Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 953
Filtrar
Mais filtros

Medicinas Complementares
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Endocrinol Metab ; 324(2): E154-E166, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36598900

RESUMO

Maternal obesity is an important risk factor for obesity, cardiovascular, and metabolic diseases in the offspring. Studies have shown that it leads to hypothalamic inflammation in the progeny, affecting the function of neurons regulating food intake and energy expenditure. In adult mice fed a high-fat diet, one of the hypothalamic abnormalities that contribute to the development of obesity is the damage of the blood-brain barrier (BBB) at the median eminence-arcuate nucleus (ME-ARC) interface; however, how the hypothalamic BBB is affected in the offspring of obese mothers requires further investigation. Here, we used confocal and transmission electron microscopy, transcript expression analysis, glucose tolerance testing, and a cross-fostering intervention to determine the impact of maternal obesity and breastfeeding on BBB integrity at the ME-ARC interface. The offspring of obese mothers were born smaller; conversely, at weaning, they presented larger body mass and glucose intolerance. In addition, maternal obesity-induced structural and functional damage of the offspring's ME-ARC BBB. By a cross-fostering intervention, some of the defects in barrier integrity and metabolism seen during development in an obesogenic diet were recovered. The offspring of obese dams breastfed by lean dams presented a reduction of body mass and glucose intolerance as compared to the offspring continuously exposed to an obesogenic environment during intrauterine and perinatal life; this was accompanied by partial recovery of the anatomical structure of the ME-ARC interface, and by the normalization of transcript expression of genes coding for hypothalamic neurotransmitters involved in energy balance and BBB integrity. Thus, maternal obesity promotes structural and functional damage of the hypothalamic BBB, which is, in part, reverted by lactation by lean mothers.NEW & NOTEWORTHY Maternal dietary habits directly influence offspring health. In this study, we aimed at determining the impact of maternal obesity on BBB integrity. We show that DIO offspring presented a leakier ME-BBB, accompanied by changes in the expression of transcripts encoding for endothelial and tanycytic proteins, as well as of hypothalamic neuropeptides. Breastfeeding in lean dams was sufficient to protect the offspring from ME-BBB disruption, providing a preventive strategy of nutritional intervention during early life.


Assuntos
Intolerância à Glucose , Obesidade Materna , Humanos , Feminino , Animais , Camundongos , Gravidez , Barreira Hematoencefálica/metabolismo , Eminência Mediana/metabolismo , Obesidade Materna/metabolismo , Mães , Intolerância à Glucose/metabolismo , Obesidade/metabolismo , Hipotálamo/metabolismo , Dieta Hiperlipídica/efeitos adversos , Fenômenos Fisiológicos da Nutrição Materna
2.
Front Endocrinol (Lausanne) ; 13: 953995, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35966104

RESUMO

The median eminence (ME) is part of the neuroendocrine system (NES) that functions as a crucial interface between the hypothalamus and pituitary gland. The ME contains many non-neuronal cell types, including oligodendrocytes, oligodendrocyte precursor cells (OPCs), tanycytes, astrocytes, pericytes, microglia and other immune cells, which may be involved in the regulation of NES function. For example, in mice, ablation of tanycytes (a special class of ependymal glia with stem cell-like functions) results in weight gain, feeding, insulin insensitivity and increased visceral adipose, consistent with the demonstrated ability of these cells to sense and transport both glucose and leptin, and to differentiate into neurons that control feeding and metabolism in the hypothalamus. To give a further example, OPCs in the ME of mice have been shown to rapidly respond to dietary signals, in turn controlling composition of the extracellular matrix in the ME, derived from oligodendrocyte-lineage cells, which may contribute to the previously described role of these cells in actively maintaining leptin-receptor-expressing dendrites in the ME. In this review, we explore and discuss recent advances such as these, that have developed our understanding of how the various cell types of the ME contribute to its function in the NES as the interface between the hypothalamus and pituitary gland. We also highlight avenues of future research which promise to uncover additional functions of the ME and the glia, stem and progenitor cells it contains.


Assuntos
Leptina , Eminência Mediana , Animais , Células Ependimogliais/metabolismo , Hipotálamo/metabolismo , Leptina/metabolismo , Eminência Mediana/metabolismo , Camundongos , Neuroglia/fisiologia
3.
Cell Mol Life Sci ; 79(8): 458, 2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35907165

RESUMO

Body fluid homeostasis is critical to survival. The integrity of the hypothalamo-neurohypophysial system (HNS) is an important basis of the precise regulation of body fluid metabolism and arginine vasopressin (AVP) hormone release. Clinically, some patients with central diabetes insipidus (CDI) due to HNS lesions can experience recovery compensation of body fluid metabolism. However, whether the hypothalamus has the potential for structural plasticity and self-repair under pathological conditions remains unclear. Here, we report the repair and reconstruction of a new neurohypophysis-like structure in the hypothalamic median eminence (ME) after pituitary stalk electrical lesion (PEL). We show that activated and proliferating adult neural progenitor cells differentiate into new mature neurons, which then integrate with remodeled AVP fibers to reconstruct the local AVP hormone release neural circuit in the ME after PEL. We found that the transcription factor of NK2 homeobox 1 (NKX2.1) and the sonic hedgehog signaling pathway, mediated by NKX2.1, are the key regulators of adult hypothalamic neurogenesis. Taken together, our study provides evidence that adult ME neurogenesis is involved in the structural reconstruction of the AVP release circuit and eventually restores body fluid metabolic homeostasis during hypothalamic self-repair.


Assuntos
Líquidos Corporais , Eminência Mediana , Arginina Vasopressina/metabolismo , Líquidos Corporais/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Hipotálamo/metabolismo , Eminência Mediana/metabolismo , Neurogênese , Hipófise/metabolismo
5.
Ann Neurol ; 91(2): 282-288, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34981555

RESUMO

Narcolepsy type 1 (NT1) is a chronic sleep disorder correlated with loss of hypocretin(orexin). In NT1 post-mortem brains, we observed 88% reduction in corticotropin-releasing hormone (CRH)-positive neurons in the paraventricular nucleus (PVN) and significantly less CRH-positive fibers in the median eminence, whereas CRH-neurons in the locus coeruleus and thalamus, and other PVN neuronal populations were spared: that is, vasopressin, oxytocin, tyrosine hydroxylase, and thyrotropin releasing hormone-expressing neurons. Other hypothalamic cell groups, that is, the suprachiasmatic, ventrolateral preoptic, infundibular, and supraoptic nuclei and nucleus basalis of Meynert, were unaffected. The surprising selective decrease in CRH-neurons provide novel targets for diagnostics and therapeutic interventions. ANN NEUROL 2022;91:282-288.


Assuntos
Hormônio Liberador da Corticotropina/metabolismo , Hipotálamo/metabolismo , Hipotálamo/patologia , Narcolepsia/patologia , Neurônios/patologia , Idoso , Idoso de 80 Anos ou mais , Contagem de Células , Feminino , Humanos , Hipotálamo/diagnóstico por imagem , Imuno-Histoquímica , Locus Cerúleo/citologia , Locus Cerúleo/diagnóstico por imagem , Locus Cerúleo/metabolismo , Masculino , Eminência Mediana/citologia , Eminência Mediana/diagnóstico por imagem , Eminência Mediana/metabolismo , Pessoa de Meia-Idade , Narcolepsia/diagnóstico por imagem , Núcleo Hipotalâmico Paraventricular/citologia , Núcleo Hipotalâmico Paraventricular/diagnóstico por imagem , Núcleo Hipotalâmico Paraventricular/metabolismo
6.
Neural Plast ; 2021: 4894881, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34659396

RESUMO

Stem cells have the potential as a regenerative therapy for cerebral ischemia by improving functional outcomes. However, cell transplantation has some limitations, including a low rate of the grafted cell survival. There is still a major challenge of promoting the harmonious symbiosis between grafted cells and the host. Acupuncture can effectively improve the functional outcome after cerebral ischemia. The present study evaluated the therapeutic effects and explored the mechanism of combined medial ganglionic eminence (MGE) neural progenitors differentiated from human embryonic stem cells (hESCs) with electroacupuncture (EA) in a bilateral common carotid artery occlusion (2VO) rat model. The results showed that EA could promote the survival of the grafted MGE neural progenitors differentiated from hESCs and alleviate learning and memory impairment in rats with cerebral ischemia. This may have partially resulted from inhibited expression of TNF-α and IL-1ß and increased vascular endothelial growth factor (VEGF) expression and blood vessel density in the hippocampus. Our findings indicated that EA could promote the survival of the grafted MGE neural progenitors and enhance transplantation therapy's efficacy by promoting angiogenesis and inhibiting inflammation.


Assuntos
Isquemia Encefálica/terapia , Eletroacupuntura/métodos , Mediadores da Inflamação/antagonistas & inibidores , Eminência Mediana/transplante , Neovascularização Fisiológica/fisiologia , Transplante de Células-Tronco/métodos , Animais , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Sobrevivência Celular/fisiologia , Células Cultivadas , Células-Tronco Embrionárias/fisiologia , Células-Tronco Embrionárias/transplante , Hipocampo/citologia , Hipocampo/fisiologia , Humanos , Mediadores da Inflamação/metabolismo , Masculino , Aprendizagem em Labirinto/fisiologia , Eminência Mediana/citologia , Eminência Mediana/fisiologia , Células-Tronco Neurais/fisiologia , Células-Tronco Neurais/transplante , Ratos , Ratos Sprague-Dawley
7.
STAR Protoc ; 2(3): 100787, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34485946

RESUMO

The hypothalamic magnocellular neuroendocrine cells (MNCs) project to the posterior pituitary (PPi), regulating reproduction and fluid homeostasis. It has been challenging to selectively label and manipulate MNCs, as they are intermingled with parvocellular neuroendocrine cells projecting to the median eminence. Here, we provide a step-by-step protocol for specifically targeting the MNCs by infusing retrograde viral tracers into the PPi. When combined with optogenetics, chemogenetics, and transgenic animals, this approach allows cell-type-specific manipulation of MNCs in multiple sites for functional dissection. For complete details on the use and execution of this protocol, please refer to Zhang et al. (2021) and Tang et al. (2020).


Assuntos
Hipotálamo/citologia , Células Neuroendócrinas , Optogenética/métodos , Neuro-Hipófise/citologia , Animais , Animais Geneticamente Modificados , Masculino , Eminência Mediana/citologia , Rede Nervosa/citologia , Rede Nervosa/fisiologia , Células Neuroendócrinas/citologia , Células Neuroendócrinas/fisiologia , Ratos , Ratos Sprague-Dawley
8.
Handb Clin Neurol ; 180: 227-251, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34225932

RESUMO

The arcuate nucleus (ARC) is located in the mediobasal hypothalamus and forms a morphological and functional entity with the median eminence (ME), the ARC-ME. The ARC comprises several distinct types of neurons controlling prolactin release, food intake, and metabolism as well as reproduction and onset of puberty. The ME lacks a blood-brain barrier and provides an entry for peripheral signals (nutrients, leptin, ghrelin). ARC neurons are adjacent to the wall of the third ventricle. This facilitates the exchange of signals from and to the cerebrospinal fluid. The ventricular wall is composed of tanycytes that serve different functions. Axons of ARC neurons contribute to the tuberoinfundibular tract terminating in the ME on the hypophysial portal vessels (HPV) and establish one of the neurohumoral links between the hypothalamus and the pituitary. ARC neurons are reciprocally connected with several other hypothalamic nuclei, the brainstem, and reward pathways. The hypophysial pars tuberalis (PT) is attached to the ME and the HPV. The PT, an important interface of the neuroendocrine system, is mandatory for the control of seasonal functions. This contribution provides an update of our knowledge about the ARC-ME complex and the PT which, inter alia, is needed to understand the pathophysiology of metabolic diseases and reproduction.


Assuntos
Núcleo Arqueado do Hipotálamo , Eminência Mediana , Humanos , Hipotálamo , Neurônios , Hipófise
9.
Handb Clin Neurol ; 180: 253-273, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34225934

RESUMO

The blood-brain barrier is generally attributed to endothelial cells. However, in circumventricular organs, such as the median eminence, tanycytes take over the barrier function. These ependymoglial cells form the wall of the third ventricle and send long extensions into the parenchyma to contact blood vessels and hypothalamic neurons. The shape and location of tanycytes put them in an ideal position to connect the periphery with central nervous compartments. In line with this, tanycytes control the transport of hormones and key metabolites in and out of the hypothalamus. They function as sensors of peripheral homeostasis for central regulatory networks. This chapter discusses current evidence that tanycytes play a key role in regulating glucose balance, food intake, endocrine axes, seasonal changes, reproductive function, and aging. The understanding of how tanycytes perform these diverse tasks is only just beginning to emerge and will probably lead to a more differentiated view of how the brain and the periphery interact.


Assuntos
Células Ependimogliais , Eminência Mediana , Núcleo Arqueado do Hipotálamo , Barreira Hematoencefálica , Células Endoteliais , Humanos , Hipotálamo
10.
J Neuroendocrinol ; 32(11): e12880, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32627906

RESUMO

Dopamine from tuberoinfundibular dopaminergic (TIDA) neurones tonically inhibits prolactin (PRL) secretion. Lactational hyperprolactinaemia is associated with a reduced activity of TIDA neurones. However, it remains controversial whether the suckling-induced PRL surge is driven by an additional decrease in dopamine release or by stimulation from a PRL-releasing factor. In the present study, we further investigated the role of dopamine in the PRL response to suckling. Non-lactating (N-Lac), lactating 4 hour apart from pups (Lac), Lac with pups return and suckling (Lac+S), and post-lactating (P-Lac) rats were evaluated. PRL levels were elevated in Lac rats and increased linearly within 30 minutes of suckling in Lac+S rats. During the rise in PRL levels, dopamine and 3,4-dihydroxyphenylacetic acid (DOPAC) levels in the median eminence (ME) and neurointermediate lobe of the pituitary did not differ between Lac+S and Lac rats. However, dopamine and DOPAC were equally decreased in Lac and Lac+S compared to N-Lac and P-Lac rats. Suckling, in turn, reduced phosphorylation of tyrosine hydroxylase in the ME of Lac+S. Domperidone and bromocriptine were used to block and activate pituitary dopamine D2 receptors, respectively. Domperidone increased PRL secretion in both N-Lac and Lac rats, and suckling elicited a robust surge of PRL over the high basal levels in domperidone-treated Lac+S rats. Conversely, bromocriptine blocked the PRL response to suckling. The findings obtained in the present study provide evidence that dopamine synthesis and release are tonically reduced during lactation, whereas dopamine is still functional with respect to inhibiting PRL secretion. However, there appears to be no further reduction in dopamine release associated with the suckling-induced rise in PRL. Instead, the lower dopaminergic tone during lactation appears to be required to sensitise the pituitary to a suckling-induced PRL-releasing factor.


Assuntos
Animais Lactentes/fisiologia , Dopamina/fisiologia , Hipotálamo/fisiologia , Lactação/fisiologia , Prolactina/metabolismo , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Animais , Bromocriptina/farmacologia , Domperidona/farmacologia , Dopamina/metabolismo , Agonistas de Dopamina/farmacologia , Antagonistas de Dopamina/farmacologia , Feminino , Hipotálamo/efeitos dos fármacos , Eminência Mediana/efeitos dos fármacos , Eminência Mediana/metabolismo , Adeno-Hipófise Parte Intermédia/efeitos dos fármacos , Adeno-Hipófise Parte Intermédia/metabolismo , Hormônio Liberador de Prolactina/metabolismo , Ratos , Ratos Wistar , Tirosina 3-Mono-Oxigenase/metabolismo
11.
Neuron ; 107(2): 205-207, 2020 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-32702343

RESUMO

How circulating signals enter the median eminence to trigger homeostatic hypothalamic responses is not well understood. Jiang et al. describe a neural mechanism that increases endothelial fenestrations and enhances the hypothalamic response to the circulating hormone leptin, suggesting a novel way to regulate brain entry through vascular wall remodeling.


Assuntos
Barreira Hematoencefálica , Eminência Mediana , Hipotálamo , Neurônios , Permeabilidade
12.
Brain Struct Funct ; 224(6): 2079-2085, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31147779

RESUMO

Substance P is an eleven-amino acid neuropeptide (undecapeptide) with multiple effects on the gastrointestinal, cardiovascular, and urinary systems as well as complex central nervous system functions such as pain, learning, memory, and sexual homeostasis. Previous studies also revealed that substance P exhibits regulatory effects on growth possibly via influencing hypothalamic GHRH release in human. However, the morphological substrate of this phenomenon has not been elucidated yet. In the present study, we examined the putative presence of juxtapositions between the substance P- and GHRH-immunoreactive (IR) systems using double-label immunocytochemistry. High-magnification light microscopy with oil immersion was used to identify putative juxtapositions between these systems. Our studies revealed substance P-IR fiber network abutting on the surface of the majority of GHRH-immunoreactive neurons in the human hypothalamus. These fiber varicosities often cover a significant surface area on the GHRH-IR neurons, forming basket-like encasements with multiple en passant type contacts. The majority of these densely innervated GHRH-IR neurons were found in the infundibular nucleus/median eminence, while substance P-IR fibers often abut on the GHRH-IR neurons in the periventricular zone and basal perifornical area of the tuberal region and in the dorsomedial subdivision of the ventromedial nucleus. The posterior hypothalamus did not contain observable substance P-GHRH associations. The density and the morphology of these intimate associations suggest that substance P influences growth by regulating hypothalamic GHRH release by direct synaptic contacts.


Assuntos
Hormônio Liberador de Hormônio do Crescimento/metabolismo , Hipotálamo/metabolismo , Neurônios/metabolismo , Substância P/metabolismo , Idoso , Idoso de 80 Anos ou mais , Diencéfalo/metabolismo , Feminino , Humanos , Imuno-Histoquímica/métodos , Masculino , Eminência Mediana/metabolismo
13.
Life Sci ; 227: 166-174, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-31026452

RESUMO

AIMS: To investigate the direct histomorphological clues and observe the biological effects of VP acting on gonadotropin-releasing hormone (GnRH) secretion. MAIN METHODS: Immunofluorescence was conducted to investigate the expressions of GnRH and VP in experimental left varicocele (ELV) rats and ELV repair rats. The colocalization of GnRH and VP was observed by electron microscopy immunohistochemistry. The protein-protein interaction between GnRH and VP was tested by co-immunoprecipitation (co-IP) and the proximity ligation assay (PLA). The effects of intracellular and extracellular VP on GnRH and relative transcription factors (Oct-1, Otx2, Pbx1b and DREAM) were respectively evaluated in VP overexpressed and VP treated GT1-7 cells. KEY FINDINGS: Both hypothalamic GnRH and VP decreased in ELV rats and recovered by ELV repair. The overlapped immunolocalizations of GnRH and VP mainly distributed in the lateral part of the arcuate nucleus (ArcL) and median eminence (ME) with a Manders' overlap coefficient of 0.743 ±â€¯0.117. Immunoreactive substances of GnRH and VP existed in the same and adjacent terminals. VP overexpression did not cause any significant effects on the expressions of GnRH and Oct-1, as well as GnRH promoter activity. While 50-200 pg/ml VP treatments increased GnRH mRNA levels in a dose- and time-dependent manner in GT1-7 cells. Additionally, 200 pg/ml VP triggered a marked promotion of expressions of GnRH, Oct-1, Oxt2 Pbx1b and DREAM, as well as GnRH promoter activity (P < 0.05). SIGNIFICANCE: The results reveal the colocalization and interaction of VP and GnRH, which will be conducive to explain the effects and mechanisms of VP acting on reproduction.


Assuntos
Hormônio Liberador de Gonadotropina/metabolismo , Vasopressinas/metabolismo , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Linhagem Celular , Hormônio Liberador de Gonadotropina/efeitos dos fármacos , Gonadotropinas/metabolismo , Hipotálamo/citologia , Hipotálamo/efeitos dos fármacos , Masculino , Eminência Mediana/metabolismo , Neurônios/metabolismo , Regiões Promotoras Genéticas/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Fatores de Transcrição/metabolismo , Vasopressinas/farmacologia
14.
Neurochem Int ; 128: 135-142, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31002894

RESUMO

The arcuate nucleus (Arc) integrates circulating hormonal and metabolic signals to control energy expenditure and intake. One of the most important routes that enables the Arc to sense circulating molecules is through the median eminence (ME), which lacks a typical blood-brain barrier. However, the mechanism by which circulating molecules reach the Arc neurons remains unclear. This review focuses on what is known to date regarding the special structure and permeability of the ME vasculature and active transport of circulating molecules from the ME to the Arc. Recent studies have demonstrated that the ME displays angiogenic behavior that is expected to provide high vascular permeability. Parenchymal diffusion of circulating molecules from the ME vasculature is size-dependent, and tanycytes actively transport circulating molecules from the ME to the Arc. Finally, we highlight structural plasticity of the Arc and ME as playing an important role in maintaining energy balance homeostasis.


Assuntos
Núcleo Arqueado do Hipotálamo/irrigação sanguínea , Núcleo Arqueado do Hipotálamo/metabolismo , Barreira Hematoencefálica/metabolismo , Ingestão de Energia/fisiologia , Eminência Mediana/irrigação sanguínea , Eminência Mediana/metabolismo , Animais , Humanos , Hipotálamo/irrigação sanguínea , Hipotálamo/metabolismo
15.
Gen Comp Endocrinol ; 263: 43-50, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29656045

RESUMO

Gonadotropin-releasing hormone (GnRH) is a decapeptide involved in the regulation of reproduction in all mammals, but the distribution of GnRH neurons within the brain varies widely among species. The objective of the present study was to characterize the number and distribution of GnRH neurons in the hypothalamus and preoptic area of llamas, an induced ovulator. The brains of female llamas (n = 4) were fixed, frozen and sectioned serially every 50 µm in the transverse (coronal) plane. Every 10th section was stained for immunohistochemical detection of GnRH-positive neuron cell bodies and fibers by incubation with 3,3'-diaminobenzidine. The number of counted immunoreactive cells ranged from 222 to 250 (≈241 ±â€¯13 cells in the preoptic area and hypothalamus per animal) and were localized in the medio-basal hypothalamus (44.3%), anterior hypothalamus (27%), preoptic area (14.9%), diagonal band of Broca/medial septum (13.4%), and mammillary area (0.5%). The immunoreactive cells were not localized in specific hypothalamic nuclei, but rather appeared to be distributed diffusely. The highest concentration of immunoreactive neuron fibers was in the median eminence (P < 0.05), but fibers were identified in most of the areas analyzed, including the neurohypophysis. The GnRH neurons within the hypothalamus displayed monopolar (33%), bipolar (39%), and multipolar (28%) morphologies. The bipolar type was most common in the medio-basal region (40%; P < 0.05). We conclude that GnRH neurons and fibers form a network within the anterior and medio-basal hypothalamus of llamas, suggesting the central location of mechanisms controlling reproductive processes in llamas (i.e., induced ovulation).


Assuntos
Camelídeos Americanos , Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo , Neurônios/citologia , Neurônios/metabolismo , Indução da Ovulação , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Camelídeos Americanos/metabolismo , Contagem de Células , Forma Celular , Feminino , Fase Folicular/metabolismo , Hipotálamo/citologia , Hipotálamo/metabolismo , Eminência Mediana/citologia , Eminência Mediana/metabolismo , Indução da Ovulação/veterinária , Área Pré-Óptica/citologia , Área Pré-Óptica/metabolismo , Distribuição Tecidual
16.
An. R. Acad. Farm ; 83(2): 224-240, abr.-jun. 2017. ilus, tab
Artigo em Espanhol | IBECS | ID: ibc-164600

RESUMO

Desde hace muchos años se considera que el control de la reproducción radica en el cerebro y que el hipotálamo es la región del SNC directamente implicada en esta función. Clásicamente se había descrito un eje hipotálamo-hipofisario-gonadal encargado de controlar la función reproductora. Los avances de los últimos años confirman este concepto, pero se está demostrando que existe una mayor dependencia del eje al estar íntimamente conectado con el resto del SNC, con otros ejes reguladores hipotalámicos (energía y metabolismo, medio líquido interno, control simpático y parasimpático, estrés, hormonas, etc) y con el resto del organismo. Se reciben, además, de manera directa o indirecta, informaciones nerviosas y moleculares del medio interno y de situaciones del medio externo con mayor amplitud y selectividad que lo anteriormente descrito. Las amplias interconexiones que cada vez se van poniendo más de manifiesto (entre los núcleos y neuronas no secretoras y secretoras del hipotálamo; entre éstas neuronas y las extrahipotalámicas; y entre los ejes funcionales descritos), hacen cada vez más difícil describir con exactitud la base morfofuncional de cada individuo de cada especie en cada situación (sexo, edad, estadio del ciclo reproductivo, condiciones externas y externas), máxime cuando existen enormes capacidades de adaptación de las células y los sistemas funcionales. Las neuronas descritas en los últimos años relacionadas con la reproducción son las neuronas secretoras de GnRH, GnIH y Kisspeptina (neuronas productoras de la hormona liberadora de gonadotropina, la hormona inhibidora de las neuronas GnRH y las neuronas reguladoras de GnRH mediante el péptido Kisspeptina), pero todavía se desconoce si existen otros péptidos reguladores de las gonadotropinas hipofisarias así como de otras neuronas (o péptidos) que producen factores controladores de estas neuronas. Sí se sabe que estas neuronas están formadas por subconjuntos que pueden secretar otras substancias y/o ser reguladas de diferente manera. La gran variabilidad de las conexiones sinápticas y la secreción de neuropéptidos parece indicar que es necesario conocer la ‘modalidad funcional’ específica (o cuadro éspecífico de una situación en un individuo de una especie) más que las células intervinientes en un proceso. La compleja interrelación de los subtipos morfofuncionales de las neuronas secretoras y no secretoras de los diferentes núcleos o áreas del hipotálamo relacionadas con la reproducción plantea dudas sobre la actuación terapéutica. Posibles tratamientos farmacológicos y no farmacológicos, estimulando ‘específicamente’ algunos tipos neuronales, pueden tener consecuencias adversas al desestimar conexiones colaterales a otros sistemas o desconocer la existencia de neuronas de un subtipo en otras ‘vía’ o ‘ejes’ funcionales del hipotálamo, con lo que se podrían inducir fenómenos secundarios de gran transcendencia (AU)


For many years, the control of reproduction has been considered a brin function, being the hypothalamus the CNS region directly involved. The main neurons described in recent years related to reproduction are the secretory neurons of GnRH, GnIH and Kisspeptine (gonadotropin-releasing hormone; the gonadotropin-inhibitory hormone and by the peptide Kisspeptine- GnRH regulatory neurons), but it is still unknown whether other pituitary gonadotropin regulatory peptides exist as well as other neurons (or peptides) that produce regulatory factors for these neurons. It is known that these neurons are formed by subsets that can secrete other substances and/or be regulated in different ways. The great variability of the synaptic connections and the secretion of neuropeptides seem to indicate that it is necessary to know the specific ’functional modality’ (or specific picture of a situation in an individual of a species) rather than the cells involved in a process. The complex interrelationship of the morphofunctional subtypes of secretory and non-secreting neurons of the different nuclei or areas of the hypothalamus related to reproduction raises doubts about the therapeutic performance. Possible pharmacological and non-pharmacological treatments, specifically stimulating some neuronal types, may have important side effects by disregarding collateral connections to other systems or by ignoring the existence of neurons of a subtype in other functional ‘axes’ of the hypothalamus (AU)


Assuntos
Humanos , Feminino , Gravidez , Fenômenos Reprodutivos Fisiológicos , Reprodução , Cérebro/fisiologia , Gravidez/fisiologia , Hipotálamo/fisiologia , Eminência Mediana/fisiologia , Neuroglia/fisiologia
17.
J Neuroendocrinol ; 29(6)2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28425631

RESUMO

Prolactin is a pleiotropic peptide hormone produced by the lactotrophs in the anterior pituitary. Its rate of secretion is primarily regulated by a negative-feedback mechanism where prolactin stimulates the activity of the tuberoinfundibular dopaminergic (TIDA) neurones, increasing their release of dopamine, which accesses the pituitary via the median eminence to suppress further prolactin secretion. In addition to its well established role in lactation, circulating prolactin is secreted in response to stress, although the mechanism by which this is achieved or its cellular targets remains unknown. In the present study, we show that 15 minutes of restraint stress causes an approximately seven-fold increase in circulating prolactin concentration in male mice. Monitoring prolactin receptor activation, using immunohistochemistry to determine the level and distribution of tyrosine phosphorylated signal transducer and activator of transcription 5 (pSTAT5), we show that this stress-induced increase in prolactin interacts with both central and peripheral targets. Restraint stress for 15 minutes significantly increased pSTAT5 staining in the arcuate nucleus, median eminence and the zona fasciculata of the adrenal cortex. In each case, this response was prevented by pretreating the animals with bromocriptine to block prolactin secretion from the pituitary. Interestingly, in contrast to many cells in the arcuate nucleus, stress reduced pSTAT5 staining of the TIDA neurones (identified by dual-labelling for tyrosine hydroxylase). This suggests that there is reduced prolactin signalling in these cells and thus potentially a decline in their inhibitory influence on prolactin secretion. These results provide evidence that prolactin secreted in response to acute stress is sufficient to activate prolactin receptors in selected target tissues known to be involved in the physiological adaptation to stress.


Assuntos
Córtex Suprarrenal/metabolismo , Hipotálamo/metabolismo , Prolactina/fisiologia , Restrição Física , Fator de Transcrição STAT5/metabolismo , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Bromocriptina/farmacologia , Neurônios Dopaminérgicos/metabolismo , Masculino , Eminência Mediana/metabolismo , Camundongos , Fosforilação/fisiologia , Prolactina/antagonistas & inibidores , Prolactina/sangue , Receptores da Prolactina/fisiologia
18.
Nat Neurosci ; 20(3): 378-379, 2017 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-28230849
19.
Proc Natl Acad Sci U S A ; 114(9): 2379-2382, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28193889

RESUMO

Small assemblies of hypothalamic "parvocellular" neurons release their neuroendocrine signals at the median eminence (ME) to control long-lasting pituitary hormone rhythms essential for homeostasis. How such rapid hypothalamic neurotransmission leads to slowly evolving hormonal signals remains unknown. Here, we show that the temporal organization of dopamine (DA) release events in freely behaving animals relies on a set of characteristic features that are adapted to the dynamic dopaminergic control of pituitary prolactin secretion, a key reproductive hormone. First, locally generated DA release signals are organized over more than four orders of magnitude (0.001 Hz-10 Hz). Second, these DA events are finely tuned within and between frequency domains as building blocks that recur over days to weeks. Third, an integration time window is detected across the ME and consists of high-frequency DA discharges that are coordinated within the minutes range. Thus, a hierarchical combination of time-scaled neuroendocrine signals displays local-global integration to connect brain-pituitary rhythms and pace hormone secretion.


Assuntos
Hipotálamo/fisiologia , Eminência Mediana/fisiologia , Hipófise/fisiologia , Sistema Hipófise-Suprarrenal/fisiologia , Prolactina/metabolismo , Ritmo Ultradiano/fisiologia , Potenciais de Ação/fisiologia , Animais , Relógios Biológicos/fisiologia , Técnicas Eletroquímicas , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Microeletrodos
20.
Mol Cell Endocrinol ; 445: 7-13, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-27530416

RESUMO

Along with the sub-ventricular zone of the forebrain lateral ventricles and the sub-granular zone of the dentate gyrus in the hippocampus, the hypothalamus has recently emerged as a third gliogenic and neurogenic niche in the central nervous system. The hypothalamus is the main regulator of body homeostasis because it centralizes peripheral information to regulate crucial physiological functions through the pituitary gland and the autonomic nervous system. Its ability to sense signals originating outside the brain relies on its exposure to blood-born molecules through the median eminence, which is localized outside the blood brain barrier. Within the hypothalamus, a population of specialized radial glial cells, the tanycytes, control exposure to blood-born signals by acting both as sensors and regulators of the hypothalamic input and output. In addition, lineage-tracing experiments have recently revealed that tanycytes represent a population of hypothalamic stem cells, defining them as a pivotal cell type within the hypothalamus. Hypothalamic neurogenesis has moreover been shown to have an important role in feeding control and energy metabolism, which challenges previous knowledge and offers new therapeutic options.


Assuntos
Células Ependimogliais/citologia , Hipotálamo/fisiologia , Eminência Mediana/citologia , Neurogênese , Animais , Barreira Hematoencefálica , Metabolismo Energético , Comportamento Alimentar , Homeostase , Humanos , Hipotálamo/citologia , Células-Tronco/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA