Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.051
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Clin Nutr ; 43(5): 1181-1189, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38608404

RESUMO

Malnutrition affects 195 million children under the age of five worldwide with long term effects that include impaired cognitive development. Brain development occurs rapidly over the first 36 months of life. Whilst seemingly independent, changes to the brain and gut microbiome are linked by metabolites, hormones, and neurotransmitters as part of the gut-brain axis. In the context of severe malnutrition, the composition of the gut microbiome and the repertoire of biochemicals exchanged via the gut-brain axis vary when compared to healthy individuals. These effects are primarily due to the recognized interacting determinants, macro- and micronutrient deficiencies, infection, infestations and toxins related to poor sanitation, and a dearth of psycho-social stimulation. The standard of care for the treatment of severe acute malnutrition is focused on nutritional repletion and weight restoration through the provision of macro- and micronutrients, the latter usually in excess of recommended dietary allowances (RDA). However, existing formulations and supplements have not been designed to specifically address key recovery requirements for brain and gut microbiome development. Animal model studies indicate that treatments targeting the gut microbiome could improve brain development. Despite this, research on humans targeting the gut microbiome with the aim of restoring brain functionality are scarce. We conclude that there is a need for assessment of cognition and the use of various tools that permit visualization of the brain anatomy and function (e.g., Magnetic resonance imaging (MRI), functional near-infrared spectroscopy (fNIRS), electroencephalogram (EEG)) to understand how interventions targeting the gut microbiome impact brain development.


Assuntos
Cognição , Microbioma Gastrointestinal , Microbioma Gastrointestinal/fisiologia , Humanos , Lactente , Cognição/fisiologia , Desenvolvimento Infantil/fisiologia , Eixo Encéfalo-Intestino/fisiologia , Encéfalo/crescimento & desenvolvimento , Animais , Desnutrição/fisiopatologia , Desnutrição/microbiologia
2.
Neuropsychopharmacology ; 49(6): 1024-1032, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38431758

RESUMO

The 22q11.2 locus contains genes critical for brain development. Reciprocal Copy Number Variations (CNVs) at this locus impact risk for neurodevelopmental and psychiatric disorders. Both 22q11.2 deletions (22qDel) and duplications (22qDup) are associated with autism, but 22qDel uniquely elevates schizophrenia risk. Understanding brain phenotypes associated with these highly penetrant CNVs can provide insights into genetic pathways underlying neuropsychiatric disorders. Human neuroimaging and animal models indicate subcortical brain alterations in 22qDel, yet little is known about developmental differences across specific nuclei between reciprocal 22q11.2 CNV carriers and typically developing (TD) controls. We conducted a longitudinal MRI study in a total of 385 scans from 22qDel (n = 96, scans = 191, 53.1% female), 22qDup (n = 37, scans = 64, 45.9% female), and TD controls (n = 80, scans = 130, 51.2% female), across a wide age range (5.5-49.5 years). Volumes of the thalamus, hippocampus, amygdala, and anatomical subregions were estimated using FreeSurfer, and the linear effects of 22q11.2 gene dosage and non-linear effects of age were characterized with generalized additive mixed models (GAMMs). Positive gene dosage effects (volume increasing with copy number) were observed for total intracranial and whole hippocampus volumes, but not whole thalamus or amygdala volumes. Several amygdala subregions exhibited similar positive effects, with bi-directional effects found across thalamic nuclei. Distinct age-related trajectories were observed across the three groups. Notably, both 22qDel and 22qDup carriers exhibited flattened development of hippocampal CA2/3 subfields relative to TD controls. This study provides novel insights into the impact of 22q11.2 CNVs on subcortical brain structures and their developmental trajectories.


Assuntos
Variações do Número de Cópias de DNA , Síndrome de DiGeorge , Dosagem de Genes , Imageamento por Ressonância Magnética , Humanos , Feminino , Masculino , Variações do Número de Cópias de DNA/genética , Adulto , Adolescente , Criança , Adulto Jovem , Pessoa de Meia-Idade , Pré-Escolar , Síndrome de DiGeorge/genética , Síndrome de DiGeorge/patologia , Síndrome de DiGeorge/diagnóstico por imagem , Estudos Longitudinais , Hipocampo/diagnóstico por imagem , Hipocampo/patologia , Hipocampo/crescimento & desenvolvimento , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Encéfalo/crescimento & desenvolvimento , Tonsila do Cerebelo/diagnóstico por imagem , Tonsila do Cerebelo/patologia , Tálamo/diagnóstico por imagem , Tálamo/crescimento & desenvolvimento , Tálamo/patologia , Tamanho do Órgão
3.
Nutrients ; 14(2)2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35057545

RESUMO

Women's nutritional status during pregnancy can have long-term effects on children's brains and cognitive development. Folate and choline are methyl-donor nutrients and are important for closure of the neural tube during fetal development. They have also been associated with brain and cognitive development in children. Animal studies have observed that prenatal folate and choline supplementation is associated with better cognitive outcomes in offspring and that these nutrients may have interactive effects on brain development. Although some human studies have reported associations between maternal folate and choline levels and child cognitive outcomes, results are not consistent, and no human studies have investigated the potential interactive effects of folate and choline. This lack of consistency could be due to differences in the methods used to assess folate and choline levels, the gestational trimester at which they were measured, and lack of consideration of potential confounding variables. This narrative review discusses and critically reviews current research examining the associations between maternal levels of folate and choline during pregnancy and brain and cognitive development in children. Directions for future research that will increase our understanding of the effects of these nutrients on children's neurodevelopment are discussed.


Assuntos
Encéfalo/crescimento & desenvolvimento , Desenvolvimento Infantil , Colina/sangue , Cognição , Ácido Fólico/sangue , Fenômenos Fisiológicos da Nutrição Pré-Natal , Animais , Criança , Pré-Escolar , Colina/administração & dosagem , Feminino , Desenvolvimento Fetal , Ácido Fólico/administração & dosagem , Humanos , Lactente , Masculino , Camundongos , Estado Nutricional , Gravidez , Inquéritos e Questionários , Vitaminas/administração & dosagem
4.
Int J Mol Sci ; 23(2)2022 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-35054885

RESUMO

The N3 and N6 long chain polyunsaturated fatty acids (LCPUFA) docosahexaenoic acid (DHA) and arachidonic acid (AA) are essential for proper neurodevelopment in early life. These fatty acids are passed from mother to infant via the placenta, accreting into fetal tissues such as brain and adipose tissue. Placental transfer of LCPUFA is highest in the final trimester, but this transfer is abruptly severed with premature birth. As such, efforts have been made to supplement the post-natal feed of premature infants with LCPUFA to improve neurodevelopmental outcomes. This narrative review analyzes the current body of evidence pertinent to neurodevelopmental outcomes after LCPUFA supplementation in prematurely born infants, which was identified via the reference lists of systematic and narrative reviews and PubMed search engine results. This review finds that, while the evidence is weakened by heterogeneity, it may be seen that feed comprising 0.3% DHA and 0.6% AA is associated with more positive neurodevelopmental outcomes than LCPUFA-deplete feed. While no new RCTs have been performed since the most recent Cochrane meta-analysis in 2016, this narrative review provides a wider commentary; the wider effects of LCPUFA supplementation in prematurely born infants, the physiology of LCPUFA accretion into preterm tissues, and the physiological effects of LCPUFA that affect neurodevelopment. We also discuss the roles of maternal LCPUFA status as a modifiable factor affecting the risk of preterm birth and infant neurodevelopmental outcomes. To better understand the role of LCPUFAs in infant neurodevelopment, future study designs must consider absolute and relative availabilities of all LCPUFA species and incorporate the LCPUFA status of both mother and infant in pre- and postnatal periods.


Assuntos
Encéfalo/crescimento & desenvolvimento , Ácidos Graxos Insaturados/metabolismo , Encéfalo/metabolismo , Ingestão de Alimentos , Ácidos Graxos Insaturados/fisiologia , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Transtornos do Neurodesenvolvimento
5.
Nutrients ; 13(11)2021 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-34835993

RESUMO

Iron is critical for brain development, playing key roles in synaptogenesis, myelination, energy metabolism and neurotransmitter production. NICU infants are at particular risk for iron deficiency due to high iron needs, preterm birth, disruptions in maternal or placental health and phlebotomy. If deficiency occurs during critical periods of brain development, this may lead to permanent alterations in brain structure and function which is not reversible despite later supplementation. Children with perinatal iron deficiency have been shown to have delayed nerve conduction speeds, disrupted sleep patterns, impaired recognition memory, motor deficits and lower global developmental scores which may be present as early as in the neonatal period and persist into adulthood. Based on this, ensuring brain iron sufficiency during the neonatal period is critical to optimizing neurodevelopmental outcomes and iron supplementation should be targeted to iron measures that correlate with improved outcomes.


Assuntos
Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Recém-Nascido Prematuro/metabolismo , Ferro/metabolismo , Suplementos Nutricionais , Humanos , Recém-Nascido
6.
Nutrients ; 13(11)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34836103

RESUMO

Micronutrients are fundamental for healthy brain development and deficiencies during early development can have a severe and lasting impact on cognitive outcomes. Evidence indicates that undernourished lactating individuals may produce breast milk containing lower concentrations of certain vitamins and minerals. Exclusively breastfed infants born to mothers deficient in micronutrients may therefore be at risk of micronutrient deficiencies, with potential implications for neurodevelopment. This systematic review aims to consider current knowledge on the effects of breast milk micronutrients on the developmental outcomes of infants. The databases Medline, Global Health, PsychInfo, Open Grey, and the Web of Science were searched for papers published before February 2021. Studies were included if they measured micronutrients in breast milk and their association with the neurodevelopmental outcomes of exclusively breastfed infants. Also, randomised control trials investigating neurocognitive outcomes following maternal supplementation during lactation were sought. From 5477 initial results, three observational studies were eligible for inclusion. These investigated associations between breast milk levels of vitamin B6, carotenoids, or selenium and infant development. Results presented suggest that pyroxidal, ß-carotene, and lycopene are associated with infant neurodevelopmental outcomes. Limited eligible literature and heterogeneity between included papers prevented quantitative synthesis. Insufficient evidence was identified, precluding any conclusions on the relationship between breast milk micronutrients and infant developmental outcomes. Further, the evidence available was limited by a high risk of bias. This highlights the need for further research in this area to understand the long-term influence of micronutrients in breast milk, the role of other breast milk micronutrients in infant neurodevelopmental outcomes, and the impact of possible lactational interventions.


Assuntos
Desenvolvimento Infantil/fisiologia , Transtornos da Nutrição do Lactente/etiologia , Micronutrientes/análise , Leite Humano/química , Transtornos do Neurodesenvolvimento/etiologia , Encéfalo/crescimento & desenvolvimento , Aleitamento Materno , Feminino , Humanos , Lactente , Fenômenos Fisiológicos da Nutrição do Lactente , Recém-Nascido , Fenômenos Fisiológicos da Nutrição Materna , Micronutrientes/deficiência
7.
Nutrients ; 13(11)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34836132

RESUMO

Injuries to the developing brain due to hypoxia-ischemia (HI) are common causes of neurological disabilities in preterm babies. HI, with oxygen deprivation to the brain or reduced cerebral blood perfusion due to birth asphyxia, often leads to severe brain damage and sequelae. Injury mechanisms include glutamate excitotoxicity, oxidative stress, blood-brain barrier dysfunction, and exacerbated inflammation. Nutritional intervention is emerging as a therapeutic alternative to prevent and rescue brain from HI injury. Lactoferrin (Lf) is an iron-binding protein present in saliva, tears, and breast milk, which has been shown to have antioxidant, anti-inflammatory and anti-apoptotic properties when administered to mothers as a dietary supplement during pregnancy and/or lactation in preclinical studies of developmental brain injuries. However, despite Lf's promising neuroprotective effects, there is no established dose. Here, we tested three different doses of dietary maternal Lf supplementation using the postnatal day 3 HI model and evaluated the acute neurochemical damage profile using 1H Magnetic Resonance Spectroscopy (MRS) and long-term microstructure alterations using advanced diffusion imaging (DTI/NODDI) allied to protein expression and histological analysis. Pregnant Wistar rats were fed either control diet or bovine Lf supplemented chow at 0.1, 1, or 10 g/kg/body weight concentration from the last day of pregnancy (embryonic day 21-E21) to weaning. At postnatal day 3 (P3), pups from both sexes had their right common carotid artery permanently occluded and were exposed to 6% oxygen for 30 min. Sham rats had the incision but neither surgery nor hypoxia episode. At P4, MRS was performed on a 9.4 T scanner to obtain the neurochemical profile in the cortex. At P4 and P25, histological analysis and protein expression were assessed in the cortex and hippocampus. Brain volumes and ex vivo microstructural analysis using DTI/NODDI parameters were performed at P25. Acute metabolic disturbance induced in cortical tissue by HIP3 was reversed with all three doses of Lf. However, data obtained from MRS show that Lf neuroprotective effects were modulated by the dose. Through western blotting analysis, we observed that HI pups supplemented with Lf at 0.1 and 1 g/kg were able to counteract glutamatergic excitotoxicity and prevent metabolic failure. When 10 g/kg was administered, we observed reduced brain volumes, increased astrogliosis, and hypomyelination, pointing to detrimental effects of high Lf dose. In conclusion, Lf supplementation attenuates, in a dose-dependent manner, the acute and long-term cerebral injury caused by HI. Lf reached its optimal effects at a dose of 1 g/kg, which pinpoints the need to better understand effects of Lf, the pathways involved and possible harmful effects. These new data reinforce our knowledge regarding neuroprotection in developmental brain injury using Lf through lactation and provide new insights into lactoferrin's neuroprotection capacities and limitation for immature brains.


Assuntos
Lesões Encefálicas/prevenção & controle , Suplementos Nutricionais , Hipóxia-Isquemia Encefálica/terapia , Lactoferrina/administração & dosagem , Fármacos Neuroprotetores/administração & dosagem , Animais , Animais Recém-Nascidos , Encéfalo/efeitos dos fármacos , Encéfalo/crescimento & desenvolvimento , Lesões Encefálicas/etiologia , Relação Dose-Resposta a Droga , Feminino , Hipóxia-Isquemia Encefálica/complicações , Lactação , Masculino , Neuroproteção/efeitos dos fármacos , Gravidez , Ratos , Ratos Wistar
8.
Artigo em Inglês | MEDLINE | ID: mdl-34768025

RESUMO

BACKGROUND: Preeclampsia is a pregnancy disorder characterized with abnormal placental angiogenesis. Vitamin D and long chain polyunsaturated fatty acids (LCPUFA) play a crucial role in pregnancy and are required for normal placental and fetal growth and development. This study reports the effect of maternal vitamin D on LCPUFA levels in the mother and offspring brain fatty acid levels and angiogenic markers in a rat model of preeclampsia. METHODS: Female rats were divided into four groups from pre-pregnancy to pregnancy, viz Control; Preeclampsia (PE); Vitamin D deficient with PE (VDD-PE) and Vitamin D supplemented with PE (VDS-PE). Preeclampsia was induced by administering l-nitroarginine methyl ester (L-NAME) at the dose of 50 mg/kg body weight/day from day 14 to day 19 of gestation. Dams were sacrificed at d20 of gestation to collect dam blood, placenta and pup brain. LCPUFA levels from dam plasma, erythrocytes and placenta and its transcription factor peroxisome proliferator activated receptor gamma (PPAR-g) from placenta were estimated. Pup brain LCPUFA levels, angiogenic factors vascular endothelial growth factor (VEGF) and placental growth factor (PlGF) and transcription factor hypoxia inducible factor (Hif-1α) and PPAR-g were also estimated. RESULTS: Maternal vitamin D status influences fatty acid levels. Placental PPAR-g levels were lower in the VDD-PE group as compared to the VDS-PE groups (p < 0.01). In the offspring brain, both PE and VDD-PE group showed lower levels of DHA (p < 0.05 for both) while saturated fatty acids (SFA) levels in the VDD-PE group were higher as compared to the control group (p < 0.05). VDD-PE group also showed lower levels of PlGF and PPAR-g (p < 0.01 and p < 0.05, respectively) in the pup brain while vitamin D supplementation demonstrated levels similar to control. CONCLUSION: This study for the first time demonstrates that maternal vitamin D status influences LCPUFA metabolism and angiogenesis in the offspring brain.


Assuntos
Encéfalo/crescimento & desenvolvimento , Ácidos Docosa-Hexaenoicos/metabolismo , NG-Nitroarginina Metil Éster/efeitos adversos , PPAR gama/metabolismo , Fator de Crescimento Placentário/metabolismo , Pré-Eclâmpsia/metabolismo , Deficiência de Vitamina D/metabolismo , Vitamina D/administração & dosagem , Animais , Encéfalo/metabolismo , Estudos de Casos e Controles , Modelos Animais de Doenças , Feminino , Troca Materno-Fetal , Placenta/metabolismo , Pré-Eclâmpsia/induzido quimicamente , Gravidez , Ratos , Vitamina D/farmacologia
9.
Genes (Basel) ; 12(10)2021 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-34681028

RESUMO

The maternal environment during the periconceptional period influences foetal growth and development, in part, via epigenetic mechanisms moderated by one-carbon metabolic pathways. During embryonic development, one-carbon metabolism is involved in brain development and neural programming. Derangements in one-carbon metabolism increase (i) the short-term risk of embryonic neural tube-related defects and (ii) long-term childhood behaviour, cognition, and autism spectrum disorders. Here we investigate the association between maternal one-carbon metabolism and foetal and neonatal brain growth and development. Database searching resulted in 26 articles eligible for inclusion. Maternal vitamin B6, vitamin B12, homocysteine, and choline were not associated with foetal and/or neonatal head growth. First-trimester maternal plasma folate within the normal range (>17 nmol/L) associated with increased foetal head size and head growth, and high erythrocyte folate (1538-1813 nmol/L) with increased cerebellar growth, whereas folate deficiency (<7 nmol/L) associated with a reduced foetal brain volume. Preconceptional folic acid supplement use and specific dietary patterns (associated with increased B vitamins and low homocysteine) increased foetal head size. Although early pregnancy maternal folate appears to be the most independent predictor of foetal brain growth, there is insufficient data to confirm the link between maternal folate and offspring risks for neurodevelopmental diseases.


Assuntos
Encéfalo/crescimento & desenvolvimento , Carbono/metabolismo , Desenvolvimento Embrionário/genética , Desenvolvimento Fetal/genética , Encéfalo/metabolismo , Feminino , Desenvolvimento Fetal/fisiologia , Feto/metabolismo , Feto/fisiologia , Ácido Fólico/metabolismo , Humanos , Gravidez , Vitamina B 12/metabolismo
10.
JAMA Netw Open ; 4(9): e2124493, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34495336

RESUMO

Importance: Vitamin D may be important for neurodevelopment. The optimal daily dose of vitamin D for early brain development is not known. Objectives: To test whether a higher (1200 IU) vs standard (400 IU) dose of vitamin D3 has beneficial effects on neurodevelopment in the first 2 years of life and whether serum 25-hydroxyvitamin D concentration is associated with neurodevelopment. Design, Setting, and Participants: This double-blind, interventional randomized clinical trial involved healthy infants born full-term between January 1, 2013, and June 30, 2014, at a maternity hospital in Helsinki, Finland, at the 60th northern latitude. Two-year follow-up was conducted by May 30, 2016. Data analysis was by the intention-to-treat principle. Data were analyzed from November 1, 2020, to May 31, 2021. Interventions: Randomization of 404 infants to receive 400 IU of oral vitamin D3 supplementation daily and 397 infants to receive 1200 IU of oral vitamin D3 supplementation daily from 2 weeks to 24 months of age. Main Outcomes and Measures: Primary outcomes were child total developmental milestone scores at 12 and 24 months of age measured using the Ages and Stages Questionnaire (total score is calculated as a mean of the 5 subscale scores: total score range, 0-60, where 0 indicates delay in all developmental domains and 60 indicates that the child can master all age-specific skills) as well as externalizing, internalizing, and dysregulation problems and competencies scores at 24 months measured using the Infant-Toddler Social and Emotional Assessment (range 0-2, where 0 indicates no problems or no competencies and 2 indicates a high level of problems or a high level of competencies; variables were standardized to the mean [SD] of 0 [1]). Secondary outcomes were specific skills, problems, and competencies derived from these questionnaires. Results: Of the 987 families recruited, 495 children were randomly assigned to receive 400 IU of vitamin D3, and 492 children were randomly assigned to receive 1200 IU of vitamin D3. A total of 801 families participated in the follow-up at 12 and/or 24 months, with 404 children (207 girls [51.2%]) in the 400-IU group and 397 children (198 girls [49.9%]) in the 1200-IU group. All children were of Northern European ethnicity. No differences were found between the 400-IU group and the 1200-IU group in the mean (SD) adjusted Ages and Stages Questionnaire total score at 12 months (45.0 [7.1] vs 46.2 [7.9]; mean difference [MD], 1.17 [95% CI, -0.06 to 2.38]) or 24 months (50.9 [5.3] vs 51.5 [5.5]; MD, 0.48 [95% CI, -0.40 to 1.36]). No differences were found between the 400-IU group and the 1200-IU group at 24 months in the mean (SD) adjusted Infant-Toddler Social and Emotional Assessment externalizing domain score (-0.07 [1.00] vs 0.07 [0.98]; MD, 0.15 [95% CI, -0.01 to 0.31]), internalizing domain score (0.04 [1.06] vs -0.02 [0.98]; MD, -0.07 [95% CI, -0.24 to 0.1.0]), dysregulation domain score (-0.00 [1.04] vs 0.02 [0.96]; MD, 0.02 [95% CI, -0.14 to 0.18]), or competencies score (-0.02 [1.02] vs 0.01 [1.02]; MD, 0.03 [95% CI, -0.13 to 0.20]). The 1200-IU group did have a higher risk in the adjusted model of scoring 1.5 SDs or more on the externalizing domain score (odds ratio, 2.33 [95% CI, 1.19-4.56]; P = .01). Levels of serum 25-hydroxyvitamin D were not associated with the primary outcomes. Conclusions and Relevance: Higher-than-standard vitamin D3 doses provide no systematic benefits for child neurodevelopment up to 2 years of age. However, the potential disadvantageous effects of higher doses could not be fully excluded; even if minimal, the potential nonbeneficial effects of higher-than-standard doses warrant further studies in which both safety and benefits should be evaluated. Trial Registration: ClinicalTrials.gov Identifier: NCT01723852.


Assuntos
Encéfalo/crescimento & desenvolvimento , Vitamina D/análogos & derivados , Administração Oral , Adulto , Encéfalo/efeitos dos fármacos , Relação Dose-Resposta a Droga , Método Duplo-Cego , Feminino , Humanos , Lactente , Fenômenos Fisiológicos da Nutrição do Lactente , Recém-Nascido , Masculino , Gravidez , Vitamina D/administração & dosagem , Vitamina D/farmacologia , Vitamina D/uso terapêutico
11.
Nutrients ; 13(8)2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34444835

RESUMO

Deficient levels of milk osteopontin (OPN) in infant formula may partly account for developmental differences between infants fed formula or maternal milk. We hypothesized that a milk diet supplemented with bovine milk OPN improves gut, immunity and brain development and tested this in a preterm pig model. Preterm pigs delivered by cesarean section (90% gestation) were fed raw bovine milk (CON, n = 19) or the same diet supplemented with a physiologically relevant dose of OPN (46 mg/(kg·d), n = 16). Endpoints related to clinical outcomes, systemic immunity and neurocognitive development were assessed during the study and gut tissues were collected at Day 19. Growth pattern, early motor development and most systemic immune parameters were similar between OPN and CON pigs. The OPN pigs had higher villus-to-crypt ratios than CON pigs and higher monocyte and lymphocyte counts on Day 8. Gut digestive and absorptive functions and cognitive performance (T-maze test) were similar between OPN and CON pigs. In conclusion, dietary supplementation with OPN above basal bovine milk levels induced minor improvements in gut structure and systemic immunity without any effects on cognitive performance. The minimal levels of OPN in infant formula to secure optimal adaptation in the immediate neonatal period remain to be determined.


Assuntos
Encéfalo/efeitos dos fármacos , Encéfalo/crescimento & desenvolvimento , Trato Gastrointestinal/efeitos dos fármacos , Imunidade/efeitos dos fármacos , Leite/química , Osteopontina/farmacologia , Animais , Peso Corporal , Bovinos , Cesárea , Cognição , Dieta , Suplementos Nutricionais , Feminino , Alimentos Formulados , Mucosa Intestinal/efeitos dos fármacos , Linfócitos , Gravidez , Suínos
12.
Nutrients ; 13(8)2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34444644

RESUMO

Polar lipids, which are found in human milk, serve essential functions within biological membranes, hence their importance in brain development and cognition. Therefore, we aimed to evaluate the longitudinal effects on brain macrostructural and microstructural development and recognition memory of early-life polar lipid supplementation using the translational pig model. Twenty-eight intact (i.e., not castrated) male pigs were provided either a control diet (n = 14) or the control diet supplemented with polar lipids (n = 14) from postnatal day 2 until postnatal week 4. After postnatal week 4, all animals were provided the same nutritionally-adequate diets until postnatal week 24. Pigs underwent magnetic resonance imaging at 8 longitudinal time-points to model brain macrostructural and microstructural developmental trajectories. The novel object recognition task was implemented at postnatal weeks 4 and 8 to evaluate recognition memory. Subtle differences were observed between groups in hippocampal absolute brain volumes and fractional anisotropy, and no differences in myelin water fraction developmental patterns were noted. Behavioral outcomes did not differ in recognition memory, and only minimal differences were observed in exploratory behaviors. Our findings suggest that early-life dietary supplementation of polar lipids has limited effect on brain developmental patterns, object recognition memory, and exploratory behaviors.


Assuntos
Encéfalo/crescimento & desenvolvimento , Gorduras na Dieta/administração & dosagem , Suplementos Nutricionais , Lipídeos/administração & dosagem , Reconhecimento Psicológico , Animais , Comportamento Animal , Encéfalo/diagnóstico por imagem , Comportamento Exploratório , Imageamento por Ressonância Magnética , Masculino , Suínos , Aumento de Peso
13.
Nat Neurosci ; 24(10): 1488-1500, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34426698

RESUMO

Brain organoids represent a powerful tool for studying human neurological diseases, particularly those that affect brain growth and structure. However, many diseases manifest with clear evidence of physiological and network abnormality in the absence of anatomical changes, raising the question of whether organoids possess sufficient neural network complexity to model these conditions. Here, we explore the network-level functions of brain organoids using calcium sensor imaging and extracellular recording approaches that together reveal the existence of complex network dynamics reminiscent of intact brain preparations. We demonstrate highly abnormal and epileptiform-like activity in organoids derived from induced pluripotent stem cells from individuals with Rett syndrome, accompanied by transcriptomic differences revealed by single-cell analyses. We also rescue key physiological activities with an unconventional neuroregulatory drug, pifithrin-α. Together, these findings provide an essential foundation for the utilization of brain organoids to study intact and disordered human brain network formation and illustrate their utility in therapeutic discovery.


Assuntos
Encéfalo/fisiopatologia , Epilepsia/fisiopatologia , Neurônios , Adulto , Benzotiazóis/farmacologia , Encéfalo/crescimento & desenvolvimento , Sinalização do Cálcio , Pré-Escolar , Epilepsia/diagnóstico por imagem , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas , Proteína 2 de Ligação a Metil-CpG/genética , Rede Nervosa/fisiopatologia , Neurogênese/genética , Neuroimagem , Síndrome de Rett/diagnóstico por imagem , Síndrome de Rett/fisiopatologia , Análise de Célula Única , Sinapses , Tolueno/análogos & derivados , Tolueno/farmacologia , Transcriptoma
14.
Proc Natl Acad Sci U S A ; 118(24)2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34099561

RESUMO

Formal education has a long-term impact on an individual's life. However, our knowledge of the effect of a specific lack of education, such as in mathematics, is currently poor but is highly relevant given the extant differences between countries in their educational curricula and the differences in opportunities to access education. Here we examined whether neurotransmitter concentrations in the adolescent brain could classify whether a student is lacking mathematical education. Decreased γ-aminobutyric acid (GABA) concentration within the middle frontal gyrus (MFG) successfully classified whether an adolescent studies math and was negatively associated with frontoparietal connectivity. In a second experiment, we uncovered that our findings were not due to preexisting differences before a mathematical education ceased. Furthermore, we showed that MFG GABA not only classifies whether an adolescent is studying math or not, but it also predicts the changes in mathematical reasoning ∼19 mo later. The present results extend previous work in animals that has emphasized the role of GABA neurotransmission in synaptic and network plasticity and highlight the effect of a specific lack of education on MFG GABA concentration and learning-dependent plasticity. Our findings reveal the reciprocal effect between brain development and education and demonstrate the negative consequences of a specific lack of education during adolescence on brain plasticity and cognitive functions.


Assuntos
Logro , Encéfalo/crescimento & desenvolvimento , Matemática/educação , Adolescente , Comportamento , Biomarcadores/metabolismo , Encéfalo/diagnóstico por imagem , Feminino , Lobo Frontal/diagnóstico por imagem , Lobo Frontal/crescimento & desenvolvimento , Humanos , Imageamento por Ressonância Magnética , Masculino , Plasticidade Neuronal/fisiologia , Ácido gama-Aminobutírico/metabolismo
15.
Cell Rep ; 35(2): 108985, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33852843

RESUMO

Decreased cognitive performance is a hallmark of brain aging, but the underlying mechanisms and potential therapeutic avenues remain poorly understood. Recent studies have revealed health-protective and lifespan-extending effects of dietary spermidine, a natural autophagy-promoting polyamine. Here, we show that dietary spermidine passes the blood-brain barrier in mice and increases hippocampal eIF5A hypusination and mitochondrial function. Spermidine feeding in aged mice affects behavior in homecage environment tasks, improves spatial learning, and increases hippocampal respiratory competence. In a Drosophila aging model, spermidine boosts mitochondrial respiratory capacity, an effect that requires the autophagy regulator Atg7 and the mitophagy mediators Parkin and Pink1. Neuron-specific Pink1 knockdown abolishes spermidine-induced improvement of olfactory associative learning. This suggests that the maintenance of mitochondrial and autophagic function is essential for enhanced cognition by spermidine feeding. Finally, we show large-scale prospective data linking higher dietary spermidine intake with a reduced risk for cognitive impairment in humans.


Assuntos
Envelhecimento/genética , Proteína 7 Relacionada à Autofagia/genética , Disfunção Cognitiva/genética , Suplementos Nutricionais , Proteínas Quinases/genética , Espermidina/farmacologia , Ubiquitina-Proteína Ligases/genética , Envelhecimento/metabolismo , Animais , Proteína 7 Relacionada à Autofagia/metabolismo , Encéfalo/citologia , Encéfalo/efeitos dos fármacos , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Cognição/efeitos dos fármacos , Cognição/fisiologia , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/fisiopatologia , Disfunção Cognitiva/prevenção & controle , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Feminino , Regulação da Expressão Gênica , Humanos , Aprendizagem/efeitos dos fármacos , Aprendizagem/fisiologia , Masculino , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Proteínas Quinases/metabolismo , Transdução de Sinais , Memória Espacial/efeitos dos fármacos , Memória Espacial/fisiologia , Ubiquitina-Proteína Ligases/metabolismo
16.
Nutrients ; 13(3)2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33668360

RESUMO

Breastfed infants have higher intestinal lipid absorption and neurodevelopmental outcomes compared to formula-fed infants, which may relate to a different surface layer structure of fat globules in infant formula. This study investigated if dairy-derived emulsifiers increased lipid absorption and neurodevelopment relative to soy lecithin in newborn preterm piglets. Piglets received a formula diet containing soy lecithin (SL) or whey protein concentrate enriched in extracellular vesicles (WPC-A-EV) or phospholipids (WPC-PL) for 19 days. Both WPC-A-EV and WPC-PL emulsions, but not the intact diets, increased in vitro lipolysis compared to SL. The main differences of plasma lipidomics analysis were increased levels of some sphingolipids, and lipid molecules with odd-chain (17:1, 19:1, 19:3) as well as mono- and polyunsaturated fatty acyl chains (16:1, 20:1, 20:3) in the WPC-A-EV and WPC-PL groups and increased 18:2 fatty acyls in the SL group. Indirect monitoring of intestinal triacylglycerol absorption showed no differences between groups. Diffusor tensor imaging measurements of mean diffusivity in the hippocampus were lower for WPC-A-EV and WPC-PL groups compared to SL indicating improved hippocampal maturation. No differences in hippocampal lipid composition or short-term memory were observed between groups. In conclusion, emulsification of fat globules in infant formula with dairy-derived emulsifiers altered the plasma lipid profile and hippocampal tissue diffusivity but had limited effects on other absorptive and learning abilities relative to SL in preterm piglets.


Assuntos
Emulsificantes/farmacologia , Alimentos Formulados , Lecitinas/farmacologia , Fosfolipídeos/farmacologia , Proteínas do Soro do Leite/farmacologia , Fenômenos Fisiológicos da Nutrição Animal/efeitos dos fármacos , Animais , Animais Recém-Nascidos/crescimento & desenvolvimento , Encéfalo/crescimento & desenvolvimento , Hipocampo/crescimento & desenvolvimento , Lipidômica , Lipídeos/sangue , Lipólise/efeitos dos fármacos , Glycine max/química , Suínos
17.
Appl Physiol Nutr Metab ; 46(5): 530-539, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33583256

RESUMO

Given the focus on developing Dietary Reference Intakes (DRIs) based on chronic disease risk reduction and recent research for omega-3 long chain PUFA since the last DRI review, the Canadian Nutrition Society convened a panel of stakeholders for a 1-day workshop in late 2019. Attendees discussed the new NASEM guidelines for establishing DRI values based on chronic disease risk endpoints and the strength of current evidence for EPA and DHA as it relates to the new guidelines. Novelty: Summarizes evidence and expert opinions regarding the potential for reviewing DRI values for EPA and DHA and cardiovascular disease risk and early development.


Assuntos
Doença Crônica/prevenção & controle , Dieta , Ácidos Docosa-Hexaenoicos/administração & dosagem , Ácido Eicosapentaenoico/administração & dosagem , Recomendações Nutricionais , Envelhecimento/fisiologia , Pesquisa Biomédica , Encéfalo/crescimento & desenvolvimento , Encéfalo/fisiologia , Canadá , Doenças Cardiovasculares/prevenção & controle , Criança , Desenvolvimento Infantil , Feminino , Humanos , Imunidade , Lactente , Inflamação/prevenção & controle , Gravidez , Complicações na Gravidez/prevenção & controle , Nascimento Prematuro/prevenção & controle , Fatores de Risco
18.
Neuroimmunomodulation ; 28(1): 22-28, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33530091

RESUMO

COVID-19, a disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) betacoronavirus, affects children in a different way than it does in adults, with milder symptoms. However, several cases of neurological symptoms with neuroinflammatory syndromes, such as the multisystem inflammatory syndrome (MIS-C), following mild cases, have been reported. As with other viral infections, such as rubella, influenza, and cytomegalovirus, SARS-CoV-2 induces a surge of proinflammatory cytokines that affect microglial function, which can be harmful to brain development. Along with the viral induction of neuroinflammation, other noninfectious conditions may interact to produce additional inflammation, such as the nutritional imbalance of fatty acids and polyunsaturated fatty acids and alcohol consumption during pregnancy. Additionally, transient thyrotoxicosis induced by SARS-CoV-2 with secondary autoimmune hypothyroidism has been reported, which could go undetected during pregnancy. Together, those factors may pose additional risk factors for SARS-CoV-2 infection impacting mechanisms of neural development such as synaptic pruning and neural circuitry formation. The present review discusses those conditions in the perspective of the understanding of risk factors that should be considered and the possible emergence of neurodevelopmental disorders in COVID-19-infected children.


Assuntos
Encéfalo/crescimento & desenvolvimento , COVID-19/imunologia , Inflamação/imunologia , Microglia/imunologia , Transtornos do Neurodesenvolvimento/imunologia , Encéfalo/imunologia , Encéfalo/fisiopatologia , COVID-19/fisiopatologia , Dieta , Gorduras Insaturadas na Dieta , Ácidos Graxos Insaturados , Transtornos do Espectro Alcoólico Fetal/imunologia , Transtornos do Espectro Alcoólico Fetal/fisiopatologia , Humanos , Inflamação/fisiopatologia , Transtornos do Neurodesenvolvimento/fisiopatologia , Plasticidade Neuronal , Fatores de Risco , SARS-CoV-2 , Índice de Gravidade de Doença , Síndrome de Resposta Inflamatória Sistêmica
19.
Sci Rep ; 11(1): 4085, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33602973

RESUMO

Nutritional intake can promote early neonatal brain development in very preterm born neonates (< 32 weeks' gestation). In a group of 7-year-old very preterm born children followed since birth, we examined whether early nutrient intake in the first weeks of life would be associated with long-term brain function and neurocognitive skills at school age. Children underwent resting-state functional MRI (fMRI), intelligence testing (Wechsler Intelligence Scale for Children, 5th Ed) and visual-motor processing (Beery-Buktenica, 5th Ed) at 7 years. Relationships were assessed between neonatal macronutrient intakes, functional connectivity strength between thalamic and default mode networks (DMN), and neuro-cognitive function using multivariable regression. Greater functional connectivity strength between thalamic networks and DMN was associated with greater intake of protein in the first week (ß = 0.17; 95% CI 0.11, 0.23, p < 0.001) but lower intakes of fat (ß = - 0.06; 95% CI - 0.09, - 0.02, p = 0.001) and carbohydrates (ß = - 0.03; 95% CI - 0.04, - 0.01, p = 0.003). Connectivity strength was also associated with protein intake during the first month (ß = 0.22; 95% CI 0.06, 0.37, p = 0.006). Importantly, greater thalamic-DMN connectivity strength was associated with higher processing speed indices (ß = 26.9; 95% CI 4.21, 49.49, p = 0.02) and visual processing scores (ß = 9.03; 95% CI 2.27, 15.79, p = 0.009). Optimizing early protein intake may contribute to promoting long-term brain health in preterm-born children.


Assuntos
Encéfalo/fisiologia , Cognição , Proteínas Alimentares/administração & dosagem , Recém-Nascido Prematuro/fisiologia , Encéfalo/diagnóstico por imagem , Encéfalo/crescimento & desenvolvimento , Criança , Cognição/fisiologia , Rede de Modo Padrão/fisiologia , Feminino , Neuroimagem Funcional , Humanos , Fenômenos Fisiológicos da Nutrição do Lactente/fisiologia , Recém-Nascido , Recém-Nascido Prematuro/crescimento & desenvolvimento , Imageamento por Ressonância Magnética , Masculino , Desempenho Psicomotor/fisiologia , Tálamo/fisiologia , Escalas de Wechsler
20.
Sci Rep ; 11(1): 3569, 2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33574371

RESUMO

Animal studies have demonstrated the therapeutic potential of polyphenol-rich pomegranate juice. We recently reported altered white matter microstructure and functional connectivity in the infant brain following in utero pomegranate juice exposure in pregnancies with intrauterine growth restriction (IUGR). This double-blind exploratory randomized controlled trial further investigates the impact of maternal pomegranate juice intake on brain structure and injury in a second cohort of IUGR pregnancies diagnosed at 24-34 weeks' gestation. Ninety-nine mothers and their eligible fetuses (n = 103) were recruited from Brigham and Women's Hospital and randomly assigned to 8 oz pomegranate (n = 56) or placebo (n = 47) juice to be consumed daily from enrollment to delivery. A subset of participants underwent fetal echocardiogram after 2 weeks on juice with no evidence of ductal constriction. 57 infants (n = 26 pomegranate, n = 31 placebo) underwent term-equivalent MRI for assessment of brain injury, volumes and white matter diffusion. No significant group differences were found in brain volumes or white matter microstructure; however, infants whose mothers consumed pomegranate juice demonstrated lower risk for brain injury, including any white or cortical grey matter injury compared to placebo. These preliminary findings suggest pomegranate juice may be a safe in utero neuroprotectant in pregnancies with known IUGR warranting continued investigation.Clinical trial registration: NCT04394910, https://clinicaltrials.gov/ct2/show/NCT04394910 , Registered May 20, 2020, initial participant enrollment January 16, 2016.


Assuntos
Lesões Encefálicas/dietoterapia , Encéfalo/efeitos dos fármacos , Retardo do Crescimento Fetal/dietoterapia , Punica granatum/química , Adulto , Encéfalo/crescimento & desenvolvimento , Encéfalo/fisiopatologia , Lesões Encefálicas/diagnóstico por imagem , Lesões Encefálicas/fisiopatologia , Suplementos Nutricionais , Feminino , Retardo do Crescimento Fetal/fisiopatologia , Feto/efeitos dos fármacos , Feto/fisiopatologia , Sucos de Frutas e Vegetais , Humanos , Lactente , Imageamento por Ressonância Magnética , Gravidez , Substância Branca/efeitos dos fármacos , Substância Branca/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA