Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 224
Filtrar
Mais filtros

Medicinas Complementares
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 9318, 2024 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654024

RESUMO

Endophytes of Panax have the potential to produce their host plant secondary metabolites, ginsenosides. Panax sokpayensis, an endemic traditional medicinal plant of the Sikkim Himalayas was explored for the isolation of endophytic fungi. In the present study, we have isolated 35 endophytic fungal cultures from the rhizome of P. sokpayensis and screened for ginsenosides production by HPLC by comparing the peak retention time with that of standard ginsenosides. The HPLC analysis revealed that out of 35 isolates, the mycelial extracts of four fungal endophytes (PSRF52, PSRF53, PSRF49 and PSRF58) exhibited peaks with a similar retention time of the standard ginsenoside, Compound K (CK). LC-ESI-MS/MS analysis led to the confirmation of ginsenoside CK production by the four fungal endophytes which showed a compound with m/z 639.6278, similar to that of standard ginsenoside CK with yield in potato dextrose broth flask fermentation ranging from 0.0019 to 0.0386 mg/g of mycelial mass in dry weight basis. The four prospective fungal endophyte isolates were identified as Thermothielavioides terrestris PSRF52, Aspergillus sp. PSRF49, Rutstroemiaceae sp. strain PSRF53, and Phaeosphaeriaceae sp. strain PSRF58 based on ITS sequencing. The present finding highlights the need for further study on growth optimization and other culture parameters to exploit the endophytes as an alternative source for ginsenoside CK production.


Assuntos
Endófitos , Fermentação , Ginsenosídeos , Panax , Ginsenosídeos/metabolismo , Endófitos/metabolismo , Endófitos/isolamento & purificação , Panax/microbiologia , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas em Tandem , Fungos/metabolismo , Fungos/isolamento & purificação , Rizoma/microbiologia
2.
Microb Cell Fact ; 22(1): 169, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37649058

RESUMO

Endophytes, especially those isolated from herbal plants, may act as a reservoir of a variety of secondary metabolites exhibiting biological activity. Some endophytes express the ability to produce the same bioactive compounds as their plant hosts, making them a more sustainable industrial supply of these substances. Urtica dioica L. (common stinging nettle) is a synanthropic plant that is widely used in herbal medicine due to the diversity of bioactive chemicals it contains, e.g., polyphenols, which demonstrate anti-inflammatory, antioxidant, and anti-cancerous capabilities. This study aimed at isolating endophytic bacteria from stinging nettles for their bioactive compounds. The endophytic isolates were identified by both biochemical and molecular methods (16S rRNA) and investigated for enzymes, biosurfactants, and polyphenols production. Each of the isolated bacterial strains was capable of producing biosurfactants and polyphenols. However, three of the isolated endophytes, identified as two strains of Bacillus cereus and one strain of Bacillus mycoides, possessed the greatest capacity to produce biosurfactants and polyphenols. The derivatized extracts from culture liquid showed the 1.633 mol l-1 (9.691 mg l-1) concentration of polyphenol compounds. Therefore, the present study signifies that endophytic B. cereus and B. mycoides isolated from Urtica dioica L. could be a potential source of biosurfactants and polyphenols. However, further study is required to understand the mechanism of the process and achieve efficient polyphenol production by endophytic bacteria.


Assuntos
Bactérias , Urtica dioica , Urtica dioica/microbiologia , Bacillus cereus/metabolismo , Bactérias/química , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Endófitos/química , Endófitos/genética , Endófitos/isolamento & purificação , Endófitos/metabolismo , Polifenóis/análise , Enzimas/metabolismo , Genótipo
3.
BMC Microbiol ; 21(1): 335, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34876006

RESUMO

BACKGROUND: The native potatoes (Solanum tuberosum subsp. tuberosum L.) grown in Chile (Chiloé) represent a new, unexplored source of endophytes to find potential biological control agents for the prevention of bacterial diseases, like blackleg and soft rot, in potato crops. RESULT: The objective of this study was the selection of endophytic actinobacteria from native potatoes for antagonistic activity against Pectobacterium carotovorum subsp. carotovorum and Pectobacterium atrosepticum, and their potential to suppress tissue maceration symptoms in potato tubers. This potential was determined through the quorum quenching activity using a Chromobacterium violaceaum ATCC 12472 Wild type (WT) bioassay and its colonization behavior of the potato plant root system (S. tuberosum) by means of the Double labeling of oligonucleotide probes for fluorescence in situ hybridization (DOPE-FISH) targeting technique. The results showed that although Streptomyces sp. TP199 and Streptomyces sp. A2R31 were able to inhibit the growth of the pathogens, only the Streptomyces sp. TP199 isolate inhibited Pectobacterium sp. growth and diminished tissue maceration in tubers (p ≤ 0.05). Streptomyces sp. TP199 had metal-dependent acyl homoserine lactones (AHL) quorum quenching activity in vitro and was able to colonize the root endosphere 10 days after inoculation. CONCLUSIONS: We concluded that native potatoes from southern Chile possess endophyte actinobacteria that are potential agents for the disease management of soft rot and blackleg.


Assuntos
Actinobacteria/fisiologia , Antibiose/fisiologia , Endófitos/fisiologia , Solanum tuberosum/microbiologia , Actinobacteria/classificação , Actinobacteria/genética , Actinobacteria/isolamento & purificação , Agentes de Controle Biológico/isolamento & purificação , Chile , Endófitos/classificação , Endófitos/genética , Endófitos/isolamento & purificação , Pectobacterium/fisiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Tubérculos/microbiologia , Percepção de Quorum , Streptomyces/classificação , Streptomyces/genética , Streptomyces/isolamento & purificação , Streptomyces/fisiologia
4.
Int J Syst Evol Microbiol ; 71(10)2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34665118

RESUMO

Strain EAR8T is a root endophyte isolated from Arthrocnemum macrostachyum plants collected from the Odiel marshes, Huelva (Spain). It presented in vitro plant growth-promoting properties and improved the plant growth and heavy metal accumulation in polluted soils playing an important role in phytoremediation strategies. Phenotypically, strain EAR8T cells were Gram-positive, aerobic and non-motile rods with terminal oval endospores and non-swollen sporangia which form beige, opaque, butyrous, raised and irregular colonies with undulate margins. The strain was able to grow between 15-45 °C, at pH 6.0-9.0 and tolerated 0-25 % NaCl (w/v) showing optimal growth conditions on trypticase soy agar plates supplemented with 2.5 % NaCl (w/v) at pH 7.0 and 37 °C for 24 h. Chemotaxonomic analyses showed that the isolate has meso-diaminopimelic acid as the peptidoglycan in the cell wall and MK-7 as the major respiratory quinone. The predominant fatty acids were anteiso-C15 : 0 and iso-C15 : 0 and the polar lipid profile was composed of diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. Phylogenetic analyses based on the whole proteomes of closest sequenced relatives confirmed that strain EAR8T is affiliated to the genus Rossellomorea and forms a clade with Rossellomorea vietnamensis 15-1T with maximum support. Genome analyses showed that EAR8T has indole-3-acetic acid and siderophore biosynthesis and transporters genes and genes related to resistance against heavy metals. Phenotypic and phylogenomic comparative studies suggested that strain EAR8T is a new representative of the genus Rossellomorea and the name Rossellomorea arthrocnemi sp. nov. is proposed. Type strain is EAR8T (=CECT 9072T=DSM 103900T).


Assuntos
Bacillaceae/classificação , Chenopodiaceae/microbiologia , Metais Pesados , Filogenia , Microbiologia do Solo , Poluentes do Solo , Bacillaceae/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , Biodegradação Ambiental , DNA Bacteriano/genética , Ácido Diaminopimélico/química , Endófitos/classificação , Endófitos/isolamento & purificação , Ácidos Graxos/química , Peptidoglicano/química , Fosfolipídeos/química , Raízes de Plantas/microbiologia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Espanha , Vitamina K 2/análogos & derivados , Vitamina K 2/química
5.
Biomed Res Int ; 2021: 9930210, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34395628

RESUMO

The present study was aimed at isolating endophytic fungi from the Asian culinary and medicinal plant Lilium davidii and analyzing its antifungal and plant growth-promoting effects. In this study, the fungal endophyte Acremonium sp. Ld-03 was isolated from the bulbs of L. davidii and identified through morphological and molecular analysis. The molecular and morphological analysis confirmed the endophytic fungal strain as Acremonium sp. Ld-03. Antifungal effects of Ld-03 were observed against Fusarium oxysporum, Botrytis cinerea, Botryosphaeria dothidea, and Fusarium fujikuroi. The highest growth inhibition, i.e., 78.39 ± 4.21%, was observed for B. dothidea followed by 56.68 ± 4.38%, 43.62 ± 3.81%, and 20.12 ± 2.45% for B. cinerea, F. fujikuroi, and F. oxysporum, respectively. Analysis of the ethyl acetate fraction through UHPLC-LTQ-IT-MS/MS revealed putative secondary metabolites which included xanthurenic acid, valyl aspartic acid, gancidin W, peptides, and cyclic dipeptides such as valylarginine, cyclo-[L-(4-hydroxy-Pro)-L-leu], cyclo(Pro-Phe), and (3S,6S)-3-benzyl-6-(4-hydroxybenzyl)piperazine-2,5-dione. Other metabolites included (S)-3-(4-hydroxyphenyl)-2-((S)-pyrrolidine-2-carboxamido)propanoic acid, dibutyl phthalate (DBP), 9-octadecenamide, D-erythro-C18-Sphingosine, N-palmitoyl sphinganine, and hydroxypalmitoyl sphinganine. The strain Ld-03 showed indole acetic acid (IAA) production with or without the application of exogenous tryptophan. The IAA ranged from 53.12 ± 3.20 µg ml-1 to 167.71 ± 7.12 µg ml-1 under different tryptophan concentrations. The strain was able to produce siderophore, and its production was significantly decreased with increasing Fe(III) citrate concentrations in the medium. The endophytic fungal strain also showed production of organic acids and phosphate solubilization activity. Plant growth-promoting effects of the strain were evaluated on in vitro seedling growth of Allium tuberosum. Application of 40% culture dilution resulted in a significant increase in root and shoot length, i.e., 24.03 ± 2.71 mm and 37.27 ± 1.86 mm, respectively, compared to nontreated control plants. The fungal endophyte Ld-03 demonstrated the potential of conferring disease resistance and plant growth promotion. Therefore, we conclude that the isolated Acremonium sp. Ld-03 should be further investigated before utilization as a biocontrol agent and plant growth stimulator.


Assuntos
Acremonium/química , Antifúngicos/farmacologia , Ascomicetos/crescimento & desenvolvimento , Botrytis/crescimento & desenvolvimento , Fusarium/crescimento & desenvolvimento , Lilium/microbiologia , Reguladores de Crescimento de Plantas/farmacologia , Acetatos/química , Acetatos/farmacologia , Acremonium/isolamento & purificação , Acremonium/fisiologia , Antifúngicos/química , Ascomicetos/efeitos dos fármacos , Botrytis/efeitos dos fármacos , Cebolinha-Francesa/efeitos dos fármacos , Cebolinha-Francesa/crescimento & desenvolvimento , Cromatografia Líquida de Alta Pressão , Resistência à Doença , Endófitos/isolamento & purificação , Endófitos/fisiologia , Fusarium/efeitos dos fármacos , Ácidos Indolacéticos/química , Ácidos Indolacéticos/isolamento & purificação , Ácidos Indolacéticos/farmacologia , Metabolômica/métodos , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Desenvolvimento Vegetal , Reguladores de Crescimento de Plantas/química , Reguladores de Crescimento de Plantas/isolamento & purificação , Raízes de Plantas/microbiologia , Metabolismo Secundário , Espectrometria de Massas em Tandem
6.
Fitoterapia ; 155: 104970, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34419561

RESUMO

The natural product Huperzine A isolated from Huperzia serrata is a targeted inhibitor of acetylcholinesterase that has been approved for clinical use in the treatment of Alzheimer's disease. Given the large demand for natural sources of Huperzine A  (Hup. A), efforts have been made to explore whether it is also produced by endophytic fungi from H. serrata and, if so, identify its biosynthetic pathway. These studies have indicated that endophytic fungi from H. serrata represent a huge and largely untapped resource for natural products (including Hup. A) with chemical structures that have been optimized by evolution for biological and ecological relevance. To date, more than three hundred endophytic fungi have been isolated from H. serrata, of which 9 strains can produce Hup. A, whilst more than 20 strains produce other important metabolites, such as polyketones, xanthones, alkaloids, steroids, triterpenoids, furanone derivatives, tremulane sesquitepenes and diterpenoids. In total, 200 secondary metabolites have been characterized in endophytic fungi from H. serrata to date. Functionally, some have cholinesterase-inhibitory or antibacterial activity. This review also considers the different classes of secondary metabolites produced by endophytic fungi, along with their possible applications. We systematically describe the taxonomy, biology, and chemistry of these secondary metabolites. It also summarizes the biosynthetic synthesis of metabolites, including that of Hup. A. The review will aid researchers in obtaining a clearer understanding of this plant-endophyte relationship to better exploit the excellent resources it offers that may be utilized by pharmaceutical industries.


Assuntos
Produtos Biológicos/isolamento & purificação , Fungos/química , Huperzia/microbiologia , Produtos Biológicos/farmacologia , Endófitos/química , Endófitos/isolamento & purificação , Fungos/isolamento & purificação , Estrutura Molecular , Metabolismo Secundário
7.
Braz J Microbiol ; 52(4): 1791-1805, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34339015

RESUMO

Endophytes are regarded with immense potentials in terms of plant growth promoting (PGP) elicitors and mimicking secondary metabolites of medicinal importance. Here in the present study, we explored Bacopa monnieri plants to isolate, identify fungal endophytes with PGP elicitation potentials, and investigate secretion of secondary metabolites such as bacoside and withanolide content under in vitro conditions. Three fungal endophytes isolated (out of 40 saponin producing isolates) from leaves of B. monnieri were examined for in vitro biosynthesis of bacosides. On morphological, biochemical, and molecular identification (ITS gene sequencing), the isolated strains SUBL33, SUBL51, and SUBL206 were identified as Nigrospora oryzae (MH071153), Alternaria alternata (MH071155), and Aspergillus terreus (MH071154) respectively. Among these strains, SUBL33 produced highest quantity of Bacoside A3 (4093 µg mL-1), Jujubogenin isomer of Bacopasaponin C (65,339 µg mL-1), and Bacopasaponin C (1325 µg mL-1) while Bacopaside II (13,030 µg mL-1) was produced by SUBL51 maximally. Moreover, these aforementioned strains also produced detectable concentration of withanolides-Withaferrin A, Withanolide A (480 µg mL-1), and Withanolide B (1024 µg mL-1) respectively. However, Withanolide A was not detected in the secondary metabolites of strain SUBL51. To best of our knowledge, the present study is first reports of Nigrospora oryzae as an endophyte in B. monnieri with potentials of biosynthesis of economically important phytomolecules under in vitro conditions.


Assuntos
Bacopa , Endófitos , Fungos , Saponinas , Vitanolídeos , Alternaria/genética , Alternaria/isolamento & purificação , Alternaria/metabolismo , Ascomicetos/genética , Ascomicetos/isolamento & purificação , Ascomicetos/metabolismo , Aspergillus/genética , Aspergillus/isolamento & purificação , Aspergillus/metabolismo , Bacopa/microbiologia , Endófitos/genética , Endófitos/isolamento & purificação , Endófitos/metabolismo , Fungos/genética , Fungos/isolamento & purificação , Fungos/metabolismo , Folhas de Planta/microbiologia , Saponinas/biossíntese , Vitanolídeos/metabolismo
8.
World J Microbiol Biotechnol ; 37(8): 135, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34263378

RESUMO

The present study aimed to isolate and identify root endophytic bacteria with multifunctional plant growth promoting (PGP) traits from medicinal plant Rosmarinus officinalis grown in the North-Western Himalayas. A total of 42 strains were isolated, exhibiting variable degrees of PGP traits, including phosphate solubilization (10-375 µg/mL), indole-3-acetic acid (6-66 µg/mL), siderophore (32.37%-301.48% SU) production and antifungal activity in terms of percent growth inhibition (% GI) against Fusarium oxysporum (44.44%-77.77% GI), Fusarium graminearum (48.88%-71.42% GI) and Rhizoctonia solani (44.44%-77.7% GI). The 16S rDNA sequencing results showed lineage of these strains to 15 genera viz., Aneurinibacillus, Bacillus, Beijerinckia, Cedecea, Ensifer, Enterobacter, Kosakonia, Lactobacillus, Lysobacter, Oxynema, Pseudomonas, Pantoea, Paenibacillus, Pseudoxanthomonas and Serratia. Out of 42 strains, 11 potential strains were selected for in vivo growth studies of R. officinalis. The results showed that the inoculation of Bacillus subtilis KU21, Pseudomonas aeruginosa SI12, and Cedecea lapagei KU14 significantly increased the physical growth parameters of plant over uninoculated control viz., number of lateral of branches (43.95%-46.39%), stem height (29.04%-38.57%), root length (32.31%-37.14%), shoot (34.76%-40.91%) and root biomass (62.89%-70.70%). Physiological characteristics such as total chlorophyll (30.41%-30.96%), phenol (14.43%-24.55%) and carotenoids (34.26%-39.87%) content, also showed a relative increase as compared to uninoculated control; furthermore, the macronutrients (NPK) contents of the plant as well as soil also showed an increase. The developed module may be recommended for sustainable production of R. officinalis in the North-Western Himalayan region without hampering the soil health and fertility.


Assuntos
Bactérias/isolamento & purificação , Endófitos/isolamento & purificação , Rosmarinus/crescimento & desenvolvimento , Rosmarinus/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Bioprospecção , Endófitos/classificação , Endófitos/genética , Endófitos/metabolismo , Ácidos Indolacéticos/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Sideróforos/metabolismo , Microbiologia do Solo
9.
Arch Microbiol ; 203(5): 2475-2489, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33675371

RESUMO

In a preliminary plant-based microbiome study, diverse bacterial taxa were identified from different medicinal plants using 16S rRNA gene sequencing. Based on initial antimicrobial screening, eight (8) bacterial endophytes in six (6) different genera, Streptomyces, Pseudomonas, Enterobacter, Bacillus, Arthrobacter, and Delftia, from four important medicinal plants Dodonaea viscosa, Fagonia indica, Caralluma tuberculata, and Calendula arvensis were selected for further analyses. Antimicrobial assays revealed that Pseudomonas taiwanensis MOSEL-RD23 has strong anti-Phytophthora activity. Volatiles produced by P. taiwanensis MOSEL-RD23and Bacillus flexus MOSEL-MIC5 inhibited the growth of Phytophthora parasitica by more than 80%. Ethyl acetate extracts of Streptomyces alboniger MOSEL-RD3, P. taiwanensis MOSEL-RD23, Enterobacter hormaechei MOSEL-FLS1, and Bacillus tequilensis MOSEL-FLS3, and Delftia lacustris MB322 displayed high potency against P. parasitica. All these bacterial extracts showed strong inhibition of more than 80% inhibition in vitro against P. parasitica at different concentrations (4-400 µg/mL). Bacterial extracts showing strong antimicrobial activity were selected for bioactivity-driven fractionation and showed anti-Phytophthoral activity in multiple fractions and different peaks observed in UV-Vis spectroscopy. In the detached-leaf assay against P. parasitica on tobacco, 1% ethyl acetate bacterial extract of S. alboniger MOSEL-RD3, P. taiwanensis MOSEL-RD23, E. hormaechei MOSEL-FLS1, B. tequilensis MOSEL-FLS3, and D. lacustris MB322 reduced lesion sizes and lesion frequencies caused by P. parasitica by 68 to 81%. Overall, P. taiwanensis MOSEL-RD23 showed positive activities for all the assays. Analyzing the potential of bacterial endophytes as biological control agents can potentially lead to the formulation of broad-spectrum biopesticides for the sustainable production of crops.


Assuntos
Agentes de Controle Biológico/farmacologia , Microbiota , Phytophthora/efeitos dos fármacos , Plantas Medicinais/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Agentes de Controle Biológico/isolamento & purificação , Agentes de Controle Biológico/metabolismo , Endófitos/classificação , Endófitos/genética , Endófitos/isolamento & purificação , Endófitos/metabolismo , Testes de Sensibilidade Parasitária , Phytophthora/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Plantas Medicinais/classificação , RNA Ribossômico 16S/genética
10.
Future Microbiol ; 16: 291-303, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33709774

RESUMO

Background: Rising number of multidrug-resistant human pathogens demands novel antibiotics: to this aim, unexplored natural sources are investigated to find new compounds. In this context, bacteria associated to medicinal plants, including Phragmites australis, might represent an important source of antimicrobial compounds. Materials & methods: In the present work, 21 bacterial endophytes isolated from P. australis roots were tested, by cross-streaking, for their inhibitory activity against 36 multidrug-resistant pathogens isolated from food, clinical patients and hospitals. Results & conclusion: Seven endophytes, belonging to Pseudomonas and Stenotrophomonas, were able to inhibit the growth of most of the target strains. In conclusion, this preliminary work could pave the way for the discovery of new antibiotics against superbugs.


Lay abstract In the present work, 21 bacteria associated to Phragmites australis roots were tested for their inhibitory activity against 36 human pathogens isolated from food, clinical patients and/or hospitals, which have the ability to escape several commonly used antibiotics. Seven out of 21 bacteria associated to P. australis were able to inhibit the growth of most of target pathogens. This preliminary work could pave the way to the discovery of new antimicrobial compounds active against bacterial pathogens that cannot be killed using several antibiotics.


Assuntos
Antibiose/fisiologia , Bactérias/isolamento & purificação , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Poaceae/microbiologia , Antibacterianos/farmacologia , Endófitos/isolamento & purificação , Endófitos/fisiologia , Humanos , Raízes de Plantas/microbiologia , Plantas Medicinais/microbiologia
11.
Folia Microbiol (Praha) ; 66(3): 385-397, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33544301

RESUMO

Fungal endophytes have been found to exist in many plant species and appear to be important to their plant hosts. However, the diversity and biological activities of these fungi remain largely unknown. Zanthoxylum simulans Hance, a popular natural spice and medicinal plant, commonly known as Szechuan pepper or Chinese-pepper, grows on Kinmen Island, Taiwan. In this study, leaf and stem samples of Z. simulans, collected in summer and winter, were screened for antimicrobial and anti-inflammatory metabolite-producing endophytic fungi. A total of 113 endophytic strains were isolated and cultured from Z. simulans, among which 23 were found to possess antimicrobial activity, belonging to six fungal genera: Penicillium (26.09%, 6), Colletotrichum (21.74%, 5), Diaporthe (21.74%, 5), Daldinia (17.39%, 4), Alternaria (8.70%, 2), and Didymella (4.34%, 1). We also found that the number of species with antimicrobial activity and their compositions differed between summer and winter. Our study demonstrated that Z. simulans might contain large and diverse communities of endophytic fungi, and its community composition varies seasonally. In addition, fungal endophytes produce antimicrobial agents, which may protect their hosts against pathogens and could be a potential source of natural antibiotics.


Assuntos
Fungos , Interações Microbianas , Plantas Medicinais , Zanthoxylum , Anti-Infecciosos , Endófitos/isolamento & purificação , Endófitos/fisiologia , Fungos/isolamento & purificação , Fungos/fisiologia , Interações Microbianas/fisiologia , Plantas Medicinais/microbiologia , Zanthoxylum/microbiologia
12.
Sci Rep ; 11(1): 2770, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33531542

RESUMO

Fungal endophytes are a major source of anti-infective agents and other medically relevant compounds. However, their classical blinded-chemical investigation is a challenging process due to their highly complex chemical makeup. Thus, utilizing cheminformatics tools such as metabolomics and computer-aided modelling is of great help deal with such complexity and select the most probable bioactive candidates. In the present study, we have explored the fungal endophytes associated with the well-known antimalarial medicinal plant Artemisia annua for their production of further antimalarial agents. Based on the preliminary antimalarial screening of these endophytes and using LC-HRMS-based metabolomics and multivariate analyses, we suggested different potentially active metabolites (compounds 1-8). Further in silico investigation using the neural-network-based prediction software PASS led to the selection of a group of quinone derivatives (compounds 1-5) as the most possible active hits. Subsequent in vitro validation revealed emodin (1) and physcion (2) to be potent antimalarial candidates with IC50 values of 0.9 and 1.9 µM, respectively. Our approach in the present investigation therefore can be applied as a preliminary evaluation step in the natural products drug discovery, which in turn can facilitate the isolation of selected metabolites notably the biologically active ones.


Assuntos
Antimaláricos , Artemisia annua/microbiologia , Endófitos/metabolismo , Metaboloma , Plasmodium falciparum/efeitos dos fármacos , Quinonas , Antimaláricos/isolamento & purificação , Antimaláricos/farmacologia , Endófitos/classificação , Endófitos/isolamento & purificação , Quinonas/isolamento & purificação , Quinonas/farmacologia
13.
Sci Rep ; 11(1): 2829, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33531601

RESUMO

The increase of human population and associated increasing demand for agricultural products lead to soil over-exploitation. Biofertilizers based on lyophilized plant material containing living plant growth-promoting microorganisms (PGPM) could be an alternative to conventional fertilizers that fits into sustainable agricultural technologies ideas. We aimed to: (1) assess the diversity of endophytic bacteria in sugar and sea beet roots and (2) determine the influence of osmoprotectants (trehalose and ectoine) addition during lyophilization on bacterial density, viability and salt tolerance. Microbiome diversity was assessed based on 16S rRNA amplicons sequencing, bacterial density and salt tolerance was evaluated in cultures, while bacterial viability was calculated by using fluorescence microscopy and flow cytometry. Here we show that plant genotype shapes its endophytic microbiome diversity and determines rhizosphere soil properties. Sea beet endophytic microbiome, consisting of genera characteristic for extreme environments, is more diverse and salt resistant than its crop relative. Supplementing osmoprotectants during root tissue lyophilization exerts a positive effect on bacterial community salt stress tolerance, viability and density. Trehalose improves the above-mentioned parameters more effectively than ectoine, moreover its use is economically advantageous, thus it may be used to formulate improved biofertilizers.


Assuntos
Beta vulgaris/crescimento & desenvolvimento , Produção Agrícola/métodos , Endófitos/fisiologia , Microbiota/fisiologia , Microbiologia do Solo , Beta vulgaris/microbiologia , DNA Bacteriano/isolamento & purificação , Endófitos/isolamento & purificação , Liofilização , Humanos , RNA Ribossômico 16S/genética , Rizosfera , Tolerância ao Sal , Desenvolvimento Sustentável
14.
Molecules ; 26(4)2021 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-33567664

RESUMO

As the population ages globally, there seem to be more people with Alzheimer's disease. Unfortunately, there is currently no specific treatment for the disease. At present, Huperzine A (HupA) is one of the best drugs used for the treatment of Alzheimer's disease and has been used in clinical trials for several years in China. HupA was first separated from Huperzia serrata, a traditional medicinal herb that is used to cure fever, contusions, strains, hematuria, schizophrenia, and snakebite for several hundreds of years in China, and has been confirmed to have acetylcholinesterase inhibitory activity. With the very slow growth of H. serrata, resources are becoming too scarce to meet the need for clinical treatment. Some endophytic fungal strains that produce HupA were isolated from H. serrate in previous studies. In this article, the diversity of the endophytic fungal community within H. serrata was observed and the relevance to the production of HupA by the host plant was further analyzed. A total of 1167 strains were obtained from the leaves of H. serrata followed by the stems (1045) and roots (824). The richness as well as diversity of endophytic fungi within the leaf and stem were higher than in the root. The endophytic fungal community was similar within stems as well as in leaves at all taxonomic levels. The 11 genera (Derxomyces, Lophiostoma, Cyphellophora, Devriesia, Serendipita, Kurtzmanomyces, Mycosphaerella, Conoideocrella, Brevicellicium, Piskurozyma, and Trichomerium) were positively correlated with HupA content. The correlation index of Derxomyces with HupA contents displayed the highest value (CI = 0.92), whereas Trichomerium showed the lowest value (CI = 0.02). Through electrospray ionization mass spectrometry (ESI-MS), it was confirmed that the HS7-1 strain could produce HupA and the total alkaloid concentration was 3.7 ug/g. This study will enable us to screen and isolate the strain that can produce HupA and to figure out the correlation between endophytic fungal diversity with HupA content in different plant organs. This can provide new insights into the screening of strains that can produce HupA more effectively.


Assuntos
Alcaloides/biossíntese , Biodiversidade , Endófitos/classificação , Endófitos/metabolismo , Fungos/classificação , Fungos/metabolismo , Huperzia/microbiologia , Endófitos/isolamento & purificação , Endófitos/fisiologia , Fungos/isolamento & purificação , Fungos/fisiologia , Sesquiterpenos
15.
Mar Drugs ; 19(2)2021 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-33498874

RESUMO

One new diterpenoid, diaporpenoid A (1), two new sesquiterpenoids, diaporpenoids B-C (2,3) and three new α-pyrone derivatives, diaporpyrones A-C (4-6) were isolated from an MeOH extract obtained from cultures of the mangrove endophytic fungus Diaporthe sp. QYM12. Their structures were elucidated by extensive analysis of spectroscopic data. The absolute configurations were determined by electronic circular dichroism (ECD) calculations and a comparison of the specific rotation. Compound 1 had an unusual 5/10/5-fused tricyclic ring system. Compounds 1 and 4 showed potent anti-inflammatory activities by inhibiting the production of nitric oxide (NO) in lipopolysaccharide (LPS)-induced RAW264.7 cells with IC50 values of 21.5 and 12.5 µM, respectively.


Assuntos
Anti-Inflamatórios/metabolismo , Endófitos/metabolismo , Extratos Vegetais/metabolismo , Rhizophoraceae/metabolismo , Animais , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacologia , Endófitos/isolamento & purificação , Fungos/isolamento & purificação , Fungos/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Células RAW 264.7
16.
Anal Biochem ; 614: 114024, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33245903

RESUMO

Baliospermum montanum (Willd.) Muell. Arg, a medicinal plant distributed throughout India from Kashmir to peninsular-Indian region is extensively used to treat jaundice, asthma, and constipation. In the current study, 203 endophytic fungi representing twenty-nine species were isolated from tissues of B. montanum. The colonization and isolation rate of endophytes were higher in stem followed by seed, root, leaf and flower. The phytochemical analysis revealed 70% endophytic isolates showed alkaloids and flavonoids, 13% were positive for phenols, saponins and terpenoids. Further, these endophytes produced remarkable extracellular enzymes such as amylase, cellulase, phosphates, protease and lipase. The most promisive three endophytic fungi were identified by ITS region and secreted metabolites were identified by gas chromatography-mass spectrometry (GC-MS/MS). The GC-MS profile detected twenty-five bioactive compounds from ethyl acetate extracts. Among endophytic fungi, Trichoderma reesei isolated from flower exhibited nine bioactive compounds namely, 2-Cyclopentenone, 2-(4-chloroanilino)-4-piperidino, Oxime-methoxy-Phenyl, Methanamine N-hydroxy-N-methyl, Strychane, Cyclotetrasiloxane, Octamethyl and 1-Acetyl-20a-hydroxy-16-methylene. The endophyte, Aspergillus brasiliensis isolated from root and Fusarium oxysporum isolated from seed produced nine and seven bioactive compounds, respectively. Overall, a significant contribution of bioactive compounds was noticed from the diverse endophytic fungi associated with B. montanum and could be explored for development of novel drug with commercial values.


Assuntos
Aspergillus/isolamento & purificação , Endófitos/isolamento & purificação , Enzimas/análise , Euphorbiaceae/microbiologia , Fusarium/isolamento & purificação , Hypocreales/isolamento & purificação , Alcaloides/análise , Amilases/análise , Aspergillus/química , Celulase/análise , Endófitos/química , Flavonoides/análise , Fusarium/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Hypocreales/química , Índia , Lipase/análise , Peptídeo Hidrolases/análise , Folhas de Planta/microbiologia , Plantas Medicinais/microbiologia
17.
Arch Microbiol ; 203(3): 1131-1148, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33206216

RESUMO

This research aims to isolate and identify Zn- and Cd-tolerant endophytic bacteria from Murdannia spectabilis, identify their properties with and without Zn and Cd stress, and to investigate the effect of bacterial inoculation in an in vitro system. Twenty-four isolates could survive on trypticase soya agar (TSA) supplemented with Zn (250-500 mg L-1) and/or Cd (20-50 mg L-1) that belonged to the genera Bacillus, Pantoea, Microbacterium, Curtobacterium, Chryseobacterium, Cupriavidus, Siphonobacter, and Pseudomonas. Each strain had different indole-3-acetic acid (IAA), 1-aminocyclopropane-1-carboxylate (ACC) deaminase and siderophore production, nitrogen fixation, phosphate solubilization, and lignocellulosic enzyme characteristics. Cupriavidus plantarum MDR5 and Chryseobacterium sp. MDR7 were selected for inoculation into plantlets that were already occupied by Curtobacterium sp. TMIL due to them have a high tolerance for Zn and Cd while showing no pathogenicity. As determined via an in vitro system, Cupriavidus plantarum MDR5 remained in the plants to a greater extent than Chryseobacterium sp. MDR7, while Curtobacterium sp. TMIL was the dominant species. The Zn plus Cd treatment supported the persistence of Cupriavidus plantarum MDR5. Dual and mixed cultivation showed no antagonistic effects between the endophytes. Although the plant growth and Zn/Cd accumulation were not significantly affected by the Zn-/Cd-tolerant endophytes, the inoculation did not weaken the plants. Therefore, Cupriavidus plantarum MDR5 could be applied in a bioaugmentation process.


Assuntos
Actinomycetales/efeitos dos fármacos , Actinomycetales/fisiologia , Cádmio/farmacologia , Commelinaceae/microbiologia , Cupriavidus/efeitos dos fármacos , Cupriavidus/fisiologia , Zinco/farmacologia , Antibiose , Biodegradação Ambiental , Carbono-Carbono Liases/metabolismo , Endófitos/classificação , Endófitos/isolamento & purificação , Ácidos Indolacéticos/metabolismo , Raízes de Plantas/microbiologia , Sideróforos/metabolismo , Poluentes do Solo/farmacologia
18.
Microbiol Res ; 242: 126613, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33070050

RESUMO

The endophytic bacteria were isolated from coffee roots and seeds in Vietnam and identified with 16S rDNA sequencing as belonging to the Actinobacteria, Firmicutes and Proteobacteria phyla with the Nocardia, Bacillus and Burkholderia as dominant genera, respectively. Out of the thirty genera recovered from Coffea canephora and Coffea liberica, twelve were reported for the first time in endophytic association with coffee including members of the genera Brachybacterium, Caballeronia, Kitasatospora, Lechevalieria, Leifsonia, Luteibacter, Lysinibacillus, Mycolicibacterium, Nakamurella, Paracoccus, Sinomonas and Sphingobium. A total of eighty bacterial endophytes were characterized in vitro for several plant growth promoting and biocontrol traits including: the phosphate solubilization, the indolic compounds, siderophores, HCN, esterase, lipase, gelatinase and chitinase production. A subset of fifty selected bacteria were tested for their potential as biocontrol agents with in vitro confrontations with the fungal pathogen Fusarium oxysporum as well as the coffee parasitic nematodes Radopholus duriophilus and Pratylenchus coffeae. The three most efficient isolates on F. oxysporum belonging to the Bacillus, Burkholderia, and Streptomyces genera displayed a growth inhibition rate higher than 40%. Finally, five isolates from the Bacillus genus were able to lead to 100% of mortality in 24 h on both R. duriophilus and P. coffeae.


Assuntos
Antifúngicos/farmacologia , Antinematódeos/farmacologia , Bactérias/classificação , Bactérias/isolamento & purificação , Coffea/microbiologia , Endófitos/isolamento & purificação , Filogenia , Bactérias/genética , Agentes de Controle Biológico , Café , DNA Ribossômico/genética , Endófitos/genética , Fungos , Fusarium , Desenvolvimento Vegetal/efeitos dos fármacos , Doenças das Plantas/microbiologia , Raízes de Plantas/microbiologia , RNA Ribossômico 16S/genética
19.
Arch Microbiol ; 202(10): 2779-2789, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32743668

RESUMO

Endophytes are considered one of the most important microbial resources for obtaining biomolecules of therapeutic use. Passiflora incarnata, widely employed by the pharmaceutical industry, shows therapeutic effects on anxiety, nervousness, constipation, dyspepsia and insomnia based on their antioxidant compounds. In this study, from 315 endophytic fungi isolated from P. incarnata leaves, 60 were selected to determinate presence of chemical constituents related with antioxidant activity, based on their production of soluble pigments. The promising fungi were evaluated specifically on their potential to produce phenolic compounds, flavonoids and for antioxidant activity. Five isolates significantly produced flavonoids and phenolic compounds in the ethyl acetate and n-Butanol extracts, also saponins and high antioxidant activity against the DPPH (2.2-diphenyl-1-picrylhydrazyl) free radical. A strain of Aspergillus nidulans var. dentatus (former Emericella dentata) was able to produce tannins as well; its butanolic extract was very similar than the BHT (butylated hydroxytoluene) (94.3% × 94.32%) and Rutin (95.8%) reference substances in the DPPH radical scavenging. Similarly, a Chaetomium strain exhibited 93.6% and 94.7% of antioxidant activity in their ethyl acetate and butanolic fractions, respectively. The chromatographic analysis of the ethyl acetate fraction from the Aspergillus strain revealed the production of orcinol (3.19%). Four-methoxymethylphenol (4.79%), sorbicillin (33.59%) and ergosterol (23.08%) was produced by Trichoderma longibrachiatum and isopropenyl-1,4-dimethyl-1,2,3,3a,4,5,6,7-octahydroazulene were found in two Fusarium oxysporum strains. The phytochemical screening showed that all analyzed fungi were able to produce a kind of secondary metabolite (phenols, flavonoids, tannins and/or saponins). The study shows a great underexplored potential for industrial application of P. incarnata endophytes.


Assuntos
Antioxidantes/análise , Flavonoides/análise , Fungos/isolamento & purificação , Fungos/metabolismo , Passiflora/microbiologia , Fenóis/análise , Compostos de Bifenilo/análise , Endófitos/classificação , Endófitos/isolamento & purificação , Endófitos/metabolismo , Radicais Livres/análise , Fungos/classificação , Extratos Vegetais/química , Folhas de Planta/microbiologia , Taninos
20.
Biomed Res Int ; 2020: 5292571, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32626746

RESUMO

Endophytic and rhizosphere fungi are understood to be aiding the host plant to overcome a range of biotic and abiotic stresses (nutrition depletion, droughts, etc.) hence, they remain to be reservoirs of plethora of natural products with immense use. Consequently, this investigation of endophytic and rhizosphere fungi isolated from Mikania cordata (a perennial vine that is well established in Sri Lanka) for their antimicrobial properties was performed with the aim of future derivation of potential beneficial pharmaceutical products. Leaves, twigs, and roots of M. cordata were utilized to isolate a total of 9 endophytic fungi out of which the highest amount (44%) accounted was from the twigs. A sample of the immediate layer of soil adhering to the root of M. cordata was utilized to isolate 15 rhizosphere fungi. Fusarium equiseti and Phoma medicaginis were endophytes that were identified based on colony and molecular characteristics. The broad spectrum of antimicrobial activity depicted by F. equiseti (MK517551) was found to be significantly greater (p ≤ 0.05, inhibitory against Bacillus cereus ATCC 11778, Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922, and Pseudomonas aeruginosa ATCC 25853) than P. medicaginis (MK517550) (inhibitory against Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922, and Pseudomonas aeruginosa ATCC 25853) as assessed using the Kirby-Bauer disk diffusion method. Trichoderma virens and Trichoderma asperellum were rhizospere fungi that exhibited remarkable antimicrobial properties against the test pathogens chosen for the study. T. asperellum indicated significantly greater bioactivity against all four bacterial pathogens and Candida albicans ATCC 10231 under study. The ranges of minimum inhibitory concentrations (MICs) of the fungi depicting antimicrobial properties were determined. The results obtained suggest that F. equiseti, P. medicaginis, T. asperellum, and T. virens of M. cordata harness bioprospective values as natural drug candidates. This is the first report on isolation and evaluation of the antimicrobial properties of endophytic and rhizosphere fungi of Mikania cordata.


Assuntos
Anti-Infecciosos , Endófitos , Fungos , Mikania/microbiologia , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Bactérias/efeitos dos fármacos , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Endófitos/química , Endófitos/isolamento & purificação , Endófitos/fisiologia , Fungos/química , Fungos/isolamento & purificação , Fungos/metabolismo , Fungos/fisiologia , Testes de Sensibilidade Microbiana , Rizosfera , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA