsDNA) and curcumin (CU) using differential pulse voltammetry (DPV), UV-Vis spectroscopy, and molecular docking. By employing these techniques, we predicted the binding within the minor groove region of dsDNA and CU. Significantly, we employed electrochemistry, specifically cyclic voltammetry (CV), to explore the temperature effect on the dsDNA and CU binding. To the best of our knowledge, this is the first study to utilize electrochemical methods for investigating the temperature-dependent behavior of this binding interaction. Our findings revealed temperature-dependent variations in the binding constants: 2.42 × 103 M-1 at 25 °C, 4.26 × 103 M-1 at 30 °C, 5.44 × 103 M-1 at 35 °C, 6.29 × 103 M-1 at 40 °C, and 7.52 × 103 M-1 at 45 °C. Notably, the binding constant exhibited an increasing trend with elevated temperatures, indicating a temperature-dependent enhancement of the binding interaction.


Assuntos
Curcumina , Temperatura , Simulação de Acoplamento Molecular , DNA/química , Eletrodos
12.
Enzyme Microb Technol ; 174: 110369, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38101243

RESUMO

The entrance of some toxic and hazardous chemical agents such as antibiotics, pesticides, and herbicides into the environment can cause various problems to human health and the environment. In recent years, researchers have considered the use of electrostimulation in the processes of microbial metabolism and biological systems for the treatment of pollutants in the environment. Although several electrostimulation reports have been presented for pollutant removal, little attention has been paid to alternative current (AC) biostimulation. This study presents a systematic review of microbial electrostimulation using bioelectrochemical systems supplied with AC. The utilization of alternating current bioelectrochemical systems (ACBESs) has some advantages such as the provide of appropriate active biofilms in the electrodes due to the cyclical nature of the current and energy transfer in an appropriate manner on the electrode surfaces. Moreover, the ACBESs can reduce hydraulic time (HRT) under optimal conditions and reduce the cost of converting electricity using AC. In microbial electrostimulation, amplitude (AMPL), waveform, C/N, and current have a significant effect on increasing the removal efficiency of the pollutants. The obtained results of the meta-analysis illustrated that various pollutants such as phenol, antibiotics, and nitrate have been removed in an acceptable range of 96% using the ACBESs. Therefore, microbial electrostimulation using AC is a promising technology for the decomposition and removal of various pollutants. Moreover, the ACBESs could provide new opportunities for promoting various bioelectrochemical systems (BESs) for the production of hydrogen or methane.


Assuntos
Fontes de Energia Bioelétrica , Recuperação e Remediação Ambiental , Humanos , Eletricidade , Eletrodos , Poluentes Ambientais , Poluição Ambiental
13.
Water Res ; 250: 121000, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38118253

RESUMO

Electrochemical methods can effectively remove nitrate nitrogen (NO3-N) and orthophosphate phosphorus (PO4-P) from wastewater. This work proposed a process for the simultaneous removal of NO3-N and PO4-P by combining electroreduction with electrochemically-induced calcium phosphate precipitation, and its performance and mechanisms were studied. For the treatment of 100 mg L-1 NO3-N and 5 mg L-1 PO4-P, NO3-N removal of 60-90% (per cathode area: 0.25-0.38 mg h-1 cm-2) and 80-90% (per cathode area: 0.33-0.38 mg h-1 cm-2) could be acquired within 3 h in single-chamber cell (SCC) and dual-chamber cell (DCC), while P removal was 80-98% (per cathode area: 0.10-0.12 mg h-1 cm-2) in SCC after 30 min and 98% (per cathode area: 0.37 mg h-1 cm-2) in DCC within 10 min. The faster P removal in DCC was due to the higher pH and more abundant Ca2+ in the cathode chamber of DCC, which was caused by the cation exchange membrane (CEM). Interestingly, NO3-N reduction enhanced P removal because more OH- can be produced by nitrate reduction than hydrogen evolution for an equal-charge reaction. For 10 mg L-1 PO4-P in SCC, when the initial NO3-N was 0, 20, 100, and 500 mg L-1, the P removal efficiencies after 1 h treatment were < 10%, 45-55%, 86-99%, and above 98% respectively. An increase in Ca2+ concentration also promoted P removal. However, Ca and P inhibited nitrate reduction in SCC at the relatively low initial Ca/P, as CaP on the cathode limited the charge or mass transfer process. The removal efficiency of NO3-N in SCC after 3 h reaction can reduce by about 17%, 40%, and 34% for Co3O4/Ti, Co/Ti, and TiO2/Ti. The degree of inhibition of P on NO3-N removal was related to the content and composition of CaP deposited on the cathode. On the cathode, the lower the deposited Ca and P, and the higher the deposited Ca/P molar ratio, the weaker the inhibition of P on NO3-N removal. Especially, P had little or even no inhibition on nitrate reduction when treated in DCC instead of SCC or under high initial Ca/P. It is speculated that under these conditions, a high local pH and local high concentration Ca2+ layer near the cathode led to a decrease in CaP deposition and an increase in Ca/P molar ratio on the cathode. High initial concentrations of NO3-N might also be beneficial in reducing the inhibition of P on nitrate reduction, as few CaP with high Ca/P molar ratios were deposited on the cathode. The evaluation of the real wastewater treatment was also conducted.


Assuntos
Nitratos , Fosfatos , Nitratos/química , Nitrogênio , Águas Residuárias , Fósforo , Eletrodos
14.
Food Chem ; 441: 138262, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38160520

RESUMO

This work outlines the simultaneous estimation of the total phenolic and alkaloid contents in the tea samples by using catechin (C) and caffeine (CAF) oxidation signals at a non-modified boron-doped diamond (BDD) electrode. Two irreversible oxidation peaks, about + 1.03 (for C) and + 1.45 V (for CAF) vs Ag/AgCl in acetate buffer solution at pH 4.7, were seen in the cyclic voltammetric profile of the binary mixtures of C and CAF. In optimal conditions and utilizing the square-wave mode, the BDD electrode allows for simultaneous quantification of C and CAF within the concentration ranges of 5.0-100.0 µg mL-1 (1.72 × 10-5 - 3.45 × 10-3 mol/L) and 1.0-50.0 µg mL-1 (5.15 × 10-6 - 2.57 × 10-4 mol/L) respectively. The corresponding detection limits are 1.22 µg mL-1 (4.21 × 10-6 mol/L) for C and 0.11 µg mL-1 (5.66 × 10-7 mol/L) for CAF. Other phenolic compounds (like tannic acid, gallic acid, epicatechin, and epigallocatechin gallate) and other alkaloids (theophylline and theobromine) present in tea samples were examined for selectivity assessment. Ultimately, the applicability of the proposed approach was demonstrated by estimating the total phenolic and alkaloid contents in the black and green tea samples, expressed as C and CAF equivalents. The results obtained were contrasted against those acquired using UV-Vis spectrometry.


Assuntos
Alcaloides , Catequina , Polifenóis , Cafeína/análise , Catequina/análise , Alcaloides/análise , Chá/química , Fenóis/análise , Eletrodos
15.
J Environ Manage ; 351: 119768, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38100858

RESUMO

The most common type of environmental contamination is petroleum hydrocarbons. Sustainable and environmentally friendly treatment strategies must be explored in light of the increasing challenges of toxic and critical wastewater contamination. This paper deals with the bacteria-producing biosurfactant and their employment in the bioremediation of hydrocarbon-containing waste through a microbial fuel cell (MFC) with Pseudomonas aeruginosa (exoelectrogen) as co-culture for simultaneous power generation. Staphylococcus aureus is isolated from hydrocarbon-contaminated soil and is effective in hydrocarbon degradation by utilizing hydrocarbon (engine oil) as the only carbon source. The biosurfactant was purified using silica-gel column chromatography and characterised through FTIR and GCMS, which showed its glycolipid nature. The isolated strains are later employed in the MFCs for the degradation of the hydrocarbon and power production simultaneously which has shown a power density of 6.4 W/m3 with a 93% engine oil degradation rate. A biogenic Fe2O3 nanoparticle (NP) was synthesized using Bambusa arundinacea shoot extract for anode modification. It increased the power output by 37% and gave the power density of 10.2 W/m3. Thus, simultaneous hydrocarbon bioremediation from oil-contamination and energy recovery can be achieved effectively in MFC with modified anode.


Assuntos
Fontes de Energia Bioelétrica , Petróleo , Biodegradação Ambiental , Técnicas de Cocultura , Bactérias/metabolismo , Petróleo/análise , Hidrocarbonetos/química , Eletrodos
16.
Adv Sci (Weinh) ; 11(11): e2306826, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38161217

RESUMO

Motivated by the unexplored potential of in vitro neural systems for computing and by the corresponding need of versatile, scalable interfaces for multimodal interaction, an accurate, modular, fully customizable, and portable recording/stimulation solution that can be easily fabricated, robustly operated, and broadly disseminated is presented. This approach entails a reconfigurable platform that works across multiple industry standards and that enables a complete signal chain, from neural substrates sampled through micro-electrode arrays (MEAs) to data acquisition, downstream analysis, and cloud storage. Built-in modularity supports the seamless integration of electrical/optical stimulation and fluidic interfaces. Custom MEA fabrication leverages maskless photolithography, favoring the rapid prototyping of a variety of configurations, spatial topologies, and constitutive materials. Through a dedicated analysis and management software suite, the utility and robustness of this system are demonstrated across neural cultures and applications, including embryonic stem cell-derived and primary neurons, organotypic brain slices, 3D engineered tissue mimics, concurrent calcium imaging, and long-term recording. Overall, this technology, termed "mind in vitro" to underscore the computing inspiration, provides an end-to-end solution that can be widely deployed due to its affordable (>10× cost reduction) and open-source nature, catering to the expanding needs of both conventional and unconventional electrophysiology.


Assuntos
Encéfalo , Neurônios , Eletrodos , Encéfalo/fisiologia , Neurônios/fisiologia , Estimulação Elétrica , Fenômenos Eletrofisiológicos/fisiologia
17.
Artigo em Inglês | MEDLINE | ID: mdl-38083380

RESUMO

Neuromuscular electrical stimulation is used to improve the motor function of paralyzed limbs and prevent muscle atrophy in stroke patients. The system for electrical stimulation is broadly classified into current-mode stimulators and voltage-mode stimulators. The current-mode stimulator adjusts the amplitude of the current, whereas the amplitude of the voltage is adjusted for voltage-mode stimulators. Voltagemode stimulators have the advantage that there is little risk of burns even if the electrode is partially detached. To perform arbitrary current-mode stimulation with voltage-mode stimulators, it is necessary to generate a stimulating voltage based on the skin impedance. As a primary experiment, the frequency characteristics of the electrode-skin impedance were measured using an impedance analyzer on 6 subjects, and the frequency band in which the skin impedance is equivalent to a parallel connection between resistance and capacitance was determined. A prototype bridge circuit with a skin impedance equivalent circuit implemented was designed, assembled, and tested to estimate the skin impedances of 3 subjects. The residuals were computed from the estimated skin-impedance resistance and capacitance of the bridge circuit, and the impedance-analyzer-measured resistance and capacitance. The residuals between the estimated and measured were up to 4.4 % in the resistance component, and up to 8.2 % in the capacitance component of the skin impedance measurements by the impedance analyzer.


Assuntos
Terapia por Estimulação Elétrica , Pele , Humanos , Impedância Elétrica , Estimulação Elétrica , Eletrodos
18.
Artigo em Inglês | MEDLINE | ID: mdl-38083486

RESUMO

The development of high-density multielectrode catheters has significantly advanced cardiac electrophysiology mapping. High-density grid catheters have enabled the creation of a novel technique for reconstructing electrogram (EGM) signals known as "omnipole," which is believed to be more reliable than other methods, especially in terms of orientation independence. This study aims to evaluate how distance affects the omnipolar reconstruction of EGMs by comparing different configurations. Using an animal set up of perfused isolated rabbit hearts, recordings were taken using an ad hoc high-density epicardial multielectrode catheter. Inter-electrode distances ranging from 1 to 4 mm were analysed for their effect on the quality of resulting EGMs. Two biomarkers were computed to evaluate the robustness of the reconstructions: the areas contained within the bipolar loops and the amplitudes of the omnipoles. We hypothesised that both bipolar and omnipolar electrograms would be more robust at shorter inter-electrode distances. The results showed that an increase in distance triggers an increase in loop areas and amplitudes, which supports the hypothesis. This finding provides a more reliable estimate of wavefront propagation for the cross-omnipolar reconstruction method. These results emphasise the importance of distance in cardiac electrophysiology mapping and provide valuable insights into the use of high-density multielectrode catheters for EGM reconstruction.Clinical Relevance- The results of this study have direct clinical relevance in the application of the described techniques to recording systems in the cardiac electrophysiology laboratory, enabling clinicians to obtain more precise characterisation of signals in the myocardium.


Assuntos
Técnicas Eletrofisiológicas Cardíacas , Miocárdio , Animais , Coelhos , Técnicas Eletrofisiológicas Cardíacas/métodos , Eletrodos , Eletrofisiologia Cardíaca , Pericárdio
19.
Nat Commun ; 14(1): 8386, 2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38104122

RESUMO

Bioelectronic medicine is a rapidly growing field where targeted electrical signals can act as an adjunct or alternative to drugs to treat neurological disorders and diseases via stimulating the peripheral nervous system on demand. However, current existing strategies are limited by external battery requirements, and the injury and inflammation caused by the mechanical mismatch between rigid electrodes and soft nerves. Here we report a wireless, leadless, and battery-free ferroelectret implant, termed NeuroRing, that wraps around the target peripheral nerve and demonstrates high mechanical conformability to dynamic motion nerve tissue. As-fabricated NeuroRing can act as an ultrasound receiver that converts ultrasound vibrations into electrostimulation pulses, thus stimulating the targeted peripheral nerve on demand. This capability is demonstrated by the precise modulation of the sacral splanchnic nerve to treat colitis, providing a framework for future bioelectronic medicines that offer an alternative to non-specific pharmacological approaches.


Assuntos
Tecido Nervoso , Nervos Periféricos , Nervos Periféricos/fisiologia , Sistema Nervoso Periférico , Eletrodos , Próteses e Implantes
20.
Sensors (Basel) ; 23(21)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37960592

RESUMO

A Brain-Computer Interface (BCI) is a medium for communication between the human brain and computers, which does not rely on other human neural tissues, but only decodes Electroencephalography (EEG) signals and converts them into commands to control external devices. Motor Imagery (MI) is an important BCI paradigm that generates a spontaneous EEG signal without external stimulation by imagining limb movements to strengthen the brain's compensatory function, and it has a promising future in the field of computer-aided diagnosis and rehabilitation technology for brain diseases. However, there are a series of technical difficulties in the research of motor imagery-based brain-computer interface (MI-BCI) systems, such as: large individual differences in subjects and poor performance of the cross-subject classification model; a low signal-to-noise ratio of EEG signals and poor classification accuracy; and the poor online performance of the MI-BCI system. To address the above problems, this paper proposed a combined virtual electrode-based EEG Source Analysis (ESA) and Convolutional Neural Network (CNN) method for MI-EEG signal feature extraction and classification. The outcomes reveal that the online MI-BCI system developed based on this method can improve the decoding ability of multi-task MI-EEG after training, it can learn generalized features from multiple subjects in cross-subject experiments and has some adaptability to the individual differences of new subjects, and it can decode the EEG intent online and realize the brain control function of the intelligent cart, which provides a new idea for the research of an online MI-BCI system.


Assuntos
Interfaces Cérebro-Computador , Humanos , Eletroencefalografia/métodos , Redes Neurais de Computação , Imagens, Psicoterapia , Eletrodos , Algoritmos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA