Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.339
Filtrar
Mais filtros

Medicinas Complementares
Intervalo de ano de publicação
1.
Chin J Nat Med ; 22(4): 293-306, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38658093

RESUMO

Icariin, a flavonoid glycoside, is extracted from Epimedium. This study aimed to investigate the vascular protective effects of icariin in type 1 diabetic rats by inhibiting high-mobility group box 1 (HMGB1)-related inflammation and exploring its potential mechanisms. The impact of icariin on vascular dysfunction was assessed in streptozotocin (STZ)-induced diabetic rats through vascular reactivity studies. Western blotting and immunofluorescence assays were performed to measure the expressions of target proteins. The release of HMGB1 and pro-inflammation cytokines were measured by enzyme-linked immunosorbent assay (ELISA). The results revealed that icariin administration enhanced acetylcholine-induced vasodilation in the aortas of diabetic rats. It also notably reduced the release of pro-inflammatory cytokines, including interleukin-8 (IL-8), IL-6, IL-1ß, and tumor necrosis factor-alpha (TNF-α) in diabetic rats and high glucose (HG)-induced human umbilical vein endothelial cells (HUVECs). The results also unveiled that the pro-inflammatory cytokines in the culture medium of HUVECs could be increased by rHMGB1. The increased release of HMGB1 and upregulated expressions of HMGB1-related inflammatory factors, including advanced glycation end products (RAGE), Toll-like receptor 4 (TLR4), and phosphorylated p65 (p-p65) in diabetic rats and HG-induced HUVECs, were remarkably suppressed by icariin. Notably, HMGB1 translocation from the nucleus to the cytoplasm in HUVECs under HG was inhibited by icariin. Meanwhile, icariin could activate G protein-coupled estrogen receptor (GPER) and sirt1. To explore the role of GPER and Sirt1 in the inhibitory effect of icariin on HMGB1 release and HMGB-induced inflammation, GPER inhibitor and Sirt1 inhibitor were used in this study. These inhibitors diminished the effects of icariin on HMGB1 release and HMGB1-induced inflammation. Specifically, the GPER inhibitor also negated the activation of Sirt1 by icariin. These findings suggest that icariin activates GPER and increases the expression of Sirt1, which in turn reduces HMGB1 translocation and release, thereby improving vascular endothelial function in type 1 diabetic rats by inhibiting inflammation.


Assuntos
Diabetes Mellitus Experimental , Flavonoides , Proteína HMGB1 , Ratos Sprague-Dawley , Receptores de Canabinoides , Receptores Acoplados a Proteínas G , Transdução de Sinais , Sirtuína 1 , Animais , Proteína HMGB1/metabolismo , Proteína HMGB1/genética , Sirtuína 1/metabolismo , Sirtuína 1/genética , Flavonoides/farmacologia , Transdução de Sinais/efeitos dos fármacos , Ratos , Masculino , Humanos , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/metabolismo , Citocinas/metabolismo , Epimedium/química
2.
Food Funct ; 15(8): 4180-4192, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38506030

RESUMO

Until now, the beneficial vascular properties of Hop reported in the literature have been mainly attributed to specific compound classes, such as tannins and phenolic acids. However, the potential vascular action of a Hop subfraction containing a high amount of α or ß acids remains completely understood. Therefore, this study aims to investigate the vascular effects of the entire Hop extract and to fraction the Hop extract to identify the main bioactive vascular compounds. A pressure myograph was used to perform vascular reactivity studies on mouse resistance arteries. Phytocomplex fractionation was performed on a semi-prep HPLC system and characterized by UHPLC-PDA-MS/MS coupled to mass spectrometry. Western blot analysis was performed to characterize the phosphorylation site enrolled. The entire Hop extract exerts a direct dose-dependent endothelial vascular action. The B1 subfraction, containing a high concentration of α acids, recapitulates the vascular effect of the crude extract. Its vasorelaxant action is mediated by the opening of Transient Receptor Potential Vanilloid type 4 (TRPV4), potentiated by PKCα, and subsequent involvement of endothelial small-conductance calcium-activated potassium channels (SKCa) and intermediate-conductance calcium-activated potassium channels (IKCa) that drives endothelium-dependent hyperpolarization (EDH) through heterocellular myoendothelial gap junctions (MEGJs). This is the first comprehensive investigation of the vascular function of Hop-derived α acids in resistance arteries. Overall, our data suggest that the B1 subfraction from Hop extracts, containing only α acids, has great potential to be translated into the useful armamentarium of natural bioactive compounds with cardiovascular benefits.


Assuntos
Humulus , Extratos Vegetais , Proteína Quinase C-alfa , Canais de Cátion TRPV , Vasodilatadores , Humulus/química , Animais , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Proteína Quinase C-alfa/metabolismo , Canais de Cátion TRPV/metabolismo , Camundongos , Vasodilatadores/farmacologia , Vasodilatadores/química , Masculino , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Humanos , Vasodilatação/efeitos dos fármacos , Camundongos Endogâmicos C57BL
3.
Chin J Integr Med ; 30(5): 387-397, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38302647

RESUMO

OBJECTIVE: To develop an interference-free and rapid method to elucidate Guanxin II (GX II)'s representative vasodilator absorbed bioactive compounds (ABCs) among enormous phytochemicals. METHODS: The contents of ferulic acid, tanshinol, and hydroxysafflor yellow A (FTA) in GX II/rat serum after the oral administration of GX II (30 g/kg) were detected using ultra-performance liquid chromatography-mass spectrometry. Totally 18 rats were randomly assigned to the control group (0.9% normal saline), GX II (30 g/kg) and FTA (5, 28 and 77 mg/kg) by random number table method. Diastolic coronary flow velocity-time integral (VTI), i.e., coronary flow or coronary flow-mediated dilation (CFMD), and endothelium-intact vascular tension of isolated aortic rings were measured. After 12 h of exposure to blank medium or 0.5 mmol/L H2O2, endothelial cells (ECs) were treated with post-dose GX II of supernatant from deproteinized serum (PGSDS, 300 µL PGSDS per 1 mL of culture medium) or FTA (237, 1539, and 1510 mg/mL) for 10 min as control, H2O2, PGSDS and FTA groups. Nitric oxide (NO), vascular endothelial growth factor (VEGF), endothelin-1 (ET-1), superoxide dismutase (SOD), malondialdehyde (MDA) and phosphorylated phosphoinositide 3 kinase (p-PI3K), phosphorylated protein kinase B (p-AKT), phosphorylated endothelial nitric oxide synthase (p-eNOS) were analyzed. PGSDS was developed as a GX II proxy of ex vivo herbal crude extracts. RESULTS: PGSDS effectively eliminates false responses caused by crude GX II preparations. When doses equaled the contents in GX II/its post-dose serum, FTA accounted for 98.17% of GX II -added CFMD and 92.99% of PGSDS-reduced vascular tension. In ECs, FTA/PGSDS was found to have significant antioxidant (lower MDA and higher SOD, P<0.01) and endothelial function-protective (lower VEGF, ET-1, P<0.01) effects. The increases in aortic relaxation, endothelial NO levels and phosphorylated PI3K/Akt/eNOS protein induced by FTA/PGSDS were markedly abolished by NG-nitro-L-arginine methyl ester (L-NA, eNOS inhibitor) and wortmannin (PI3K/AKT inhibitor), respectively, indicating an endothelium-dependent vasodilation via the PI3K/AKT-eNOS pathway (P<0.01). CONCLUSION: This study provides a strategy for rapidly and precisely elucidating GX II's representative in/ex vivo cardioprotective absorbed bioactive compounds (ABCs)-FTA, suggesting its potential in advancing precision ethnomedicine.


Assuntos
Endotélio Vascular , Vasodilatação , Animais , Vasodilatação/efeitos dos fármacos , Masculino , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Ratos Sprague-Dawley , Ratos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Óxido Nítrico/metabolismo , Vasodilatadores/farmacologia , Vasodilatadores/farmacocinética , Ácidos Cumáricos/farmacologia , Ácidos Cumáricos/farmacocinética , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo
4.
Ann Pharm Fr ; 82(1): 84-95, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37572955

RESUMO

OBJECTIVES: To investigate the antihypertensive effect of crude extract of Chenopodium album (Ca.Cr), based on its medicinal use in hypertension. METHODS: Ca.Cr and its fractions were tested in-vivo in normotensive anesthetized rats for blood pressure-lowering effect. In-vitro experiments were performed on isolated rat aortae to explore the vascular mechanism(s). RESULTS: In normotensive anesthetized rats, Ca.Cr produced a dose-dependent (1-300mg/kg) fall (30%mmHg) in mean arterial pressure (MAP). Among the fractions, nHexane was the most potent (46% fall). In rat aortic rings precontracted with phenylephrine (PE), Ca.Cr and its fractions (except Ca.Aq) produced endothelium-dependent vasorelaxation, which was partially reversed with endothelium removal and by pretreating intact aortic rings with L-NAME (10µM) and atropine (1µM). This relaxation to Ca.Cr and fractions (nHexane, ethylacetate and chloroform) was also eliminated with indomethacin pretreatment, however, it unmasked a vasoconstriction effect with Ca.Cr only. Surprisingly, the aqueous fraction produced a calcium sensitive strong vasoconstriction instead of vasorelaxation. The crude extract and its fractions (except Ca.Aq) also antagonized vasoconstriction induced with high K+ (80mM), suggesting calcium antagonistic effect. The aqueous fraction produced mild vasorelaxation against high K+. This effect was further confirmed when pretreatment of the aortic rings with different concentrations of crude extract and fractions suppressed CaCl2 concentration response curves, similar to verapamil. In acute toxicity test, Ca.Cr extract was found safe up to 5g/kg body weight in mice. CONCLUSION: These findings suggest that crude extract and fractions of C. album produced vasorelaxant effect through muscarinic receptors linked-NO pathway, prostaglandin (endothelium-dependent) and calcium antagonism (endothelium-independent), which explains the blood pressure lowering effect of C. album in rats.


Assuntos
Chenopodium album , Vasodilatação , Ratos , Animais , Camundongos , Pressão Sanguínea , Chenopodium album/metabolismo , Cálcio/metabolismo , Cálcio/farmacologia , Extratos Vegetais/farmacologia , Ratos Sprague-Dawley , Vasodilatadores/farmacologia , Bloqueadores dos Canais de Cálcio , Endotélio/metabolismo , Endotélio Vascular/metabolismo
5.
Aging (Albany NY) ; 15(23): 13608-13627, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38095615

RESUMO

Angelica gigas NAKAI (AG) is a popular traditional medicinal herb widely used to treat dyslipidemia owing to its antioxidant activity. Vascular disease is intimately linked to obesity-induced metabolic syndrome, and AG extract (AGE) shows beneficial effects on obesity-associated vascular dysfunction. However, the effectiveness of AGE against obesity and its underlying mechanisms have not yet been extensively investigated. In this study, 40 high fat diet (HFD) rats were supplemented with 100-300 mg/kg/day of AGE to determine its efficacy in regulating vascular dysfunction. The vascular relaxation responses to acetylcholine were impaired in HFD rats, while the administration of AGE restored the diminished relaxation pattern. Endothelial dysfunction, including increased plaque area, accumulated reactive oxygen species, and decreased nitric oxide (NO) and endothelial nitric oxide synthase (eNOS) Ser1177 phosphorylation, were observed in HFD rats, whereas AGE reversed endothelial dysfunction and its associated biochemical signaling. Furthermore, AGE regulated endoplasmic reticulum (ER) stress and IRE1α sulfonation and its subsequent sirt1 RNA decay through controlling regulated IRE1α-dependent decay (RIDD) signaling, ultimately promoting NO bioavailability via the SIRT1-eNOS axis in aorta and endothelial cells. Independently, AGE enhanced AMPK phosphorylation, additionally stimulating SIRT1 and eNOS deacetylation and its associated NO bioavailability. Decursin, a prominent constituent of AGE, exhibited a similar effect in alleviating endothelial dysfunctions. These data suggest that AGE regulates dyslipidemia-associated vascular dysfunction by controlling ROS-associated ER stress responses, especially IRE1α-RIDD/sirt1 decay and the AMPK-SIRT1 axis.


Assuntos
Dislipidemias , Sirtuína 1 , Ratos , Animais , Sirtuína 1/metabolismo , Endorribonucleases/genética , Endotélio Vascular/metabolismo , Células Endoteliais/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Acetilação , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Processamento de Proteína Pós-Traducional , Obesidade/metabolismo , Óxido Nítrico/metabolismo
6.
J Am Heart Assoc ; 12(16): e030353, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37581395

RESUMO

Background The mechanisms determining vascular tone are still not completely understood, even though it is a significant factor in blood pressure management. Many circulating proteins have a significant impact on controlling vascular tone. Progranulin displays anti-inflammatory effects and has been extensively studied in neurodegenerative illnesses. We investigated whether progranulin sustains the vascular tone that helps regulate blood pressure. Methods and Results We used male and female C57BL6/J wild type (progranulin+/+) and B6(Cg)-Grntm1.1Aidi/J (progranulin-/-) to understand the impact of progranulin on vascular contractility and blood pressure. We found that progranulin-/- mice display elevated blood pressure followed by hypercontractility to noradrenaline in mesenteric arteries, which is restored by supplementing the mice with recombinant progranulin. In ex vivo experiments, recombinant progranulin attenuated the vascular contractility to noradrenaline in male and female progranulin+/+ arteries, which was blunted by blocking EphrinA2 or Sortilin1. To understand the mechanisms whereby progranulin evokes anticontractile effects, we inhibited endothelial factors. N(gamma)-nitro-L-arginine methyl ester (nitric oxide synthase inhibitor) prevented the progranulin effects, whereas indomethacin (cyclooxygenase inhibitor) affected only the contractility in arteries incubated with vehicle, indicating that progranulin increases nitric oxide and decreases contractile prostanoids. Finally, recombinant progranulin induced endothelial nitric oxide synthase phosphorylation and nitric oxide production in isolated mesenteric endothelial cells. Conclusions Circulating progranulin regulates vascular tone and blood pressure via EphrinA2 and Sortilin1 receptors and endothelial nitric oxide synthase activation. Collectively, our data suggest that deficiency in progranulin is a cardiovascular risk factor and that progranulin might be a new therapeutic avenue to treat high blood pressure.


Assuntos
Óxido Nítrico Sintase Tipo III , Óxido Nítrico , Masculino , Feminino , Camundongos , Animais , Óxido Nítrico Sintase Tipo III/metabolismo , Pressão Sanguínea , Progranulinas/farmacologia , Óxido Nítrico/metabolismo , Células Endoteliais/metabolismo , NG-Nitroarginina Metil Éster/farmacologia , Artérias Mesentéricas/metabolismo , Endotélio Vascular/metabolismo , Norepinefrina
7.
Cardiovasc Res ; 119(12): 2190-2201, 2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37401647

RESUMO

AIMS: Enhancing SIRT1 activity exerts beneficial cardiovascular effects. In diabetes, plasma SIRT1 levels are reduced. We aimed to investigate the therapeutic potential of chronic recombinant murine SIRT1 (rmSIRT1) supplementation to alleviate endothelial and vascular dysfunction in diabetic mice (db/db). METHODS AND RESULTS: Left internal mammary arteries obtained from patients undergoing coronary artery bypass grafting with or without a diagnosis of diabetes were assayed for SIRT1 protein levels. Twelve-week-old male db/db mice and db/+ controls were treated with vehicle or rmSIRT1 intraperitoneally for 4 weeks, after which carotid artery pulse wave velocity (PWV) and energy expenditure/activity were assessed by ultrasound and metabolic cages, respectively. Aorta, carotid, and mesenteric arteries were isolated to determine endothelial and vascular function using the myograph system.Arteries obtained from diabetic patients had significantly lower levels of SIRT1 relative to non-diabetics. In line, aortic SIRT1 levels were reduced in db/db mice compared to db/+ mice, while rmSIRT1 supplementation restored SIRT1 levels. Mice receiving rmSIRT1 supplementation displayed increased physical activity and improved vascular compliance as reflected by reduced PWV and attenuated collagen deposition. Aorta of rmSIRT1-treated mice exhibited increased endothelial nitric oxide (eNOS) activity, while endothelium-dependent contractions of their carotid arteries were significantly decreased, with mesenteric resistance arteries showing preserved hyperpolarization. Ex vivo incubation with reactive oxygen species (ROS) scavenger Tiron and NADPH oxidase inhibitor apocynin revealed that rmSIRT1 leads to preserved vascular function by suppressing NADPH oxidase (NOX)-related ROS synthesis. Chronic rmSIRT1 treatment resulted in reduced expression of both NOX1 and NOX4, in line with a reduction in aortic protein carbonylation and plasma nitrotyrosine levels. CONCLUSIONS: In diabetic conditions, arterial SIRT1 levels are significantly reduced. Chronic rmSIRT1 supplementation improves endothelial function and vascular compliance by enhancing eNOS activity and suppressing NOX-related oxidative stress. Thus, SIRT1 supplementation may represent novel therapeutic strategy to prevent diabetic vascular disease.


Assuntos
Diabetes Mellitus Experimental , Humanos , Camundongos , Masculino , Animais , Espécies Reativas de Oxigênio/metabolismo , Diabetes Mellitus Experimental/metabolismo , Vasodilatação , Sirtuína 1/metabolismo , Análise de Onda de Pulso , Endotélio Vascular/metabolismo , Estresse Oxidativo , NADPH Oxidases/metabolismo , Suplementos Nutricionais , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo III/metabolismo
8.
Nutrients ; 15(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37299535

RESUMO

The endothelial glycocalyx (eGC) is a dynamic hair-like layer expressed on the apical surface of endothelial cells throughout the vascular system. This layer serves as an endothelial cell gatekeeper by controlling the permeability and adhesion properties of endothelial cells, as well as by controlling vascular resistance through the mediation of vasodilation. Pathogenic destruction of the eGC could be linked to impaired vascular function, as well as several acute and chronic cardiovascular conditions. Defining the precise functions and mechanisms of the eGC is perhaps the limiting factor of the missing link in finding novel treatments for lifestyle-related diseases such as atherosclerosis, type 2 diabetes, hypertension, and metabolic syndrome. However, the relationship between diet, lifestyle, and the preservation of the eGC is an unexplored territory. This article provides an overview of the eGC's importance for health and disease and describes perspectives of nutritional therapy for the prevention of the eGC's pathogenic destruction. It is concluded that vitamin D and omega-3 fatty acid supplementation, as well as healthy dietary patterns such as the Mediterranean diet and the time management of eating, might show promise for preserving eGC health and, thus, the health of the cardiovascular system.


Assuntos
Diabetes Mellitus Tipo 2 , Células Endoteliais , Humanos , Células Endoteliais/metabolismo , Glicocálix , Diabetes Mellitus Tipo 2/metabolismo , Endotélio Vascular/metabolismo , Vasodilatação
9.
Zhen Ci Yan Jiu ; 48(4): 331-8, 2023 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-37186196

RESUMO

OBJECTIVE: To explore the antioxidant effect of moxibustion on vascular endothelial function and the under-lying mechanism. METHODS: Forty male SD rats were randomly divided into blank, model, moxibustion and endothelial nitric oxide synthase (eNOS) inhibitor groups, with 10 rats in each group. Hyperlipidemia rat model was established by high fat diet for 8 weeks. Rats in the moxibustion group received 45 ℃ moxibustion at "Zusanli" (ST36) for 10 min once daily for consecutive 4 weeks. Rats in the eNOS inhibitor group received intraperitoneal injection of eNOS inhibitor L-NAME (1 mg/100 g) at the same time of moxibustion intervention. The morphology of abdominal aorta endothelium was observed by HE staining. Lipid deposition in abdominal aorta was observed by oil red O staining. The contents of total cholesterol (TC), triglyceride (TG), high density lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C) in serum and reactive oxygen species (ROS), nitric oxide (NO), superoxide dismutase (SOD), oxidized LDL lipoprotein (ox-LDL), endothelin-1 (ET-1), eNOS, malondialdehyde (MDA) in serum and abdominal aorta were determined by ELISA. The expression of eNOS in abdominal aorta was detected by immunofluorescence. RESULTS: HE staining of the abdominal aorta showed no significant pathological abnormality in the blank group; the endovascular cortex was rough, and the inner, media and outer membrane were rough in the model group; the nucleus and surrounding tissue structure were clear and the vascular wall was smooth in the moxibustion group; abdominal aorta texture was rough in the eNOS inhibitor group. Compared with the blank group, the area of oil red O staining in abdominal aorta increased (P<0.05); the contents of serum TC, TG and LDL-C increased (P<0.01, P<0.05) while HDL-C decreased (P<0.05); the contents of ET-1 in serum and abdominal aorta were increased (P<0.01, P<0.05) while the contents of NO and eNOS were decreased (P<0.05, P<0.001); the contents of ROS, ox-LDL and MDA in serum and abdominal aorta were increased (P<0.001, P<0.01, P<0.000 1) while the content of SOD in abdominal aorta was decreased (P<0.000 1); the expression level of eNOS in abdominal aorta was decreased (P<0.05) in the model group. Compared with the model group, the area of oil red O staining in abdominal aorta decreased (P<0.05); the contents of TC, TG and LDL-C in serum decreased (P<0.05) while HDL-C increased (P<0.05); the contents of ET-1 in serum and abdominal aorta were decreased (P<0.01, P<0.05) while the contents of NO and eNOS in abdominal aorta were increased (P<0.001, P<0.01); the contents of ROS and MDA in serum and abdominal aorta were decreased (P<0.001, P<0.01, P<0.05), the content of ox-LDL was decreased (P<0.01) and the content of SOD was increased (P<0.000 1) in abdominal aorta; the expression level of eNOS in abdominal aorta was increased (P<0.05) in the moxibustion group. Compared with the moxibustion group, the contents of serum TC, LDL-C and MDA in the eNOS inhibitor group were increased (P<0.05); the contents of ET-1, ROS, ox-LDL and MDA in abdominal aorta were increased (P<0.05), the contents of NO, eNOS and SOD were decreased (P<0.05); the expression level of eNOS in abdominal aorta was decreased (P<0.05). CONCLUSION: 45 ℃ moxibustion at ST36 can protect and repair vascular endothelial injury in abdominal aorta of hyperlipidemia rats and improve the oxidative stress of vascular endothelium.


Assuntos
Hiperlipidemias , Moxibustão , Ratos , Masculino , Animais , Hiperlipidemias/genética , Hiperlipidemias/terapia , LDL-Colesterol/metabolismo , LDL-Colesterol/farmacologia , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Estresse Oxidativo , Triglicerídeos/metabolismo , Triglicerídeos/farmacologia , HDL-Colesterol/metabolismo , HDL-Colesterol/farmacologia , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
10.
Food Funct ; 14(9): 4163-4172, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37062967

RESUMO

A healthy vascular endothelium plays an essential role in modulating vascular tone by producing and releasing vasoactive factors such as nitric oxide (NO). Endothelial dysfunction (ED), the loss of the endothelium physiological functions, results in the inability to properly regulate vascular tone, leading to hypertension and other cardiovascular risk factors. Alongside NO, the gasotransmitter hydrogen sulfide (H2S) has emerged as a key molecule with vasodilatory and antioxidant activities. Since a reduction in H2S bioavailability is related to ED pathogenesis, natural H2S donors are very attractive. In particular, we focused on the sulfur-containing amino acid S-allyl cysteine (SAC), a bioactive metabolite, of which black garlic is particularly rich, with antioxidant activity and, among others, anti-diabetic and anti-hypertensive properties. In this study, we analyzed the protective effect of SAC against ED by evaluating reactive oxygen species level, H2S release, eNOS phosphorylation, and NO production (by fluorescence imaging and western blot analysis) in Bovine Aortic Endothelial cells (BAE-1). Furthermore, we chemically characterized a Black Garlic Extract (BGE) for its content in SAC and other sulfur-containing amino acids. BGE was used to carry out an analysis on H2S release on BAE-1 cells. Our results show that both SAC and BGE significantly increase H2S release. Moreover, SAC reduces ROS production and enhances eNOS phosphorylation and the consequent NO release in our cellular model. In this scenario, a natural extract enriched in SAC could represent a novel therapeutic approach to prevent the onset of ED-related diseases.


Assuntos
Alho , Sulfeto de Hidrogênio , Animais , Bovinos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Compostos de Enxofre/farmacologia , Alho/química , Células Endoteliais/metabolismo , Sulfeto de Hidrogênio/metabolismo , Cisteína/farmacologia , Endotélio Vascular/metabolismo , Enxofre
11.
Nitric Oxide ; 129: 74-81, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36341766

RESUMO

Hypertension is associated with endothelial dysfunction and decreased nitric oxide (NO). It has been proposed that decreasing oxidative stress may help regulate blood pressure by increasing NO concentration. Therefore, the purpose of this systematic review was to determine whether the antioxidant resveratrol effects NO-mediated vascular outcomes in hypertension. A comprehensive literature search of PubMed and EBSCOhost databases was conducted using the terms: "resveratrol" and "nitric oxide or NO" and "hypertension or high blood pressure." Searches were not restricted for year of publication or study design but limited to full-text studies from scholarly, peer-reviewed journals. Ten animal studies published between 2005 and 2017 were identified. Human studies did not meet criteria and were not included. Articles were critically assessed using the Academy of Nutrition and Dietetics' Evidence Analysis Library Quality Criteria Worksheet. All studies evaluated resveratrol supplementation and at least one NO outcome measure including: circulating NO metabolites, endothelial nitric oxide synthase (eNOS) expression, eNOS phosphorylation, and eNOS uncoupling. All but one study assessed blood pressure. Nine of ten studies reported positive significant results of resveratrol supplementation on NO outcomes, and in all but one study, this was seen concomitantly with decreases in blood pressure. Resveratrol supplementation shows promise for improving NO-mediated vascular outcomes and improving blood pressure. Translation to human studies is warranted, with dose of resveratrol considered, as the human equivalency doses are not consistent amongst animal studies. Additionally, a standard battery of tests examining NO-mediated vascular outcomes is needed to ensure generalizability among studies to determine dose-duration effects.


Assuntos
Hipertensão , Estilbenos , Animais , Humanos , Resveratrol/farmacologia , Óxido Nítrico/metabolismo , Endotélio Vascular/metabolismo , Estilbenos/farmacologia , Estilbenos/uso terapêutico , Estilbenos/metabolismo , Hipertensão/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , Suplementos Nutricionais
12.
Int J Mol Sci ; 23(20)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36292919

RESUMO

Jatrorrhizine (JAT) is one of the major bioactive protoberberine alkaloids found in rhizoma coptidis, which has hypoglycemic and hypolipidemic potential. This study aimed to evaluate the vasoprotective effects of JAT in diabetes and obesity and the underlying mechanism involved. Mouse aortas, carotid arteries and human umbilical cord vein endothelial cells (HUVECs) were treated with risk factors (high glucose or tunicamycin) with and without JAT ex vivo and in vitro. Furthermore, aortas were obtained from mice with chronic treatment: (1) control; (2) diet-induced obese (DIO) mice fed a high-fat diet (45% kcal% fat) for 15 weeks; and (3) DIO mice orally administered JAT at 50 mg/kg/day for the last 5 weeks. High glucose or endoplasmic reticulum (ER) stress inducer tunicamycin impaired acetylcholine-induced endothelium-dependent relaxations (EDRs) in mouse aortas, induced oxidative stress in carotid arteries and HUVECs, downregulated phosphorylations of Akt at Ser473 and eNOS at Ser1177 and enhanced ER stress in mouse aortas and HUVECs, and these impairments were reversed by cotreatment with JAT. JAT increased NO release in high-glucose-treated mouse aortas and HUVECs. In addition, chronic JAT treatment restored endothelial function with EDRs comparable to the control, increased Akt/eNOS phosphorylation, and attenuated ER stress and oxidative stress in aortas from DIO mice. Blood pressure, glucose sensitivity, fatty liver and its morphological change, as well as plasma levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) and plasma lipid profile, were also normalized by JAT treatment. Collectively, our data may be the first to reveal the vasoprotective effect of JAT that ameliorates endothelial dysfunction in diabetes and obesity through enhancement of the Akt/eNOS pathway and NO bioavailability, as well as suppression of ER stress and oxidative stress.


Assuntos
Diabetes Mellitus , Medicamentos de Ervas Chinesas , Camundongos , Humanos , Animais , Estresse do Retículo Endoplasmático , Tunicamicina/farmacologia , Endotélio Vascular/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Acetilcolina/metabolismo , Alanina Transaminase/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Camundongos Endogâmicos C57BL , Diabetes Mellitus/metabolismo , Estresse Oxidativo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Obesidade/metabolismo , Glucose/metabolismo , Hipoglicemiantes/farmacologia , Aspartato Aminotransferases/metabolismo , Lipídeos/farmacologia
13.
Am J Physiol Heart Circ Physiol ; 323(5): H975-H982, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36149770

RESUMO

Endothelial function (brachial artery flow-mediated dilation [FMD]) is reduced in estrogen-deficient postmenopausal women, mediated, in part, by reduced nitric oxide (NO) bioavailability, secondary to tetrahydrobiopterin (BH4) deficiency and oxidative stress. FMD is increased, but not fully restored, in postmenopausal women after acute intravenous vitamin C (VITC; superoxide scavenger) or oral BH4 supplementation. In vitro studies demonstrate that coadministration of VITC with BH4 prevents endothelial nitric oxide synthase (eNOS) uncoupling and reductions in NO by peroxynitrite. To investigate mechanisms of endothelial dysfunction in women, we assessed the separate and combined effects of VITC and BH4 to determine whether coadministration of VITC + BH4 improves FMD in healthy postmenopausal women (n = 19, 58 ± 5 yr) to premenopausal (n = 14, 36 ± 9 yr) levels, with exploratory testing in perimenopausal women (n = 8, 51 ± 3 yr). FMD was measured during acute intravenous infusions of saline (control) and VITC (∼2-3 g) ∼3 h after a single dose of oral BH4 (KUVAN, 10 mg/kg body wt) or placebo (randomized crossover, separated by ∼1 mo). Under the placebo condition, FMD was reduced in postmenopausal compared with premenopausal women during the saline infusion (5.6 ± 0.7 vs. 11.6 ± 0.9%, P < 0.001) and increased in postmenopausal women during VITC (+3.5 [1.4, 5.6]%, P = 0.001) and acute BH4 (+1.8 [0.37, 3.2]%, P = 0.01) alone. Coadministration of VITC + BH4 increased FMD in postmenopausal women (+3.0 [1.7, 4.3]%, P < 0.001), but FMD remained reduced compared with premenopausal women (P = 0.02). Exploratory analyses revealed that VITC + BH4 did not restore FMD in perimenopausal women to premenopausal levels (P = 0.045). Coadministration of VITC + BH4 does not restore FMD in menopausal women, suggesting that additional mechanisms may be involved.NEW & NOTEWORTHY Endothelial function is reduced across the menopausal stages related to increased oxidative stress associated with estrogen deficiency. In vitro studies demonstrate that coadministration of VITC with BH4 prevents endothelial nitric oxide synthase (eNOS) uncoupling and reductions in NO by peroxynitrite; however, this remains untested in humans. We demonstrate that the coadministration of BH4 + VITC does not restore endothelial function in perimenopausal and postmenopausal women to the level of premenopausal women, suggesting that other mechanisms contribute.


Assuntos
Óxido Nítrico Sintase Tipo III , Doenças Vasculares , Humanos , Feminino , Óxido Nítrico Sintase Tipo III/metabolismo , Endotélio Vascular/metabolismo , Ácido Peroxinitroso/metabolismo , Biopterinas/metabolismo , Biopterinas/farmacologia , Menopausa , Estrogênios/metabolismo , Óxido Nítrico/metabolismo , Estresse Oxidativo
14.
Molecules ; 27(16)2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-36014347

RESUMO

Endoplasmic reticulum (ER) stress contributes to insulin resistance and macro- and microvascular complications associated with diabetes. This study aimed to evaluate the effect of ER stress inhibition on endothelial function in the aorta of type-2 diabetic rats. Type-2 diabetes was developed in male Sprague-Dawley rats using a high-fat diet and low-dose streptozotocin. Rat aortic tissues were harvested to study endothelial-dependent relaxation. The mechanisms for acetylcholine-mediated relaxation were investigated using pharmacological blockers, Western blotting, oxidative stress, and inflammatory markers. Acetylcholine-mediated relaxation was diminished in the aorta of diabetic rats compared to control rats; supplementation with TUDCA improved relaxation. In the aortas of control and diabetic rats receiving TUDCA, the relaxation was mediated via eNOS/PI3K/Akt, NAD(P)H, and the KATP channel. In diabetic rats, acetylcholine-mediated relaxation involved eNOS/PI3K/Akt and NAD(P)H, but not the KATP channel. The expression of ER stress markers was upregulated in the aorta of diabetic rats and reduced with TUDCA supplementation. The expression of eNOS and Akt were lower in diabetic rats but were upregulated after supplementation with TUDCA. The levels of MDA, IL-6, and SOD activity were higher in the aorta of the diabetic rats compared to control rats. This study demonstrated that endothelial function was impaired in diabetes, however, supplementation with TUDCA improved the function via eNOS/Akt/PI3K, NAD(P)H, and the KATP channel. The improvement of endothelial function was associated with increased expressions of eNOS and Akt. Thus, ER stress plays a crucial role in the impairment of endothelial-dependent relaxation. Mitigating ER stress could be a potential strategy for improving endothelial dysfunction in type-2 diabetes.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Acetilcolina/metabolismo , Acetilcolina/farmacologia , Trifosfato de Adenosina/metabolismo , Animais , Aorta , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Estresse do Retículo Endoplasmático , Endotélio Vascular/metabolismo , Masculino , NAD/metabolismo , Óxido Nítrico/metabolismo , Estresse Oxidativo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Vasodilatação
15.
Drug Dev Res ; 83(5): 1167-1175, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35470469

RESUMO

Arteriovenous fistula (AVF) is frequently believed to be the best vascular access for chronic renal failure (CRF) patients. Vascular endothelial cell dysfunction has been implicated in AVF maturation. Quercetin (Quer) is a natural polyphenolic compound widely used in traditional Chinese medicine. We aimed to uncover the impacts of Quer on vascular endothelial cells in a CRF rat model and human umbilical vein endothelial cells (HUVECs) stimulated by lipopolysaccharide (LPS) and serum from rat with CRF. Blood urea nitrogen and serum creatinine levels were tested in CRF rat model after administration of Quer. H&E staining was used to estimate endothelial damage. Nitric oxide (NO), endothelial NO synthase (eNOS), EPH receptor B4 (EphB4), EphrinB2, and p-caveolin-1 (p-Cav-1) levels in the serum were examined by enzyme-linked immunosorbent assay. Western blot was employed to analyze the expressions of eNOS, phosphorylated (p)-eNOS, EphB4, and Cav-1 in arterial tissues and HUVECs. Cell counting kit-8 was applied for assessing cell proliferation. TUNEL (terminal-deoxynucleotidyl transferase-mediated nick end labeling) assay was employed to estimate cell apoptosis. Results showed that Quer ameliorated renal function impairment and endothelial injury in vivo. Meanwhile, Quer boosted the proliferation and suppressed the apoptosis of HUVECs stimulated by LPS and serum from rat with CRF. Additionally, Quer elevated NO and eNOS levels, upregulated p-eNOS expression but downregulated EphB4, EphrinB2, and p-Cav-1 expressions. Moreover, EphB4 inhibitor had the similar effect as Quer treatment in HUVECs stimulated by LPS and serum from rat with CRF. Collectively, Quer might effectively regulate vascular function to prevent AVF failure in CRF via modulation of Eph/Cav-1 signaling.


Assuntos
Endotélio Vascular , Falência Renal Crônica , Animais , Endotélio Vascular/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Falência Renal Crônica/tratamento farmacológico , Falência Renal Crônica/metabolismo , Lipopolissacarídeos/farmacologia , Óxido Nítrico/metabolismo , Quercetina/farmacologia , Ratos
16.
Molecules ; 27(3)2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35163922

RESUMO

Salvia miltiorrhiza Bunge (SM) has been extensively used in Alzheimer's disease treatment, the permeability through the blood-brain barrier (BBB) determining its efficacy. However, the transport mechanism of SM components across the BBB remains to be clarified. A simple, precise, and sensitive method using LC-MS/MS was developed for simultaneous quantification of tanshinone I (TS I), dihydrotanshinone I (DTS I), tanshinone IIA (TS IIA), cryptotanshinone (CTS), protocatechuic aldehyde (PAL), protocatechuic acid (PCTA), and caffeic acid (CFA) in transport samples. The analytes were separated on a C18 column by gradient elution. Multiple reaction monitoring mode via electrospray ionization source was used to quantify the analytes in positive mode for TS I, DTS I, TS IIA, CTS, and negative mode for PAL, PCTA, and CFA. The linearity ranges were 0.1-8 ng/mL for TS I and DTS I, 0.2-8 ng/mL for TS IIA, 1-80 ng/mL for CTS, 20-800 ng/mL for PAL and CFA, and 10-4000 ng/mL for PCTA. The developed method was accurate and precise for the compounds. The relative matrix effect was less than 15%, and the analytes were stable for analysis. The established method was successfully applied for transport experiments on a BBB cell model to evaluate the apparent permeability of the seven components.


Assuntos
Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Permeabilidade da Membrana Celular , Endotélio Vascular/metabolismo , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Barreira Hematoencefálica/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Cromatografia Líquida , Endotélio Vascular/efeitos dos fármacos , Humanos , Compostos Fitoquímicos/análise , Extratos Vegetais/análise , Salvia miltiorrhiza , Espectrometria de Massas em Tandem
17.
Pharmacol Rep ; 74(1): 124-134, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34657267

RESUMO

BACKGROUND: Type 2 Diabetes Mellitus is a chronic metabolic disease that causes endothelial damage and is an important risk factor for atherosclerosis. In the present study vitamin D3 supplementation in rats was used to determine the role of Osteoprotegerin (OPG)/Receptor activator kB ligand (RANKL) signalling in endothelial damage and changes in the expression levels of genes involved in this pathway. We hypothesized that vitamin D3 supplementation affects OPG and RANKL activity in the aorta. METHODS: Diabetes was induced in rats via injections of 40 mg/kg of streptozotocin followed by a high fructose (10%) diet. Group 2 (healthy) and 4 (diabetic) received 170 IU/kg of vitamin D3 weekly for 5 weeks, while Group 1 (healthy) and 2 (diabetic) received sterile saline. The aortas of each group were collected to analyse mRNA expression using the real-time PCR method and also to evaluate magnesium and calcium levels using inductively coupled plasma mass spectrometry. RESULTS: Opg and Il-1b expression levels were significantly associated with both diabetes and vitamin D3 supplementation in the aortas of the study groups (p ≤ 0.05). Opg mRNA expression was also found to correlate with both Icam-1 and Nos3 mRNA expression levels (r = 0.699, p = 0.001 and r = 0.622, p = 0.003, respectively). In addition, when mineral levels in the aortic tissues were compared among all groups, it was found that the interaction of diabetes and vitamin D3 supplementation significantly affected Mg levels and Mg/Ca ratios. CONCLUSIONS: It is concluded that vitamin D3 supplementation has a modulatory effect on OPG/RANKL activity in the vessel wall by ameliorating endothelial damage in diabetes. This effect may contribute to the regulation of cytokine-mediated vascular homeostasis and mineral deposition in the aorta; therefore, further comprehensive studies are proposed to demonstrate this relationship.


Assuntos
Colecalciferol/farmacologia , Angiopatias Diabéticas , Endotélio Vascular , Osteoprotegerina/metabolismo , Ligante RANK/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Aorta/patologia , Hormônios e Agentes Reguladores de Cálcio/farmacologia , Angiopatias Diabéticas/tratamento farmacológico , Angiopatias Diabéticas/metabolismo , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Ratos , Resultado do Tratamento
18.
Clin Exp Hypertens ; 44(1): 63-71, 2022 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-34648416

RESUMO

BACKGROUND: Endothelial dysfunction is related to the reduced bioavailability of nitric oxide (NO) and plays a significant role in developing hypertension. The intake of a diet rich in antioxidants decreases the threat of hypertension. Cissus quadrangularis possesses antioxidant, anti-inflammatory, and hypocholesterolemic activities. However, to date, no studies have been performed to explore this plant's antihypertensive and vasorelaxant activity. Herein, we investigated the chronic effect of C. quadrangularis on blood pressure as well as vascular function in hypertensive rats. METHODS: Male spontaneously hypertensive rats (SHR) were randomly divided into two groups. Normotensive Wistar rats were taken as the control group. The treatment was done using ethanolic extract of C. quadrangularis (EECQ) at a dose of 200 mg/kg. RESULTS: The administration of EECQ for six weeks reduced the systolic blood pressure, mean arterial blood pressure, and heart rate. It also alleviated the cardiac and renal hypertrophy indices. Supplementation of EECQ improved the endothelium-dependent aortic vasodilation induced by acetylcholine. It restored the NO level and endothelial NO synthase expression in the aorta. Subsequently, the extract alleviates the oxidative stress and inflammatory markers in SHR rats. CONCLUSION: Thus, in the present study, the chronic treatment of EECQ to genetically hypertensive rats improved endothelium-dependent relaxation in addition to its antihypertensive effect by eNOS activation and inhibition of ROS production, inflammation.


Assuntos
Cissus , Hipertensão , Animais , Cissus/metabolismo , Endotélio Vascular/metabolismo , Hipertensão/tratamento farmacológico , Hipertensão/metabolismo , Masculino , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Estresse Oxidativo , Extratos Vegetais/farmacologia , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Ratos Wistar , Vasodilatação
19.
Chin J Integr Med ; 28(4): 319-329, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34897591

RESUMO

OBJECTIVE: To explore the effect of Kuanxiong Aerosol (KXA) on isoproterenol (ISO)-induced myocardial injury in rat models. METHODS: Totally 24 rats were radomly divided into control, ISO, KXA low-dose and high-dose groups according to the randomized block design method, and were administered by intragastric administration for 10 consecutive days, and on the 9th and 10th days, rats were injected with ISO for 2 consecutive days to construct an acute myocardial ischemia model to evaluate the improvement of myocardial ischemia by KXA. In addition, the diastolic effect of KXA on rat thoracic aorta and its regulation of ion channels were tested by in vitro vascular tension test. The influence of KXA on the expression of calcium-CaM-dependent protein kinase II (CaMK II)/extracellular regulated protein kinases (ERK) signaling pathway has also been tested. RESULTS: KXA significantly reduced the ISO-induced increase in ST-segment, interventricular septal thickness, cardiac mass index and cardiac tissue pathological changes in rats. Moreover, the relaxation of isolated thoracic arterial rings that had been precontracted using norepinephrine (NE) or potassium chloride (KCl) was increased after KXA treatment in an endothelium-independent manner, and was attenuated by preincubation with verapamil, but not with tetraethylammonium chloride, 4-aminopyridine, glibenclamide, or barium chloride. KXA pretreatment attenuated vasoconstriction induced by CaCl2 in Ca2+-free solutions containing K+ or NE. In addition, KXA pretreatment inhibited accumulation of Ca2+ in A7r5 cells mediated by KCl and NE and significantly decreased p-CaMK II and p-ERK levels. CONCLUSION: KXA may inhibit influx and release of calcium and activate the CaMK II/ERK signaling pathway to produce vasodilatory effects, thereby improving myocardial injury.


Assuntos
Isquemia Miocárdica , Vasodilatação , Aerossóis , Animais , Aorta Torácica , Cálcio/metabolismo , Endotélio Vascular/metabolismo , Isquemia Miocárdica/tratamento farmacológico , Isquemia Miocárdica/metabolismo , Ratos
20.
Artigo em Inglês | WPRIM | ID: wpr-928950

RESUMO

OBJECTIVE@#To explore the effect of Kuanxiong Aerosol (KXA) on isoproterenol (ISO)-induced myocardial injury in rat models.@*METHODS@#Totally 24 rats were radomly divided into control, ISO, KXA low-dose and high-dose groups according to the randomized block design method, and were administered by intragastric administration for 10 consecutive days, and on the 9th and 10th days, rats were injected with ISO for 2 consecutive days to construct an acute myocardial ischemia model to evaluate the improvement of myocardial ischemia by KXA. In addition, the diastolic effect of KXA on rat thoracic aorta and its regulation of ion channels were tested by in vitro vascular tension test. The influence of KXA on the expression of calcium-CaM-dependent protein kinase II (CaMK II)/extracellular regulated protein kinases (ERK) signaling pathway has also been tested.@*RESULTS@#KXA significantly reduced the ISO-induced increase in ST-segment, interventricular septal thickness, cardiac mass index and cardiac tissue pathological changes in rats. Moreover, the relaxation of isolated thoracic arterial rings that had been precontracted using norepinephrine (NE) or potassium chloride (KCl) was increased after KXA treatment in an endothelium-independent manner, and was attenuated by preincubation with verapamil, but not with tetraethylammonium chloride, 4-aminopyridine, glibenclamide, or barium chloride. KXA pretreatment attenuated vasoconstriction induced by CaCl2 in Ca2+-free solutions containing K+ or NE. In addition, KXA pretreatment inhibited accumulation of Ca2+ in A7r5 cells mediated by KCl and NE and significantly decreased p-CaMK II and p-ERK levels.@*CONCLUSION@#KXA may inhibit influx and release of calcium and activate the CaMK II/ERK signaling pathway to produce vasodilatory effects, thereby improving myocardial injury.


Assuntos
Animais , Ratos , Aerossóis , Aorta Torácica , Cálcio/metabolismo , Endotélio Vascular/metabolismo , Isquemia Miocárdica/metabolismo , Vasodilatação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA