Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 338
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Exp Gerontol ; 190: 112413, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38570055

RESUMO

BACKGROUND: Osteoporotic osteoarthritis (OP-OA) is a severe pathological form of OA, urgently requiring precise management strategies and more efficient interventions. Emodin (Emo), an effective ingredient found in the traditional Chinese medicine rhubarb, has been dEmonstrated to promote osteogenesis and inhibit extracellular matrix degradation. In this study, we aimed to investigate the interventional effects of Emo on the subchondral bone and cartilage of the knee joints in OP-OA model rats. METHODS: Thirty-two SD rats were randomly and equally divided into sham, OP-OA, Emo low-dose, and Emo high-dose groups. Micro-CT scanning was conducted to examine the bone microstructure of the rat knee joints. H&E and Safranin O and Fast Green staining (SO&FG) were performed for the pathomorphological evaluation of the rat cartilage tissues. ELISA was used to estimate the rat serum expression levels of inflammatory factors, including interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNF-α). Additionally, the CCK-8 assay was utilized for determining the viability of Emo-treated BMSCs. Western blot and real-time PCR analyses were also employed to measure the bone formation indexes and cartilage synthesis and decomposition indexes. Lastly, the osteogenic and chondrogenic differentiation efficiency of the BMSCs was investigated via Alizarin Red and Alcian Blue staining. RESULTS: Emo intervention alleviated the bone microstructural disruption of the subchondral bone and articular cartilage in the OP-OA rats and up-regulated the expression of bone and cartilage anabolic metabolism indicators, decreased the expression of cartilage catabolism indicators, and diminished the expression of inflammatory factors in the rat serum (P<0.05). Furthermore, Emo reversed the decline in the osteogenic and chondrogenic differentiation ability of the BMSCs (P<0.05). CONCLUSION: Emo intervention mitigates bone loss and cartilage damage in OP-OA rats and promotes the osteogenic and chondrogenic differentiation of BMSCs.


Assuntos
Cartilagem Articular , Emodina , Osteoporose , Ratos Sprague-Dawley , Microtomografia por Raio-X , Animais , Emodina/farmacologia , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/patologia , Cartilagem Articular/metabolismo , Ratos , Osteoporose/tratamento farmacológico , Osteoporose/prevenção & controle , Feminino , Modelos Animais de Doenças , Osteogênese/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-1beta/metabolismo , Osteoartrite/tratamento farmacológico , Osteoartrite/patologia
2.
Phytomedicine ; 128: 155411, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38518638

RESUMO

BACKGROUND: Emodin-8-O-ß-D-glucopyranoside (Em8G) is an active ingredient of traditional Chinese medicine Rhei Radix et Rhizoma and Polygonum multiflorum Thunb.. And it caused hepatotoxicity, while the underlying mechanism was not clear yet. PURPOSE: We aimed to explore the detrimental effects of Em8G on the zebrafish liver through the metabolome and transcriptome integrated analysis. STUDY DESIGN AND METHODS: In this study, zebrafish larvae were used in acute toxicity tests to reveal the hepatotoxicity of Em8G. Adult zebrafish were then used to evaluate the gender differences in hepatotoxicity induced by Em8G. Integration of transcriptomic and metabolomic analysis was used further to explore the molecular mechanisms underlying gender differences in hepatotoxicity. RESULTS: Our results showed that under non-lethal concentration exposure conditions, hepatotoxicity was observed in Em8G-treated zebrafish larvae, including changes in liver transmittance, liver area, hepatocyte apoptosis and hepatocyte vacuolation. Male adult zebrafish displayed a higher Em8G-induced hepatotoxicity than female zebrafish, as demonstrated by the higher mortality and histopathological alterations. The results of transcriptomics combined with metabolomics showed that Em8G mainly affected carbohydrate metabolism (such as TCA cycle) in male zebrafish and amino acid metabolism (such as arginine and proline metabolism) in females, suggesting that the difference of energy metabolism disorder may be the potential mechanism of male and female liver toxicity induced by Em8G. CONCLUSIONS: This study provided the direct evidence for the hepatotoxicity of Em8G to zebrafish models in vivo, and brought a new insight into the molecular mechanisms of Em8G hepatotoxicity, which can guide the rational application of this phytotoxin. In addition, our findings revealed gender differences in the hepatotoxicity of Em8G to zebrafish, which is related to energy metabolism and provided a methodological reference for evaluating hepatotoxic drugs with gender differences.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Fígado , Metabolômica , Peixe-Zebra , Animais , Masculino , Feminino , Fígado/efeitos dos fármacos , Fígado/metabolismo , Transcriptoma/efeitos dos fármacos , Glucosídeos/toxicidade , Glucosídeos/farmacologia , Fatores Sexuais , Emodina/análogos & derivados , Emodina/toxicidade , Emodina/farmacologia , Larva/efeitos dos fármacos , Antraquinonas/toxicidade , Testes de Toxicidade Aguda , Medicamentos de Ervas Chinesas/toxicidade
3.
Clin Exp Hypertens ; 46(1): 2326022, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38507311

RESUMO

BACKGROUND: Emodin is a traditional medicine that has been shown to exert anti-inflammatory and anti-oxidative effects. Previous research has indicated that emodin can alleviate myocardial remodeling and inhibit myocardial hypertrophy and fibrosis. However, the mechanism by which emodin affects myocardial fibrosis (MF) has not yet been elucidated. METHODS: Fibroblasts were treated with ANGII, and a mouse model of MF was established by ligation of the left anterior descending coronary artery. Cell proliferation was examined by a Cell Counting Kit-8 (CCK8) assay. Dihydroethidium (DHE) was used to measure reactive oxygen species (ROS) levels, and Masson and Sirius red staining were used to examine changes in collagen fiber levels. PI3K was over-expressed by lentiviral transfection to verify the effect of emodin on the PI3K/AKT/mTOR signaling axis. Changes in cardiac function in each group were examined by echocardiography. RESULTS: Emodin significantly inhibited fibroblast proliferation, decreased intracellular ROS levels, significantly upregulated collagen II expression, downregulated α-SMA expression, and inhibited PI3K/AKT/mTOR pathway activation in vitro. Moreover, the in vivo results were consistent with the in vitro. Emodin significantly decreased ROS levels in heart tissue and reduced collagen fibrillogenesis. Emodin could regulate the activity of PI3K to increase the expression of collagen II and downregulate α-SMA expression in part through the PI3K/AKT/mTOR pathway, and emodin significantly improved cardiac structure and function in mice. CONCLUSIONS: This study revealed that emodin targeted the PI3K/AKT/mTOR pathway to inhibit the development of myocardial fibrosis and may be an antifibrotic agent for the treatment of cardiac fibrosis.


Assuntos
Emodina , Proteínas Proto-Oncogênicas c-akt , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Emodina/farmacologia , Espécies Reativas de Oxigênio , Fosfatidilinositol 3-Quinases/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Fibrose , Colágeno
4.
Aging (Albany NY) ; 16(3): 2362-2384, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38284886

RESUMO

As one of the most common liver diseases, nonalcoholic fatty liver disease (NAFLD) affects almost one-quarter of the world's population. Although the prevalence of NAFLD is continuously rising, effective medical treatments are still inadequate. Radix Polygoni Multiflori (RPM) is a traditional Chinese herbal medicine. As a processed product of RPM, prepared Radix Polygoni Multiflori (PRPM) has been reported to have antioxidant and anti-inflammatory effects. This study investigated whether PRPM treatment could significantly improve NAFLD. We used recent literature, the Herb database and the SwissADME database to isolate the active compounds of PRPM. The OMIM, DisGeNET and GeneCards databases were used to isolate NAFLD-related target genes, and GO functional enrichment and KEGG pathway enrichment analyses were conducted. Moreover, PRPM treatment in NAFLD model mice was evaluated. The results indicate that the target genes are mainly enriched in the AMPK and de novo lipogenesis signaling pathways and that PRPM treatment improves NAFLD disease in model mice. Here, we found the potential benefits of PRPM against NAFLD and demonstrated in vivo and in vitro that PRPM and its ingredient emodin downregulate phosphorylated P38/P38, phosphorylated ERK1/2 and genes related to de novo adipogenesis signaling pathways and reduce lipid droplet accumulation. In conclusion, our findings revealed a novel therapeutic role for PRPM in the treatment of NAFLD and metabolic inflammation.


Assuntos
Medicamentos de Ervas Chinesas , Emodina , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Emodina/farmacologia , Emodina/uso terapêutico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Gotículas Lipídicas , Transdução de Sinais
5.
Phytother Res ; 38(3): 1345-1357, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38198804

RESUMO

Cardiorenal syndrome type 4 (CRS4), a progressive deterioration of cardiac function secondary to chronic kidney disease (CKD), is a leading cause of death in patients with CKD. In this study, we aimed to investigate the cardioprotective effect of emodin on CRS4. C57BL/6 mice with 5/6 nephrectomy and HL-1 cells stimulated with 5% CKD mouse serum were used for in vivo and in vitro experiments. To assess the cardioprotective potential of emodin, we employed a comprehensive array of methodologies, including echocardiography, tissue staining, immunofluorescence staining, biochemical detection, flow cytometry, real-time quantitative PCR, and western blot analysis. Our results showed that emodin exerted protective effects on the function and structure of the residual kidney. Emodin also reduced pathologic changes in the cardiac morphology and function of these mice. These effects may have been related to emodin-mediated suppression of reactive oxygen species production, reduction of mitochondrial oxidative damage, and increase of oxidative metabolism via restoration of PGC1α expression and that of its target genes. In contrast, inhibition of PGC1α expression significantly reversed emodin-mediated cardioprotection in vivo. In conclusion, emodin protects the heart from 5/6 nephrectomy-induced mitochondrial damage via activation of the PGC1α signaling. The findings obtained in our study can be used to develop effective therapeutic strategies for patients with CRS4.


Assuntos
Síndrome Cardiorrenal , Emodina , Insuficiência Renal Crônica , Humanos , Camundongos , Animais , Emodina/farmacologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Apoptose , Camundongos Endogâmicos C57BL
6.
Biochem Biophys Res Commun ; 690: 149285, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37995454

RESUMO

Multidrug-resistant Pseudomonas aeruginosa is a common pathogen that causes topical infections following burn injuries. Antimicrobial photodynamic therapy (aPDT) has emerged as a promising approach for treating antibiotic-resistant bacterial infections. The objective of this study was to evaluate the aPDT efficacy of aloe-emodin (AE), which is a photosensitizer extracted from traditional Chinese herbs, on antibiotic-sensitive and antibiotic-resistant P. aeruginosa in vitro. In this study, we confirmed the effectiveness of AE-mediated aPDT against both standard and MDR P. aeruginosa, explored the effects of irradiation time and AE concentration on bacterial survival in AE-mediated aPDT, and observed the structural damage of P. aeruginosa by using transmission electron microscope. Our results showed that neither AE nor light irradiation alone caused cytotoxic effects on P. aeruginosa. However, AE-mediated aPDT effectively inactivated both antibiotic-sensitive and antibiotic-resistant P. aeruginosa. The transmission electron microscope investigation showed that aPDT mediated by AE primarily caused damage to the cytoplasm and cell membrane. Our findings suggest that AE is a photosensitizer in the aPDT of MDR P. aeruginosa-caused topical infections following burn injuries. Future investigations will concentrate on the safety and efficacy of AE-mediated aPDT in animal models and clinical trials.


Assuntos
Aloe , Anti-Infecciosos , Queimaduras , Emodina , Fotoquimioterapia , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Pseudomonas aeruginosa , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Fármacos Fotossensibilizantes/química , Emodina/farmacologia , Fotoquimioterapia/métodos , Anti-Infecciosos/farmacologia , Queimaduras/tratamento farmacológico
7.
J Ethnopharmacol ; 322: 117583, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38122912

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Subarachnoid hemorrhage (SAH) triggers a cascade of events that lead to early brain injury (EBI), which contributes to poor outcomes and appears within 3 days after SAH initiation. EBI involves multiple process including neuronal death, blood-brain barrier (BBB) injury and inflammation response. Microglia are cluster of immune cells originating in the brain which respond to SAH by changing their states and releasing inflammatory molecules through various signaling pathways. M0, M1, M2 are three states of microglia represent resting state, promoting inflammation state, and anti-inflammation state respectively, which can be modulated by pharmacological strategies. AIM OF THE STUDY: After identified potential active ingredients and targets of Sanhua Decoction (SHD) for SAH, we selected aloe-emodin (AE) as a potential ingredient modulating microglia activation states. MATERIALS AND METHODS: Molecular mechanisms, targets and pathways of SHD were reveal by network pharmacology technique. The effects of AE on SAH were evaluated in vivo by assessing neurological deficits, neuronal apoptosis and BBB integrity in a mouse SAH model. Furthermore, BV-2 cells were used to examine the effects of AE on microglial polarization. The influence of AE on microglia transformation was measured by Iba-1, TNF-α, CD68, Arg-1 and CD206 staining. The signal pathways of neuronal apoptosis and microglia polarization was measured by Western blot. RESULTS: Network pharmacology identified potential active ingredients and targets of SHD for SAH. And AE is one of the active ingredients. We also confirmed that AE via NF-κB and PKA/CREB pathway inhibited the microglia activation and promoted transformation from M1 phenotype to M2 at EBI stage after SAH. CONCLUSIONS: AE, as one ingredient of SHD, can alleviate the inflammatory response and protecting neurons from SAH-induced injury. AE has potential value for treating SAH-induced nerve injury and is expected to be applied in clinical practice.


Assuntos
Aloe , Lesões Encefálicas , Emodina , Hemorragia Subaracnóidea , Camundongos , Animais , Microglia , Emodina/farmacologia , Emodina/uso terapêutico , Doenças Neuroinflamatórias , Hemorragia Subaracnóidea/tratamento farmacológico , Hemorragia Subaracnóidea/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , NF-kappa B/metabolismo , Lesões Encefálicas/metabolismo
8.
Phytomedicine ; 121: 155105, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37801893

RESUMO

BACKGROUND: Doxorubicin (Dox), which is an anticancer drug, has significant cardiac toxicity and side effects. Pyroptosis occurs during Dox-induced cardiotoxicity (DIC), and drug inhibition of this process is one therapeutic approach for treating DIC. Previous studies have indicated that emodin can reduce pyroptosis. However, the role of emodin in DIC and its molecular targets remain unknown. HYPOTHESIS/PURPOSE: We aimed to clarify the protective role of emodin in mitigating DIC, as well as the mechanisms underlying this effect. METHODS: The model of DIC was established via the intraperitoneal administration of Dox at a dosage of 5 mg/kg per week for a span of 4 weeks. Emodin at two different doses (10 and 20 mg/kg) or a vehicle was intragastrically administered to the mice once per day throughout the Dox treatment period. Cardiac function, myocardial injury markers, pathological morphology of the heart, level of pyroptosis and mitochondrial function were assessed. Protein microarray, biolayer interferometry and pull-down assays were used to confirm the target of emodin. Moreover, GSDMD-overexpressing plasmids were transfected into GSDMD-/- mice and HL-1 cells to further verify whether emodin suppressed GSDMD activation. RESULTS: Emodin therapy markedly enhanced cardiac function and reduced cardiomyocyte pyroptosis in mice induced by Dox. Mechanistically, emodin binds to GSDMD and inhibits the activation of GSDMD by targeting the Trp415 and Leu290 residues. Moreover, emodin was able to mitigate Dox-induced cardiac dysfunction and myocardial injury in GSDMD-/- mice overexpressing GSDMD, as shown by increased EF and FS, decreased serum levels of CK-MB, LDH and IL-1ß and mitigated cell death and cell morphological disorder. Additionally, emodin treatment significantly reduced GSDMD-N expression and plasma membrane disruption in HL-1 cells overexpressing GSDMD induced by Dox. In addition, emodin reduced mitochondrial damage by alleviating Dox-induced GSDMD perforation in the mitochondrial membrane. CONCLUSION: Emodin has the potential to attenuate DIC by directly binding to GSDMD to inhibit pyroptosis. Emodin may become a promising drug for prevention and treatment of DIC.


Assuntos
Emodina , Miócitos Cardíacos , Camundongos , Animais , Piroptose , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/metabolismo , Emodina/farmacologia , Doxorrubicina/farmacologia
9.
Biopharm Drug Dispos ; 44(6): 406-419, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37679901

RESUMO

The study aimed to explore the pharmacokinetic and pharmacodynamic alterations of the active components of Shenkang injection (i.e. hydroxy saffron yellow pigment A [HSYA], tanshinol, rheum emodin, and astragaloside IV) in rats with chronic renal failure (CRF), and establish a pharmacokinetic-pharmacodynamic model (PK-PD model) in order to provide a scientific and theoretical basis for the rational clinical use of Shenkang injection. Sprague-Dawley (SD) rats were randomly divided into a normal group, model group, and Shenkang injection group. A rat model of CRF was induced by adenine gavage and then followed by drug administration via tail vein injection. Orbital blood was collected at different timepoints and the blood concentrations of the four active components were measured by UHPLC-Q-Orbitrap HRMS. Serum levels of creatinine (Scr), urea nitrogen (BUN), and uric acid (UA) were determined using an automatic biochemical analyzer. A PK-PD model was established, and DAS 3.2.6 software was used for model fitting as well as statistical analysis. TGF-ß1 was utilized to induce normal rat kidney cells to construct a renal fibrosis model to investigate the protective effect of the pharmacological components on renal fibrosis. The pharmacokinetic analysis of hydroxy saffron yellow pigment A, tanshinol, rheum emodin, and astragaloside IV based on UHPLC-Q-Orbitrap HRMS was stable. The linear regression equations for the four active components were as follows: Y = 0.031X + 0.0091 (R2  = 0.9986) for hydroxy saffron yellow pigment A, Y = 0.0389X + 0.164 (R2  = 0.9979) for tanshinol, Y = 0.0257X + 0.0146 (R2  = 0.9973) for rheum emodin, and Y = 0.0763X + 0.0139 (R2  = 0.9993) for astragaloside IV, which indicated good linear relationships. The methodological investigation was stable, with the interday and intraday precision RSD <10%. Meanwhile, the recoveries ranged between 90% and 120%, in accordance with the requirements for in vivo analysis of drugs. Compared with the model group, the levels of Scr, BUN, and UA were significantly decreased after 20 min in the Shenkang injection group (p < 0.01). The PK-PD model showed that the four active components in the Shenkang injection group could fit well with the three effect measures (i.e. Scr, BUN, and UA), with the measured values similar to the predicted values. The cell model of renal fibrosis showed that the connective tissue growth factor and FN1 protein expression levels were significantly lower in the Shenkang injection group than those in the model group, and the cell fibrosis was improved. The established method for in vivo analysis of Shenkang injection was highly specific, with good separation of the components and simple operation. The total statistical moment could well integrate the pharmacokinetic parameters of the four active components. After treatment with Shenkang injection, all indexes in the administered group improved and showed significant inhibition of renal cell fibrosis in vitro. This study could provide scientific reference ideas for the clinical rational use of traditional Chinese medicine.


Assuntos
Medicamentos de Ervas Chinesas , Emodina , Falência Renal Crônica , Insuficiência Renal Crônica , Ratos , Animais , Emodina/farmacologia , Ratos Sprague-Dawley , Rim , Falência Renal Crônica/tratamento farmacológico , Falência Renal Crônica/patologia , Medicamentos de Ervas Chinesas/farmacologia , Fibrose
10.
Int J Biol Macromol ; 246: 125610, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37392909

RESUMO

Skin injuries are one of the most common clinical traumas worldwide, and wound dressings are considered to be one of key factors in wound healing. Natural polymer-based hydrogels have been developed as ideal materials for a new generation of dressings due to their excellent biocompatibility and wetting ability. However, the inadequate mechanical performances and lack of efficacy in promoting wound healing have limited the application of natural polymer-based hydrogels as wound dressings. In this work, a double network hydrogel based on natural chitosan molecules was constructed to enhance the mechanical properties, and emodin, a herbal natural product, was loaded into the hydrogel to improve the healing effect of the dressing. The structure of the chitosan-emodin network formed by Schiff base reaction and microcrystalline network of biocompatible polyvinyl alcohol endowed hydrogels with excellent mechanical properties and ensured its integrity as wound dressings. Moreover, the hydrogel showed excellent wound healing properties due to the loading of emodin. The hydrogel dressing could promote cell proliferation, cell migration, and secretion of growth factors. The animal experimental results also demonstrated that the hydrogel dressing facilitated the regeneration of blood vessels and collagen and accelerated wound healing.


Assuntos
Quitosana , Emodina , Animais , Quitosana/química , Hidrogéis/farmacologia , Hidrogéis/química , Emodina/farmacologia , Cicatrização , Colágeno/farmacologia , Antibacterianos/farmacologia
11.
Medicine (Baltimore) ; 102(20): e33521, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37335741

RESUMO

Pancreatic adenocarcinoma (PAAD) is one of the most common malignancies worldwide with an increasing incidence and poor outcome due to the lack of effective diagnostic and treatment methods. Emerging evidence implicates that emodin displays extensive spectrum anticancer properties. Differential expression genes in PAAD patients were analyzed by Gene Expression Profiling Interactive Analysis (GEPIA) website, and the targets of emodin were obtained via Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform. Subsequently, enrichment analyses were performed using R software. A protein-protein interaction (PPI) network was constructed by STRING database and Cytoscape software was used to identify the hub genes. Prognostic value and immune infiltration landscapes were explored through Kaplan-Meier plotter (KM plotter) website and the Single-Sample Gene Set Enrichment Analysis package of R. Finally, molecular docking was used to computationally verify the interaction of ligand and receptor proteins. A total of 9191 genes were significantly differentially expressed in PAAD patients and 34 potential targets of emodin were obtained. Intersections of the 2 groups were considered as potential targets of emodin against PAAD. Functional enrichment analyses illustrated that these potential targets were linked to numerous pathological processes. Hub genes identified through PPI networks were correlated with poor prognosis and infiltration level of different immune cells in PAAD patients. Perhaps emodin interacted with the key molecules and regulate the activity of them. We revealed the inherent mechanism of emodin against PAAD with the aid of network pharmacology, which provided reliable evidence and a novel guideline for clinical treatment.


Assuntos
Adenocarcinoma , Emodina , Neoplasias Pancreáticas , Humanos , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/genética , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Emodina/farmacologia , Emodina/uso terapêutico , Farmacologia em Rede , Simulação de Acoplamento Molecular , Regulação Neoplásica da Expressão Gênica , Neoplasias Pancreáticas
12.
AAPS PharmSciTech ; 24(6): 146, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37380936

RESUMO

Emodin is applied as an antitumor drug in many tumor therapies. However, its pharmacology performances are limited due to its low solubility. Herein, we fused erythrocyte and macrophage to form a hybrid membrane (EMHM) and encapsulated emodin to form hybrid membrane-coated nanoparticles. We employed glycyrrhizin to increase the solubility of emodin first and prepared the hybrid membrane nanoparticle-coated emodin and glycyrrhizin (EG@EMHM NPs) which exhibited an average particle size of 170 ± 20 nm and encapsulation efficiency of 98.13 ± 0.67%. The half-inhibitory concentrations (IC50) of EG@EMHM NPs were 1.166 µg/mL, which is half of the free emodin. Based on the photosensitivity of emodin, the reactive oxygen species (ROS) results disclosed that ROS levels of the photodynamic therapy (PDT) section were higher than the normal section (P < 0.05). Compared to the normal section, PDT-mediated EG@EMHM NPs could induce an early stage of apoptosis of B16. The western blot and flow cytometry results verified that PDT-mediated EG@EMHM NPs can significantly improve the solubility of emodin and perform a remarkably antitumor effect on melanoma via BAX and BCL-2 pathway. The application of the combined chemical and PDT therapy could provide an improving target therapy for cutaneous melanoma and also may offer an idea for other insoluble components sources of traditional Chinese medicine. Schematic of EG@EMHM NPs formulation.


Assuntos
Emodina , Melanoma , Neoplasias Cutâneas , Humanos , Terapia Fototérmica , Emodina/farmacologia , Ácido Glicirrízico/farmacologia , Espécies Reativas de Oxigênio
13.
J Ethnopharmacol ; 316: 116780, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37311504

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Shuganzhi Tablet (SGZT) originates from a famous traditional Chinese herbal formula Chaihu Decoction which can be applied to treat liver diseases, however, the pharmacodynamic mechanism of SGZT needs to be evaluated. AIM OF THIS STUDY: To study the mechanism of SGZT in the treatment of non-alcoholic fatty liver disease (NAFLD), and screen out its effective ingredients. MATERIALS AND METHODS: In this study, firstly, the main components of SGZT were analyzed qualitatively. And a rat model of NAFLD was established by feeding high-fat diet. Serum biochemical indexes and liver pathological analysis were used to evaluate the pharmacodynamic effect of SGZT in the treatment of NAFLD. In order to explore the pharmacodynamic mechanism, proteomics and metabolomics analysis were used. Western blotting was used to verify the expression of important differential proteins. And L02 cells were treated with free fatty acids (FFA) and the main substances of SGZT to establish the cell model of NAFLD in vitro and to reveal the pharmacodynamic substance of SGZT. RESULTS: Twelve components were detected in SGZT, and according to the results of serum biochemical indexes and liver pathological analysis, SGZT could effectively treat NAFLD. Combined with the results of bioinformatics analysis, we found that 133 differentially expressed proteins were reversed in liver samples of rats treated with SGZT. The important proteins in PPAR signaling pathway, steroid biosynthesis, cholesterol metabolism and fatty acid metabolism were mainly regulated to maintain cholesterol homeostasis and improve lipid metabolism. SGZT also affected various metabolites in rat liver, including eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and taurine. In addition, the main components contained in SGZT (hesperidin, polydatin, naringin, emodin, specnuezhenide, saikosaponin A) and a metabolite (resveratrol) could significantly reduce FFA-induced intracellular lipid accumulation. CONCLUSION: SGZT effectively treated NAFLD, and PPAR-γ, Acsl4, Plin2 and Fads1 may be the main targets of SGZT. And Fads1-EPA/DHA-PPAR-γ may be the potential pharmacodynamic pathway. Cell experiments in vitro revealed that the main components of SGZT and their metabolites, such as hesperidin, polydatin, naringin, emodin, specnuezhenide, saikosaponin A and resveratrol may be the main components of its efficacy. Further research is needed to reveal and validate the pharmacodynamic mechanism.


Assuntos
Emodina , Hesperidina , Hepatopatia Gordurosa não Alcoólica , Ratos , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Resveratrol/farmacologia , Emodina/farmacologia , Hesperidina/farmacologia , Fígado , PPAR gama/metabolismo , Metabolismo dos Lipídeos , Colesterol/metabolismo , Lipídeos/farmacologia , Dieta Hiperlipídica
14.
Fitoterapia ; 168: 105549, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37244503

RESUMO

Dipeptidyl peptidase IV (DPP-IV) is an integrated type II transmembrane protein that reduces endogenous insulin contents and increases plasma glucose levels by hydrolyzing glucagon-like peptide-1 (GLP-1). Inhibition of DPP-IV regulates and maintains glucose homeostasis, making it an attractive drug target for the treatment of diabetes II. Natural compounds have tremendous potential to regulate glucose metabolism. In this study, we examined the DPP-IV inhibitory activity of a series of natural anthraquinones and synthetic structural analogues on DPP-IV using fluorescence-based biochemical assays. The inhibitory efficiency differed among anthraquinone compounds with different structures. Alizarin (7), aloe emodin (11), emodin (13) emerged the outstanding inhibitory potential for DPP-IV with IC50 values lower than 5 µM. To clarifying the inhibitory mechanism, inhibitory kinetics were performed, which showed that alizarin red S (8) and 13 were effective non-competitive inhibitors of DPP-IV, while alizarin complexone (9), rhein (12), and anthraquinone-2-carboxylic acid (23) were mixed inhibitors. Emodin was determined as inhibitor with the strongest DPP-IV-binding affinity determined via molecular docking. Structure-activity relationship (SAR) demonstrated that hydroxyl group at C-1 and C-8 sites and hydroxyl, hydroxymethyl or carboxyl group at the C-2 or C-3 site were very essential for DPP-IV inhibition, replacement of hydroxyl group with amino group at C-1 could led to an increase of the inhibitory potential. Further fluorescence imaging showed that both compounds 7 and 13 significantly inhibited DPP-IV activity in RTPEC cells. Overall, the results indicated that anthraquinones would be a natural functional ingredient for inhibiting DPP-IV and provided new ideas for searching and developing potential antidiabetic compounds.


Assuntos
Diabetes Mellitus Tipo 2 , Inibidores da Dipeptidil Peptidase IV , Emodina , Humanos , Inibidores da Dipeptidil Peptidase IV/farmacologia , Inibidores da Dipeptidil Peptidase IV/química , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Simulação de Acoplamento Molecular , Emodina/farmacologia , Emodina/uso terapêutico , Estrutura Molecular , Hipoglicemiantes/farmacologia , Relação Estrutura-Atividade , Dipeptidil Peptidase 4/química , Dipeptidil Peptidase 4/metabolismo
15.
Phytomedicine ; 115: 154837, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37126969

RESUMO

BACKGROUND: Allergic rhinitis (AR) is a prevalent allergic disease, which seriously affects the sufferers' life quality and increases the socioeconomic burden. Guominkang (GMK), a well-known prescription for AR treatment, showed satisfactory effects; while its anti-allergic components remain to be disclosed. AlGaN/GaN HEMT biochip is more sensitive and cost-effective than other binding equipments, indicating its great potential for screening of active ingredients from herbal medicines. METHODS: AR mouse models were first established to test the anti-allergic effect of GMK and discover the ingredients absorbed into blood by ultra-high performance liquid chromatography-mass spectra (UHPLC-MS). Then, novel Syk/Lyn/Fyn-functionalized high electron mobility transistor (HEMT) biochips with high sensitivity and specificity were constructed and applied to screen the active components. Finally, the results from HEMT biochips screening were validated via in silico (molecular docking and molecular dynamics simulation), in vitro (RBL-2H3 cells), and in vivo (PCA mice model) assays. RESULTS: GMK showed a potent therapeutic effect on AR mice, and fifteen components were identified from the medicated plasma. Furthermore, hamaudol was firstly found to selectively inhibit the Syk and Lyn, and emodin was to selectively inhibit Lyn, which were further confirmed by isothermal titration calorimetry, molecular docking, and molecular dynamics simulation analyses. Suppression of the activation of FcεRI-MAPK signals might be the possible mechanism of the anti-allergic effect of hamaudol. CONCLUSIONS: The targets of emodin and hamaudol were discovered by HEMT biochips for the first time. This study provided a novel and effective strategy to discover active components in a complex herbal formula by using AlGaN/GaN HEMT biochips.


Assuntos
Antialérgicos , Emodina , Rinite Alérgica , Camundongos , Animais , Antialérgicos/farmacologia , Simulação de Acoplamento Molecular , Emodina/farmacologia , Rinite Alérgica/tratamento farmacológico , Modelos Animais de Doenças
16.
J Ethnopharmacol ; 311: 116400, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37003402

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The combination of Polygoni Multiflori Radix Praeparata (PMRP) and Acori Tatarinowii Rhizoma (ATR) is often used in traditional Chinese medicine to prevent and treat Alzheimer's disease (AD). However, it is not clear whether the effects and mechanisms of the decoction prepared by traditional decocting method (PA) is different from that prepared by modern decocting method (P + A). AIM OF THE STUDY: The present study aimed to investigate the differences in the protective effects of PA and P + A on scopolamine induced cognitive impairment, and to explore its potential mechanism. MATERIALS AND METHODS: To assess the protective effect of PA and P + A on cognitive dysfunction, the mice were orally administrated with PA (1.56, 6.24 g kg-1•day-1) and P + A (1.56, 6.24 g kg-1•day-1) for 26 days before co-treatment with scopolamine (4 mg kg-1•day-1, i.p.). The learning and memory abilities of mice were examined by Morris water maze test, and the expressions of proteins related to cholinergic system and synaptic function were detected by the methods of ELISA, real-time PCR and Western blotting. Then, molecular docking technique was used to verify the effect of active compounds in plasma after PA administration on Acetylcholinesterase (AChE) protein. Finally, the Ellman method was used to evaluate the effects of different concentrations of PA, P + A (1 µg/mL-100 mg/mL) and the compounds (1-100 µM) on AChE activity in vitro. RESULTS: On one hand, in the scopolamine-induced cognitive impairment mouse model, both of PA and P + A could improve the cognitive impairment, while the effect of PA on cognitive amelioration was better than that of P + A. Moreover, PA regulated the cholinergic and synaptic functions by enhancing the concentration of acetylcholine (ACh), the mRNA levels of CHT1, Syn, GAP-43 and PSD-95, and the related proteins (CHT1, VACHT, Syn, GAP-43 and PSD-95), and significantly inhibiting the expression of AChE protein. Meanwhile, P + A only up-regulated the mRNA levels of GAP-43 and PSD-95, increased the expressions of CHT1, VACHT, Syn, GAP-43 and PSD-95 proteins, and inhibited the expression of AChE protein. On the other hand, the in vitro study showed that some compounds including emodin-8-o-ß-d-Glucopyranoside, THSG and α-Asarone inhibited AChE protein activity with the IC50 values 3.65 µM, 5.42 µM and 9.43 µM, respectively. CONCLUSIONS: These findings demonstrate that both of PA and P + A can ameliorate the cognitive deficits by enhancing cholinergic and synaptic related proteins, while PA has the stronger improvement effect on the cholinergic function, which may be attributed to the compounds including THSG, emodin, emodin-8-O-ß-D-glucopyranoside and α-asarone. The present study indicated that PA has more therapeutic potential in the treatment of neurodegenerative diseases such as AD. The results provide the experimental basis for the clinical use of PA.


Assuntos
Disfunção Cognitiva , Emodina , Camundongos , Animais , Escopolamina/farmacologia , Acetilcolinesterase/metabolismo , Emodina/farmacologia , Simulação de Acoplamento Molecular , Proteína GAP-43/farmacologia , Colinérgicos/farmacologia , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/tratamento farmacológico , Aprendizagem em Labirinto
17.
Phytomedicine ; 114: 154793, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37011420

RESUMO

BACKGROUND: Aloe-emodin (AE), a natural anthraquinone extract from traditional Chinese medicinal plants, has been certified to protect against acute myocardial ischemia. However, its effect on cardiac remodeling after chronic myocardial infarction (MI) and the possible mechanism remain unclear. PURPOSE: This study investigated the effect of AE on cardiac remodeling and oxidative damage induced by myocardial infarction (MI) in vitro and explored the underlying mechanisms. METHODS: Echocardiography and Masson staining were used to demonstrate myocardial dysfunction and fibrosis. Cell apoptosis was detected by TUNEL staining. The expressions of fibrosis-related factors such as type I collagen, α-smooth muscle actin (α-SMA) and connective tissue growth factor (CTGF) were detected by Western blot. RESULTS: Our data demonstrated that AE treatment significantly improved cardiac function, reduced structural remodeling, and reduced cardiac apoptosis and oxidative stress in mice with myocardial infarction. In vitro, AE could protect neonatal mouse cardiomyocytes (NMCM) from angiotensin II (Ang II)-induced cardiomyocyte hypertrophy and apoptosis, and significantly inhibited (p < 0.05) Ang II-induced reactive oxygen species (ROS) increase. Furthermore, AE treatment significantly reversed the Ang ii-induced upregulation. CONCLUSION: In summary, our work reveals for the first time that AE activates the TGF-ß signaling pathway by up-regulating Smad7 expression, which in turn regulates the expression of fibrosis-related genes, ultimately improving cardiac function, inhibiting the development of cardiac fibrosis and hypertrophy in rats with chronic MI.


Assuntos
Aloe , Cardiomiopatias , Emodina , Infarto do Miocárdio , Camundongos , Ratos , Animais , Emodina/farmacologia , Remodelação Ventricular , Transdução de Sinais , Fator de Crescimento Transformador beta1/metabolismo , Infarto do Miocárdio/tratamento farmacológico , Miócitos Cardíacos , Cardiomiopatias/metabolismo , Hipertrofia/patologia , Fibrose , Miocárdio/metabolismo , Angiotensina II/farmacologia , Proteína Smad7/metabolismo
18.
Phytother Res ; 37(7): 2979-2994, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36866539

RESUMO

Aloe-emodin (AE) has been shown to inhibit the proliferation of several cancer cell lines, including human nasopharyngeal carcinoma (NPC) cell lines. In this study, we confirmed that AE inhibited malignant biological behaviors, including cell viability, abnormal proliferation, apoptosis, and migration of NPC cells. Western blotting analysis revealed that AE upregulated the expression of DUSP1, an endogenous inhibitor of multiple cancer-associated signaling pathways, resulting in blockage of the extracellular signal-regulated kinase (ERK)-1/2, protein kinase B (AKT), and p38-mitogen activated protein kinase(p38-MAPK) signaling pathways in NPC cell lines. Moreover, the selective inhibitor of DUSP1, BCI-hydrochloride, partially reversed the AE-induced cytotoxicity and blocked the aforementioned signaling pathways in NPC cells. In addition, the binding between AE and DUSP1 was predicted via molecular docking analysis using AutoDock-Vina software and further verified via a microscale thermophoresis assay. The binding amino acid residues were adjacent to the predicted ubiquitination site (Lys192) of DUSP1. Immunoprecipitation with the ubiquitin antibody, ubiquitinated DUSP1 was shown to be upregulated by AE. Our findings revealed that AE can stabilize DUSP1 by blocking its ubiquitin-proteasome-mediated degradation and proposed an underlying mechanism by which AE-upregulated DUSP1 may potentially target multiple pathways in NPC cells.


Assuntos
Aloe , Emodina , Neoplasias Nasofaríngeas , Humanos , Emodina/farmacologia , Carcinoma Nasofaríngeo , Ubiquitina , Simulação de Acoplamento Molecular , Transdução de Sinais , Apoptose , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Neoplasias Nasofaríngeas/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células , Fosfatase 1 de Especificidade Dupla/metabolismo
19.
Biomed Pharmacother ; 161: 114539, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36933375

RESUMO

The morbidity and mortality of cardiovascular diseases (CVDs) are increasing in recent years, and atherosclerosis (AS), a major CVD, becomes a disorder that afflicts human beings severely, especially the elders. AS is recognized as the primary cause and pathological basis of some other CVDs. The active constituents of Chinese herbal medicines have garnered increasing interest in recent researches owing to their influence on AS and other CVDs. Emodin (1,3,8-trihydroxy-6-methylanthraquinone) is a naturally occurring anthraquinone derivative found in some Chinese herbal medicines such as Rhei radix et rhizome, Polygoni cuspidati rhizoma et radix and Polygoni multiflori root. In this paper, we first review the latest researches about emodin's pharmacology, metabolism and toxicity. Meanwhile, it has been shown to be effective in treating CVDs caused by AS in dozens of previous studies. Therefore, we systematically reviewed the mechanisms by which emodin treats AS. In summary, these mechanisms include anti-inflammatory activity, lipid metabolism regulation, anti-oxidative stress, anti-apoptosis and vascular protection. The mechanisms of emodin in other CVDs are also discussed, such as vasodilation, inhibition of myocardial fibrosis, inhibition of cardiac valve calcification and antiviral properties. We have further summarized the potential clinical applications of emodin. Through this review, we hope to provide guidance for clinical and preclinical drug development.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Medicamentos de Ervas Chinesas , Emodina , Humanos , Idoso , Emodina/farmacologia , Emodina/uso terapêutico , Medicamentos de Ervas Chinesas/farmacologia , Doenças Cardiovasculares/tratamento farmacológico , Extratos Vegetais , Aterosclerose/tratamento farmacológico , Compostos Fitoquímicos
20.
Environ Sci Pollut Res Int ; 30(22): 61842-61862, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36934179

RESUMO

Emodin, a compound isolated from Aspergillus terreus, was studied using chromatographic and spectroscopic methods and compound purity (96%) was assessed by TLC. Furthermore, high larvicidal activity against Aedes aegypti-AeA (LC50 6.156 and LC90 12.450 mg/L), Culex quinquefasciatus-CuQ (8.216 and 14.816 mg/L), and Anopheles stephensi-AnS larvae (6.895 and 15.24 mg/L) was recorded. The first isolated fraction (emodin) showed higher pupicidal activity against AeA (15.449 and 20.752 mg/L). Most emodin-treated larvae (ETL) showed variations in acetylcholine esterase, α and ß-carboxylesterases, and phosphatase activities in the 4th instar, indicating the intrinsic differences in their biochemical changes. ETL had numerous altered tissues, including muscle, gastric caeca, hindgut, midgut, nerve ganglia, and midgut epithelium. Acute toxicity of emodin on brine shrimp Artemia nauplii (54.0 and 84.5 mg/L) and the zebrafish Danio rerio (less toxicity observed) was recorded. In docking studies, Emodin interacted well with odorant-binding-proteins of AeA, AnS, and CuQ with docking scores of - 8.89, - 6.53, and - 8.09 kcal mol-1, respectively. Therefore, A. terreus is likely to be effective against mosquito larvicides.


Assuntos
Aedes , Anopheles , Culex , Dengue , Emodina , Filariose , Inseticidas , Malária , Animais , Emodina/farmacologia , Inseticidas/química , Peixe-Zebra , Mosquitos Vetores , Larva , Extratos Vegetais/farmacologia , Folhas de Planta/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA