RESUMO
Frequent incidence of postweaning enterotoxigenic Escherichia coli (ETEC) diarrhea in the swine industry contributes to high mortality rates and associated economic losses. In this study, a combination of butyric, caprylic, and capric fatty acid monoglycerides was investigated to promote intestinal integrity and host defenses in weanling pigs infected with ETEC. A total of 160 pigs were allotted to treatment groups based on weight and sex. Throughout the 17-d study, three treatment groups were maintained: sham-inoculated pigs fed a control diet (uninfected control [UC], nâ =â 40), ETEC-inoculated pigs fed the same control diet (infected control [IC], nâ =â 60), and ETEC-inoculated pigs fed the control diet supplemented with monoglycerides included at 0.3% of the diet (infected supplemented [MG], nâ =â 60). After a 7-d acclimation period, pigs were orally inoculated on each of three consecutive days with either 3 mL of a sham-control (saline) or live ETEC culture (3â ×â 109 colony-forming units/mL). The first day of inoculations was designated as 0 d postinoculation (DPI), and all study outcomes reference this time point. Fecal, tissue, and blood samples were collected from 48 individual pigs (UC, nâ =â 12; IC, nâ =â 18; MG, nâ =â 18) on 5 and 10 DPI for analysis of dry matter (DM), bacterial enumeration, inflammatory markers, and intestinal permeability. ETEC-inoculated pigs in both the IC and MG groups exhibited clear signs of infection including lower (Pâ <â 0.05) gain:feed and fecal DM, indicative of excess water in the feces, and elevated (Pâ <â 0.05) rectal temperatures, total bacteria, total E. coli, and total F18 ETEC during the peak-infection period (5 DPI). Reduced (Pâ <â 0.05) expression of the occludin, tumor necrosis factor α, and vascular endothelial growth factor A genes was observed in both ETEC-inoculated groups at the 5 DPI time point. There were no meaningful differences between treatments for any of the outcomes measured at 10 DPI. Overall, all significant changes were the result of the ETEC infection, not monoglyceride supplementation.
Infection caused by the bacterium known as enterotoxigenic Escherichia coli (ETEC) is a common disruptor of weaned pigs' health, leading to economic losses for the producers. To determine if nutritional supplementation could help protect against these losses, weaned pigs were assigned to one of three treatments: 1) uninfected and fed a standard nursery pig diet, 2) infected with ETEC and fed the same standard diet, or 3) infected with ETEC and fed the standard diet supplemented with a combination of butyric, caprylic, and capric fatty acid monoglycerides. Growth performance was tracked throughout the 17-d study and health outcomes were measured at the peak and resolution of ETEC infection. At the peak-infection time point, pigs that were infected with ETEC had lower fecal moisture content, greater fecal bacterial concentrations, and elevated body temperatures compared with uninfected pigs. Additionally, infection reduced expression of genes related to inflammation, angiogenesis, and the intestinal barrier during the peak-infection period. Overall, all significant changes were the result of the ETEC infection, and there were no meaningful differences observed between the different treatments.
Assuntos
Ração Animal , Suplementos Nutricionais , Escherichia coli Enterotoxigênica , Infecções por Escherichia coli , Monoglicerídeos , Doenças dos Suínos , Animais , Suínos , Doenças dos Suínos/microbiologia , Doenças dos Suínos/prevenção & controle , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/prevenção & controle , Escherichia coli Enterotoxigênica/fisiologia , Masculino , Feminino , Ração Animal/análise , Dieta/veterinária , Intestinos/microbiologia , Diarreia/veterinária , Diarreia/microbiologia , Fezes/microbiologia , DesmameRESUMO
Enterotoxigenic Escherichia coli (ETEC) causes post-weaning diarrhea in piglets, significantly impacting animal welfare and production efficiency. The two primary ETEC pathotypes associated with post-weaning diarrhea are ETEC F4 and ETEC F18. During the post-weaning period, piglets may be exposed to both ETEC F4 and ETEC F18. However, the effects of coinfection by both strains have not been studied. Short chain fatty acid feed additives, such as butyrate and valerate, are being investigated for their potential to improve animal performance and disease resistance. Therefore, this pilot experiment aimed to test the effects of butyrate glycerides or valerate glycerides on growth performance, diarrhea incidence, and immune responses of piglets under ETEC F4-ETEC F18 coinfection conditions. Twenty piglets were individually housed and assigned to one of the three dietary treatments immediately at weaning (21 to 24 d of age). The dietary treatments included control (basal diet formulation), control supplemented with 0.1% butyrate glycerides or 0.1% valerate glycerides. After a 7-d adaptation, all pigs were inoculated with ETEC F4 and ETEC F18 (0.5â ×â 109 CFU/1.5 mL dose for each strain) on three consecutive days. Pigs and feeders were weighed throughout the trial to measure growth performance. Fecal cultures were monitored for hemolytic coliforms, and blood samples were collected for whole blood and serum analysis. Pigs fed valerate glycerides tended (Pâ =â 0.095) to have higher final body weight compared with control. The overall severity of diarrhea was significantly (Pâ <â 0.05) lower in both treatment groups than control. Pigs fed valerate glycerides tended (Pâ =â 0.061) to have lower neutrophils and had significantly (Pâ <â 0.05) lower serum TNF-α on day 4 post-inoculation. This pilot experiment established an appropriate experimental dose for an ETEC F4-ETEC F18 coinfection disease model in weaned piglets. Results also suggest that butyrate glycerides and valerate glycerides alleviated diarrhea and regulated immune responses in piglets coinfected with ETEC F4 and ETEC F18.
Piglets suffer from post-weaning diarrhea associated with Enterotoxigenic Escherichia coli (ETEC) F4 and F18, two prevalent strains on swine farms globally. Short chain fatty acids (SCFAs), such as butyrate and valerate, are natural, organic compounds that could potentially promote intestinal health when used as dietary supplements. During the post-weaning period, piglets are vulnerable to simultaneous infection by ETEC F4 and F18. Therefore, this experiment aimed to develop an experimental disease model for coinfection with ETEC F4 and F18, employing a dose of 0.5â ×â 109 CFU/1.5 mL of each strain, administered over three consecutive days. In addition, the experiment evaluated treatment diets supplemented with 0.1% butyrate or valerate glycerides compared with the control diet. Results from this experiment revealed that the inoculation dose incited infection and diarrhea in piglets, implying its suitability for use in a disease challenge model. Moreover, the results indicated that the inclusion of butyrate and valerate glycerides to pig's diet reduced the severity of diarrhea. Furthermore, pigs fed SCFA glycerides exhibited lowered levels of inflammatory blood markers. In conclusion, the experimental dose induced diarrhea in piglets, and dietary supplementation of butyrate and valerate glycerides alleviated the severity of diarrhea while augmenting inflammatory status.
Assuntos
Coinfecção , Escherichia coli Enterotoxigênica , Infecções por Escherichia coli , Doenças dos Suínos , Suínos , Animais , Escherichia coli Enterotoxigênica/fisiologia , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/veterinária , Butiratos/farmacologia , Valeratos/farmacologia , Valeratos/uso terapêutico , Coinfecção/veterinária , Diarreia/veterinária , Dieta/veterinária , Imunidade , Doenças dos Suínos/tratamento farmacológico , Ração Animal/análiseRESUMO
Background: Enterotoxigenic Escherichia coli (ETEC), an important intestinal pathogen, poses a significant threat to the intestinal health of piglets. Bacillus coagulans (BC), a potential feed additive, can improve the intestinal function of piglets. However, the effects of BC on growth performance and intestinal function in ETEC-infected piglets are still unclear. In this study, 24 7-day-old piglets were randomly assigned to three treatment groups: control group (fed a basal diet), ETEC group (fed a basal diet and challenged with ETEC K88) and BC+ETEC group (fed a basal diet, orally administered BC, challenged with ETEC K88). During Days 1-6 of the trial, piglets in the BC+ETEC group were orally administered BC (1×108CFU/kg). On Day 5 of the trial, piglets in the ETEC and BC+ETEC groups were orally administered ETEC K88 (5×109CFU/piglet). Blood, intestinal tissue, and content samples were collected from the piglets on Day 7 of the trial. Results: The average daily feed intake in the ETEC group was significantly reduced compared to that of the control group. Further research revealed that ETEC infection significantly damaged the structure of the small intestine. Compared to the control group, the villus height and surface area of the jejunum, the ratio of villus height to crypt depth in the duodenum and jejunum, and the activities of catalase and total superoxide dismutase in the jejunum were significantly reduced. Additionally, the levels of myeloperoxidase in the jejunum, malondialdehyde in the plasma and jejunum, and intestinal epithelial apoptosis were significantly increased in the ETEC group. However, BC supplementation had significantly mitigated these negative effects in the BC+ETEC group by Day 7 of the trial. Moreover, BC supplementation improved the gut microbiota imbalance by reversing the decreased numbers of Enterococcus, Clostridium and Lactobacillus in jejunum and Escherichia coli, Bifidobacterium and Lactobacillus in the colon, as well as the increased number of Escherichia coli in the jejunum induced by ETEC K88. Conclusions: Overall, BC supplementation reduced the decline in average daily feed intake in ETEC K88-infected piglets by attenuating intestinal epithelial apoptosis and oxidative stress and regulating the gut microbiota. This suggests that BC may be used to prevent intestinal infections caused by ETEC in piglets.
Assuntos
Bacillus coagulans , Escherichia coli Enterotoxigênica , Infecções por Escherichia coli , Microbioma Gastrointestinal , Doenças dos Suínos , Animais , Ingestão de Alimentos , Escherichia coli Enterotoxigênica/fisiologia , Infecções por Escherichia coli/prevenção & controle , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/microbiologia , Intestinos/microbiologia , Suínos , Doenças dos Suínos/prevenção & controle , Doenças dos Suínos/microbiologiaRESUMO
This study aimed to investigate the effects of an organic acid (OA) blend on intestinal barrier function, intestinal inflammation, and gut microbiota in mice challenged with enterotoxigenic Escherichia coli K88 (ETEC K88). Ninety female Kunming mice (7 weeks old) were randomly allotted to five treatments with six replicates per treatment and three mice per replicate. The five treatments were composed of the non-ETEC K88 challenge group and ETEC K88 challenge + OA blend groups (0, 0.6 %, 1.2 %, and 2.4 % OA blend). The OA blend consisted of 47.5 % formic acid, 47.5 % benzoic acid, and 5 % tributyrin. The feeding trial lasted for 15 days, and mice were intraperitoneally injected with PBS or ETEC K88 solution on day 15. At 24 h post-challenge, one mouse per replicate was selected for sample collection. The results showed that a dosage of 0.6 % OA blend alleviated the ETEC K88-induced intestinal barrier dysfunction, as indicated by the elevated villus height and the ratio of villus height to crypt depth of jejunum, and the reduced serum diamine oxidase (DAO) and D-lactate levels, as well as the up-regulated mRNA levels of ZO-1, Claudin-1, and Occludin in jejunum mucosa of mice. Furthermore, dietary addition with 0.6 % OA blend decreased ETEC K88-induced inflammation response, as suggested by the decreased TNF-α and IL-6 levels, and the increased IgA level in the serum, as well as the down-regulated mRNA level of TNF-α, IL-6, IL-1ß, TLR-4, MyD88, and MCP-1 in jejunum mucosa of mice. Regarding gut microbiota, the beta-diversity analysis revealed a remarkable clustering between the 0.6 % OA blend group and the ETEC K88 challenge group. Supplementation of 0.6 % OA blend decreased the relative abundance of Firmicutes, and increased the relative abundance of Bacteroidota, Desulfobacterota, and Verrucomicrobiota of colonic digesta in mice. Also, the butyric acid content in the colonic digesta of mice was increased by dietary 0.6 % OA blend supplementation. Collectively, a dosage of 0.6 % OA blend could alleviate the ETEC K88-induced intestinal barrier dysfunction by regulating intestinal inflammation and gut microbiota of mice.
Assuntos
Escherichia coli Enterotoxigênica , Infecções por Escherichia coli , Gastroenteropatias , Microbioma Gastrointestinal , Enteropatias , Camundongos , Feminino , Animais , Infecções por Escherichia coli/tratamento farmacológico , Interleucina-6 , Modelos Animais de Doenças , Fator de Necrose Tumoral alfa , Ácido Benzoico , Mucosa Intestinal , Escherichia coli Enterotoxigênica/fisiologia , Inflamação/tratamento farmacológico , RNA MensageiroRESUMO
Botanicals exhibit promising impacts on intestinal health, immune-regulation, and growth promotion in weaned pigs. However, these benefits may vary depending on major active components in the final feed additive products. Therefore, this study aimed to investigate two types of botanical blends (BB) that were comprised of 0.3% capsicum oleoresin and 12% garlic extracts from different sources on performance, diarrhea, and health of weaned piglets experimentally infected with a pathogenic Escherichia coli F18. Sixty weanling pigs (7.17 ± 0.97 kg body weight (BW)) blocked by weight and gender were assigned to one of five dietary treatments: negative control (NC), positive control (PC), or dietary supplementation with 100 mg/kg of BB1, 50 mg/kg or 100 mg/kg of BB2. This study lasted 28 d with 7 d before and 21 d after the first E. coli inoculation (day 0). All pigs, except negative control, were orally inoculated with 1010 cfu E. coli F18/3-mL dose for 3 consecutive days. Blood samples were collected periodically to analyze systemic immunity. Intestinal tissues and mucosa were collected on days 5 and 21 PI for analyzing histology and gene expression. All data, except for frequency of diarrhea, were analyzed by ANOVA using the PROC MIXED of SAS. The Chi-square test was used for analyzing frequency of diarrhea. Escherichia coli infection reduced (P < 0.05) growth rate and feed intake and increased (P < 0.05) frequency of diarrhea of weaned pigs throughout the experiment. Supplementation of 100 mg/kg BB1 or BB2 alleviated (P < 0.05) frequency of diarrhea of E. coli challenged pigs during the entire experiment. Escherichia coli infection also enhanced (P < 0.05) serum TNF-α and haptoglobin concentrations on day 4 post-inoculation (PI) but reduced (P < 0.05) duodenal villi height and area on day 5 PI, while pigs supplemented with 100 mg/kg BB1 or BB2 had lower (P < 0.05) serum TNF-α than pigs in PC on day 4 PI. Pigs fed with 100 mg/kg BB2 had higher (P < 0.05) jejunal villi height than pigs in PC on day 5 PI. Pigs fed with 100 mg/kg BB2 had reduced (P < 0.05) gene expression of IL1B, PTGS2, and TNFA in ileal mucosa than pigs in PC on day 21 PI. In conclusion, dietary supplementation of botanical blends at 100 mg/kg could enhance disease resistance of weaned pigs infected with E. coli F18 by enhancing intestinal morphology and regulating local and systemic immunity of pigs.
This experiment aimed to investigate two botanical blends consisting of 0.3% capsicum oleoresin and 12% garlic extracts on performance, diarrhea, and health of weaned piglets experimentally infected with a pathogenic Escherichia coli F18. The two botanical blends have the same formulation, except that different garlic oils were used. A total of 60 weaned pigs were randomly allotted to one of five experimental treatments: 1) a complex control diet without E. coli F18 challenge; 2) control diet with E. coli F18 challenge; 3) supplementing 100 mg/kg of botanical blend type 1 to pigs challenged with E. coli F18; 4) and 5) supplementing 50 or 100 mg/kg of botanical blend type 2 to pigs challenged with E. coli F18. The experiment lasted 28 d with 7 d adaptation and 21 d after the first F18 E. coli inoculation. Results of this experiment demonstrate that supplementation of 100 mg/kg of botanical blend enhanced disease resistance and tended to improve growth of weaned pigs, regardless of garlic oil variety. An improved intestinal morphology and reduced systemic inflammation was also observed in pigs supplemented with 100 mg/kg of botanical blends. In conclusion, supplementation of 100 mg/kg of botanical blends could reduce diarrhea of E. coli infected pigs and modify local or systemic immunity of pigs.
Assuntos
Escherichia coli Enterotoxigênica , Infecções por Escherichia coli , Doenças dos Suínos , Suínos , Animais , Escherichia coli Enterotoxigênica/fisiologia , Resistência à Doença , Fator de Necrose Tumoral alfa , Doenças dos Suínos/tratamento farmacológico , Desmame , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/veterinária , Diarreia/veterinária , Dieta/veterinária , Suplementos Nutricionais , Ração Animal/análiseRESUMO
Diarrhoea caused by pathogens such as enterotoxigenic E. coli (ETEC) is a serious threat to the health of young animals and human infants. Here, we investigated the protective effect of fructo-oligosaccharides (FOS) on the intestinal epithelium with ETEC challenge in a weaned piglet model. Twenty-four weaned piglets were randomly divided into three groups: (1) non-ETEC-challenged control (CON); (2) ETEC-challenged control (ECON); and (3) ETEC challenge + 2·5 g/kg FOS (EFOS). On day 19, the CON pigs were orally infused with sterile culture, while the ECON and EFOS pigs were orally infused with active ETEC (2·5 × 109 colony-forming units). On day 21, pigs were slaughtered to collect venous blood and small intestine. Result showed that the pre-treatment of FOS improved the antioxidant capacity and the integrity of intestinal barrier in the ETEC-challenged pigs without affecting their growth performance. Specifically, compared with ECON pigs, the level of GSH peroxidase and catalase in the plasma and intestinal mucosa of EFOS pigs was increased (P < 0·05), and the intestinal barrier marked by zonula occluden-1 and plasmatic diamine oxidase was also improved in EFOS pigs. A lower level (P < 0·05) of inflammatory cytokines in the intestinal mucosa of EFOS pigs might be involved in the inhibition of TLR4/MYD88/NF-κB pathway. The apoptosis of jejunal cells in EFOS pigs was also lower than that in ECON pigs (P < 0·05). Our findings provide convincing evidence of possible prebiotic and protective effect of FOS on the maintenance of intestinal epithelial function under the attack of pathogens.
Assuntos
Escherichia coli Enterotoxigênica , Infecções por Escherichia coli , Doenças dos Suínos , Animais , Humanos , Suínos , Escherichia coli Enterotoxigênica/fisiologia , Mucosa Intestinal/metabolismo , Suplementos Nutricionais , Oligossacarídeos/farmacologia , Doenças dos Suínos/metabolismo , DesmameRESUMO
BACKGROUND: Dietary intervention is an important approach to improve intestinal function of weaned piglets. Phytogenic and herbal products have received increasing attention as in-feed antibiotic alternatives. This study investigated the chemical composition of guava leaf extract (GE) by ultrahigh-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Meanwhile, we investigated the effects of dietary supplementation with GE on diarrhea in relation to immune responses and intestinal health in weaned piglets challenged by enterotoxigenic Escherichia coli (ETEC). RESULTS: In total, 323 characterized compounds, which including 91 phenolic compounds and 232 other compounds were identified. Animal experiment results showed that the supplementation of 50-200 mg kg-1 of GE in the diet could reduce diarrhea incidence, increase activities of superoxide dismutase, glutathione peroxidase and total anti-oxidant capacity in the serum (P < 0.05), decrease the levels of interleukin 1ß, interleukin 6 and tumor necrosis factor α in the serum or jejunum mucosa (P < 0.05), and increase villus height and villus height to crypt depth ratio (P < 0.05) in the jejuna of piglets challenged by oral ETEC compared with negative control group (NC). Meanwhile, diet supplementation with 50-200 mg kg-1 GE reduced the levels of D-lactate, endothelin-1 and diamine oxidase in the serum, and increased the expression of zonula occludens-1, Claudin-1, Occludin and Na+ /H+ exchanger 3 (P < 0.05) in the jejuna mucosa of piglets challenged by ETEC compared with the NC. CONCLUSIONS: These results suggested that GE could attenuate diarrhea and improve intestinal barrier function of piglets challenged by ETEC. © 2020 Society of Chemical Industry.
Assuntos
Diarreia/veterinária , Mucosa Intestinal/metabolismo , Extratos Vegetais/metabolismo , Folhas de Planta/metabolismo , Psidium/química , Doenças dos Suínos/prevenção & controle , Ração Animal/análise , Animais , Cromatografia Líquida , Diarreia/metabolismo , Diarreia/microbiologia , Diarreia/prevenção & controle , Dieta/veterinária , Escherichia coli Enterotoxigênica/fisiologia , Mucosa Intestinal/crescimento & desenvolvimento , Mucosa Intestinal/microbiologia , Extratos Vegetais/química , Folhas de Planta/química , Psidium/genética , Psidium/metabolismo , Suínos/crescimento & desenvolvimento , Suínos/metabolismo , Doenças dos Suínos/metabolismo , Doenças dos Suínos/microbiologia , Espectrometria de Massas em Tandem , DesmameRESUMO
Enterotoxigenic Escherichia coli (ETEC) infection is the most common cause of diarrhea in piglets, and ETEC could increase intestinal gamma-aminobutyric acid (GABA)-producing bacteria to affect intestinal immunity. However, the effect of GABA on ETEC-infected piglets is still unclear. This study aims at investigating the impact of dietary GABA supplementation on the growth performance, diarrhea, intestinal morphology, serum amino acid profile, intestinal immunity, and microbiota in the ETEC-infected piglet model. Eighteen piglets were randomly divided into two groups, in which the piglets were fed with a basal diet with 20 mg kg-1 GABA supplementation or not. The experiment lasted for three weeks, and the piglets were challenged with ETEC K88 on the fifteenth day. The results showed that dietary GABA reduced the feed conversion ratio, promoted the kidney organ index but did not affect the diarrheal score and small intestinal morphology in ETEC-challenged piglets. Ileal mucosal amino acids (such as carnosine and anserine) and serum amino acids (including threonine and GABA) were increased upon GABA supplementation. GABA enhanced ileal gene expression of TNF-α, IFN-γ, pIgR, and MUC2, while inhibited the ileal expression of IL-18 in ETEC-challenged piglets. GABA supplementation also highly regulated the intestinal microbiota by promoting community richness and diversity and reducing the abundance of the dominant microbial population of the ileal microbiota. Collectively, GABA improves growth performance, regulates the serum amino acid profile, intestinal immunity, and gut microbiota in ETEC-challenged piglets. This study is a fine attempt to reveal the function of GABA in ETEC-infected piglets. It would contribute to the understanding of the roles of exogenous nutrition on the host response to ETEC infection.
Assuntos
Suplementos Nutricionais/análise , Escherichia coli Enterotoxigênica/fisiologia , Infecções por Escherichia coli/veterinária , Microbioma Gastrointestinal/efeitos dos fármacos , Intestinos/imunologia , Doenças dos Suínos/tratamento farmacológico , Ácido gama-Aminobutírico/administração & dosagem , Aminoácidos/sangue , Ração Animal/análise , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Escherichia coli Enterotoxigênica/genética , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/microbiologia , Intestinos/microbiologia , Suínos , Doenças dos Suínos/sangue , Doenças dos Suínos/imunologia , Doenças dos Suínos/microbiologiaRESUMO
Short and medium-chain fatty acids (SCFA and MCFA, respectively) are commonly used as feed additives in piglets to promote health and prevent post-weaning diarrhoea. Considering that the mechanism and site of action of these fatty acids can differ, a combined supplementation could result in a synergistic action. Considering this, it was aimed to assess the potential of two new in-feed additives based on butyrate or heptanoate, protected with sodium salts of MCFA from coconut distillates, against enterotoxigenic Escherichia coli (ETEC) F4+ using an experimental disease model. Two independent trials were performed in 48 early-weaned piglets fed a control diet (CTR) or a diet supplemented with MCFA-protected sodium butyrate (BUT+; Trial 1) or sodium heptanoate (HPT+; Trial 2). After 1 week of adaptation, piglets were challenged with a single oral inoculum of ETEC F4+ (minimum 1.4 · 109 cfu). One animal per pen was euthanised on days 4 and 8 post-inoculation (PI) and the following variables assessed: growth performance, clinical signs, gut fermentation, intestinal morphology, inflammatory mediators, pathogen excretion and colon microbiota. None of the additives recovered growth performance or reduced diarrhoea when compared to the respective negative controls. However, both elicited different responses against ETEC F4+. The BUT+ additive did not lead to reduce E. coli F4 colonisation but enterobacterial counts and goblet cell numbers in the ileum were increased on day 8 PI and this followed higher serum TNF-α concentrations on day 4 PI. The Firmicutes:Bacteroidetes ratio was nevertheless increased. Findings in the HPT+ treatment trial included fewer animals featuring E. coli F4 in the colon and reduced Enterobacteriaceae (determined by 16S RNA sequencing) on day 4 PI. In addition, while goblet cell numbers were lower on day 8 PI, total SCFA levels were reduced in the colon. Results indicate the efficacy of MCFA-protected heptanoate against ETEC F4+ and emphasise the potential trophic effect of MCFA-protected butyrate on the intestinal epithelium likely reinforcing the gut barrier.
Assuntos
Ácido Butírico/metabolismo , Ácidos Graxos/metabolismo , Microbioma Gastrointestinal/fisiologia , Trato Gastrointestinal/efeitos dos fármacos , Heptanoatos/metabolismo , Sus scrofa/fisiologia , Ração Animal/análise , Animais , Ácido Butírico/administração & dosagem , Cocos/química , Colo/efeitos dos fármacos , Colo/microbiologia , Dieta/veterinária , Suplementos Nutricionais/análise , Escherichia coli Enterotoxigênica/fisiologia , Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/veterinária , Ácidos Graxos/administração & dosagem , Fermentação/efeitos dos fármacos , Trato Gastrointestinal/anatomia & histologia , Trato Gastrointestinal/imunologia , Trato Gastrointestinal/metabolismo , Heptanoatos/administração & dosagem , Masculino , Sus scrofa/crescimento & desenvolvimento , Sus scrofa/microbiologia , Suínos , Doenças dos Suínos/imunologia , Doenças dos Suínos/microbiologiaRESUMO
Organic acids (OA) and phytogenic compounds have been used in pig feeding as alternatives to antibiotic growth promoters. However, few studies have evaluated the systemic effect of the combination of these additives. The aim of this study was to assess the impact of an organic acid-based feed additive (OAFA), containing a blend of OA and cinnamaldehyde, on the tissue integrity of bacterially challenged piglets. Thirty weaned piglets 21 d old were used in a 19-d trial. Pigs received a standard diet during the first 7 d and afterward were allotted to five treatments. Dietary treatments were: Control (basal diet), Escherichia coli (basal diet and challenge with E. coli), colistin (basal diet + 200 mg colistin/kg feed + challenge with E. coli), OAFA1 (basal diet + 1 kg OAFA/ton feed + challenge with E. coli), and OAFA2 (basal diet + 2 kg OAFA/ton feed + challenge with E. coli). Seven days after the beginning of the treatment, the animals were challenged with an enterotoxic strain of E. coli (K88) for pigs. Five days after the challenge, all animals were euthanized for tissue sampling for histological and oxidative stress (intestine and liver) analysis. The reduced glutathione (GSH), ferric-reducing ability potential (FRAP), and free-radical scavenging ability (ABTS) assays were used to evaluate the intestinal antioxidant defense. Lipid peroxidation and superoxide anion production were evaluated through the levels of thiobarbituric acid-reactive substances (TBARS) and nitroblue tetrazolium (NBT) reduction assay, respectively. Animals fed the OAFA (1 and 2) diets had a decrease (P < 0.05) on histological changes in the intestine, liver, mesenteric lymph nodes, and spleen. Greater villus height (VH) and a higher ratio of VH to crypt depth (CD) were observed in animals of the OAFA2 group compared with the control and E. coli groups. The colistin and OAFA groups decreased (P < 0.05) the number of inflammatory cells in intestinal lamina propria. OAFA2 group increased (P < 0.05) intestinal cell proliferation. Colistin and OAFA2 supplementation induced a decrease (P < 0.05) in the levels of TBARS in both the intestine and liver compared with the E. coli group. In addition, an increase (P < 0.05) in GSH and FRAP ileal levels was observed in the OAFA2 group compared with E. coli group. These results show that the supplementation with OAFA in the diet of weaned piglets, especially at a dose of 2 kg/ton (OAFA2) protected tissues against enterotoxigenic Escherichia coli (ETEC) damage.
Assuntos
Acroleína/análogos & derivados , Ácidos Carboxílicos/administração & dosagem , Escherichia coli Enterotoxigênica/fisiologia , Homeostase/efeitos dos fármacos , Suínos/fisiologia , Acroleína/administração & dosagem , Animais , Antibacterianos/farmacologia , Colistina/metabolismo , Dieta/veterinária , Ingestão de Alimentos , Infecções por Escherichia coli/tratamento farmacológico , Feminino , Mucosa Intestinal/efeitos dos fármacos , Intestinos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Masculino , Estresse Oxidativo , Suínos/crescimento & desenvolvimento , DesmameRESUMO
This study aimed to evaluate the potential of two new fat-protected butyrate or heptanoate salts to improve gut health and control post-weaning colibacillosis in weaning piglets challenged with enterotoxigenic Escherichia coli (ETEC) F4+, particularly focusing on their impact on intestinal microbiota and fermentative activity along the gastrointestinal tract (GIT). Seventy-two 21-d-old pigs were fed a plain diet (CTR) or supplemented with sodium butyrate (BUT) or sodium heptanoate (HPT), both at 0.3%. After a week of adaptation, animals were orally challenged at days 8 and 9 with 5.8 · 109 and 6.6 · 1010 cfu, respectively, and were euthanised on d 4 and d 8 post-inoculation (PI) (n = 8) to collect blood, digesta and tissue samples and characterise microbial groups, pathogen loads (qPCR), fermentation, ileal histomorphometry and immune markers. Colonic microbiota was analysed by 16S rRNA gene MiSeq sequencing. Supplementing both acid salts did not compensate clinical challenge effects nor performance impairments and neither histomorphometry nor serum biomarkers. Changes in the gastric fermentative activity were registered, BUT reducing lactic acid concentrations (day 8 PI), and with HPT fewer animals presenting detectable concentrations of propionic, butyric and valeric acids. At ileum BUT increased acetic acid concentration (day 8 PI), and both additives reduced short-chain fatty acids (SCFA) in the colon. Increases in enterobacteria and coliforms counts in ileal digesta (day 4 PI, p < 0.10) and mucosa scrapes (p < 0.05) were registered although E. coli F4 gene copies were unaffected. Regarding changes in the colonic microbiota (day 4 PI), Prevotellaceae and Prevotella were promoted with BUT supplementation whereas only minor groups were modified in HPT-treated animals. Summarising, although the pathogen loads or inflammatory mediators remained unresponsive, butyrate and heptanoate showed a significant impact on microbial fermentation along the whole GIT, being able to modify different bacterial groups at the colon. It could be hypothesised that these effects might be mediated by a carry-over effect of the changes observed in gastric fermentation, but possibly also to a better nutrient digestion in the foregut as a result of the reduced colonic SCFA concentrations.
Assuntos
Ácido Butírico/metabolismo , Infecções por Escherichia coli/veterinária , Microbioma Gastrointestinal/efeitos dos fármacos , Heptanoatos/metabolismo , Intestino Grosso/efeitos dos fármacos , Doenças dos Suínos/prevenção & controle , Ração Animal/análise , Animais , Ácido Butírico/administração & dosagem , Colo/efeitos dos fármacos , Colo/microbiologia , Dieta/veterinária , Suplementos Nutricionais/análise , Escherichia coli Enterotoxigênica/fisiologia , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/prevenção & controle , Fermentação/efeitos dos fármacos , Microbioma Gastrointestinal/fisiologia , Heptanoatos/administração & dosagem , Intestino Grosso/metabolismo , Intestino Grosso/microbiologia , Masculino , RNA Bacteriano/análise , RNA Ribossômico 16S/análise , Sódio/administração & dosagem , Sódio/metabolismo , Sus scrofa/metabolismo , Sus scrofa/microbiologia , Suínos , Doenças dos Suínos/microbiologia , DesmameRESUMO
Farm animals such as piglets are often affected by environmental stress, which can disturb the gut ecosystem. Antibiotics were commonly used to prevent diarrhea in weaned piglets, but this was banned by the European Union due to the development of antibiotic resistance. However, the use of probiotics instead of antibiotics may reduce the risk posed by pathogenic microorganisms and reduce the incidence of gastrointestinal diseases. Therefore, this study was conducted to investigate the effects of Lactobacillus casei Zhang on the mechanical barrier and immune function of early-weaned piglets infected using Escherichia coli K88 based on histomorphology and immunology. Fourteen-day-old weaned piglets were divided into a control group and experimental groups that were fed L. casei Zhang and infected with E. coli K88 with or without prefeeding and/or postfeeding of L. casei Zhang. The L. casei Zhang dose used was 107 CFU/g diet. Jejunum segments were obtained before histological, immunohistochemical, and western blot analyses were performed. In addition, the relative mRNA expression of toll receptors and cytokines was measured. Piglets fed L. casei Zhang showed significantly increased jejunum villus height, villus height-crypt depth ratio, muscle thickness, and expression of proliferating cell nuclear antigen and tight junction proteins ZO-1 and occludin. The use of L. casei Zhang effectively reduced intestinal inflammation after infection. We found that L. casei Zhang feeding prevented the jejunum damage induced by E. coli K88, suggesting that it may be a potential alternative to antibiotics for preventing diarrhea in early-weaned piglets.
Assuntos
Infecções por Escherichia coli/veterinária , Expressão Gênica/efeitos dos fármacos , Mucosa Intestinal/fisiologia , Jejuno/efeitos dos fármacos , Lacticaseibacillus casei/fisiologia , Probióticos/administração & dosagem , Doenças dos Suínos/prevenção & controle , Animais , Citocinas/genética , Suplementos Nutricionais , Escherichia coli Enterotoxigênica/fisiologia , Infecções por Escherichia coli/patologia , Infecções por Escherichia coli/prevenção & controle , Fatores Imunológicos/genética , Fatores Imunológicos/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Jejuno/patologia , Ocludina/genética , Ocludina/metabolismo , Probióticos/farmacologia , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Suínos , Doenças dos Suínos/patologia , Receptores Toll-Like/genética , Desmame , Proteína da Zônula de Oclusão-1/genética , Proteína da Zônula de Oclusão-1/metabolismoRESUMO
Alginate oligosaccharide (AOS) is a non-toxic, non-immunogenic, non-carcinogenic and biodegradable product generated by depolymerisation of alginate, and exhibits various salutary properties. The present study was designed to evaluate whether AOS supplementation could attenuate enterotoxigenic Escherichia coli (ETEC)-induced intestinal mucosal injury in weaned pigs. Twenty-four weaned pigs were randomly assigned to three treatments: (1) non-challenged control; (2) ETEC-challenged control; and (3) ETEC challenge + AOS treatment (100 mg kg-1). On day 12, pigs in the non-challenged group were orally infused with sterilised Luria-Bertani culture while pigs in other groups were orally infused with ETEC (2.6 × 1011 colony-forming units). At 3 days after the challenge, all pigs were orally administered d-xylose at 0.1 g per kg body weight and then euthanised 1 h later to obtain serum and intestinal mucosa samples. Our results showed that ETEC infection both reduced (P < 0.05) the villus height and proportion of epithelial cells in the S phase and elevated (P < 0.05) the percentage of total apoptotic epithelial cells in the jejunum and ileum; these deleterious effects caused by ETEC were alleviated (P < 0.05) by supplemental AOS. Meanwhile, AOS ingestion attenuated (P < 0.05) not only the up-regulated tumour necrosis factor receptor 1 (TNFR1), cysteinyl aspartate-specific protease-3 (caspase-3), -8 and -9 transcriptions, as well as the enhanced caspase activities (caspase-3, -8 and -9), but also the down-regulated cyclin E1 and cyclin-dependent kinase 2 (CDK2) transcriptions in jejunal and ileal mucosae, caused by the ETEC challenge. In conclusion, it is possible that the protective effects of AOS against ETEC-induced intestinal mucosal disruption in weaned pigs are associated with the restrained enterocyte death, by reducing both mitochondria-dependent and TNFR1-dependent apoptosis and the accelerated enterocyte proliferation, via enhancing the cyclin E-CDK2 complex formation.
Assuntos
Alginatos/química , Escherichia coli Enterotoxigênica/fisiologia , Infecções por Escherichia coli/tratamento farmacológico , Mucosa Intestinal/microbiologia , Oligossacarídeos/administração & dosagem , Alginatos/administração & dosagem , Animais , Caspases/genética , Caspases/metabolismo , Ciclina E/genética , Ciclina E/metabolismo , Quinase 2 Dependente de Ciclina/genética , Quinase 2 Dependente de Ciclina/metabolismo , Infecções por Escherichia coli/genética , Infecções por Escherichia coli/metabolismo , Infecções por Escherichia coli/microbiologia , Feminino , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Masculino , Suínos , DesmameRESUMO
AIMS: The objective of this study was twofold: (i) to examine the effect of Clostridium butyricum on intestinal barrier function and (ii) to elucidate the mechanisms involved in enhanced intestinal barrier function. METHODS AND RESULTS: Forty-eight weaned piglets were assigned randomly to either a basal diet or a C. butyricum-supplemented diet. On day 15, all pigs were orally challenged with enterotoxigenic Escherichia coli (ETEC) K88 or saline. Clostridium butyricum decreased serum diamine oxidase activity and d-lactic acid concentration, as well as increased intestinal tight junction proteins (ZO-1, claudin-3 and occludin) expression in ETEC K88-infected pigs. Moreover, C. butyricum decreased IL-1ß and IL-18 levels in serum and gut, whereas it increased IL-10 levels. Furthermore, C. butyricum downregulated NLRP3 and caspase-1 expression in ETEC K88-challenged pig gut, but did not affect apoptosis-associated speck-like protein expression. CONCLUSIONS: Clostridium butyricum enhanced intestinal barrier function and inhibited apoptosis-associated speck-like protein-independent NLRP3 inflammasome signalling pathway in weaned piglets after ETEC K88 challenge. SIGNIFICANCE AND IMPACT OF THE STUDY: The novelty of this study lies in the beneficial effects of C. butyricum on intestinal health, likely by improving intestinal barrier function and alleviating inflammatory reactions.
Assuntos
Clostridium butyricum/fisiologia , Escherichia coli Enterotoxigênica/fisiologia , Infecções por Escherichia coli/veterinária , Doenças dos Suínos/fisiopatologia , Ração Animal/análise , Ração Animal/microbiologia , Animais , Dieta/veterinária , Suplementos Nutricionais/análise , Infecções por Escherichia coli/metabolismo , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/fisiopatologia , Feminino , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , Mucosa Intestinal/metabolismo , Intestinos/microbiologia , Masculino , Probióticos/administração & dosagem , Suínos , Doenças dos Suínos/metabolismo , Doenças dos Suínos/microbiologia , Doenças dos Suínos/prevenção & controle , DesmameRESUMO
BACKGROUND: Enterotoxigenic Escherichia coli (ETEC) is a major cause of diarrhea in inhabitants from low-income countries and in visitors to these countries. The impact of the human intestinal microbiota on the initiation and progression of ETEC diarrhea is not yet well understood. RESULTS: We used 16S rRNA (ribosomal RNA) gene sequencing to study changes in the fecal microbiota of 12 volunteers during a human challenge study with ETEC (H10407) and subsequent treatment with ciprofloxacin. Five subjects developed severe diarrhea and seven experienced few or no symptoms. Diarrheal symptoms were associated with high concentrations of fecal E. coli as measured by quantitative culture, quantitative PCR, and normalized number of 16S rRNA gene sequences. Large changes in other members of the microbiota varied greatly from individual to individual, whether or not diarrhea occurred. Nonetheless the variation within an individual was small compared to variation between individuals. Ciprofloxacin treatment reorganized microbiota populations; however, the original structure was largely restored at one and three month follow-up visits. CONCLUSION: Symptomatic ETEC infections, but not asymptomatic infections, were associated with high fecal concentrations of E. coli. Both infection and ciprofloxacin treatment caused variable changes in other bacteria that generally reverted to baseline levels after three months.
Assuntos
Ciprofloxacina/uso terapêutico , Escherichia coli Enterotoxigênica/efeitos dos fármacos , Escherichia coli Enterotoxigênica/fisiologia , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Adulto , Ciprofloxacina/farmacologia , Diarreia/tratamento farmacológico , Diarreia/microbiologia , Fezes/microbiologia , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Metagenoma , Metagenômica/métodos , Pessoa de Meia-Idade , RNA Ribossômico 16S , Curva ROC , Resultado do Tratamento , Adulto JovemRESUMO
Tight junctions (TJs) play an important role in maintaining the mucosal barrier function and gastrointestinal health of animals. Lactobacillus plantarum (L. plantarum) was reported to protect the intestinal barrier function of early-weaned piglets against enterotoxigenic Escherichia coli (ETEC) K88 challenge; however, the underlying cellular mechanism of this protection was unclear. Here, an established intestinal porcine epithelia cell (IPEC-J2) model was used to investigate the protective effects and related mechanisms of L. plantarum on epithelial barrier damages induced by ETEC K88. Epithelial permeability, expression of inflammatory cytokines, and abundance of TJ proteins, were determined. Pre-treatment with L. plantarum for 6h prevented the reduction in transepithelial electrical resistance (TEER) (P<0.05), inhibited the increased transcript abundances of interleukin-8 (IL-8) and tumor necrosis factor (TNF-α) (P<0.05), decreased expression of claudin-1, occludin and zonula occludens (ZO-1) (P<0.05) and protein expression of occludin (P<0.05) of IPEC-J2 cells caused by ETEC K88. Moreover, the mRNA expression of negative regulators of toll-like receptors (TLRs) [single Ig Il-1-related receptor (SIGIRR), B-cell CLL/lymphoma 3 (Bcl3), and mitogen-activated protein kinase phosphatase-1 (MKP-1)] in IPEC-J2 cells pre-treated with L. plantarum were higher (P<0.05) compared with those in cells just exposed to K88. Furthermore, L. plantarum was shown to regulate proteins of nuclear factor κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways. These results indicated that L. plantarum may improve epithelial barrier function by maintenance of TEER, inhibiting the reduction of TJ proteins, and reducing the expression of proinflammatory cytokines induced by ETEC K88, possibly through modulation of TLRs, NF-κB and MAPK pathways.
Assuntos
Escherichia coli Enterotoxigênica/fisiologia , Mucosa Intestinal/microbiologia , Intestinos/microbiologia , Lactobacillus plantarum , Probióticos/uso terapêutico , Junções Íntimas/microbiologia , Animais , Terapia Biológica , Linhagem Celular , Claudina-1/biossíntese , Infecções por Escherichia coli/prevenção & controle , Infecções por Escherichia coli/veterinária , Enteropatias/prevenção & controle , Enteropatias/veterinária , Mucosa Intestinal/metabolismo , Ocludina/biossíntese , Substâncias Protetoras , Suínos , Doenças dos Suínos/prevenção & controle , Proteína da Zônula de Oclusão-1/biossínteseRESUMO
The objective of this study was to evaluate the effect of a standardized botanical extract of Croton lechleri, named crofelemer extract, on fecal dry matter and fecal scores on diarrheic newborn Holstein bull calves induced by enterotoxigenic Escherichia coli. A double-blinded randomized clinical trial was performed in which 60 newborn Holstein bull calves were clean caught and transported to an isolation facility where calves were individually housed and randomly assigned to 1 of 3 treatment groups: placebo (control), enteric-coated formulation of crofelemer extract (ECROF), and nonenteric-coated formulation of crofelemer extract (CROF). Diarrhea was induced at first feeding with an inoculum of the enterotoxigenic Escherichia coli (ATCC 31616) administered with a third of the recommended dose of a colostrum replacer. All calves enrolled in this study received treatments starting on the second feeding (diarrhea onset) and treatments were administered before feeding time (0600 and 1600h) for 6 feedings consecutively. All calves in this study had failure of passive transfer. The only cause of death in this study was due to septicemia, accounting for 1 death out of each treatment group. All the calves were examined twice daily, within 2h after feeding, from d 1 (prechallenge) until 10, on d 15, and a last examination on d 25 of life. Five parameters were evaluated during each examination; rectal temperature, clinical assessment of dehydration status, fecal scores, attitude, and appetite. No differences were observed between treatment groups for rectal temperature, attitude, and appetite. Fecal dry matter was analyzed as prechallenge fecal dry matter, dry matter during treatment, and fecal dry matter after treatment cessation. No difference in prechallenge fecal dry matter was observed and prechallenge fecal dry matter was used as a covariate in the models. Fecal dry matter during treatment was significantly higher for ECROF calves when compared with control calves and CROF calves. Additionally, ECROF fecal dry matter after treatment cessation had a statistical tendency to be higher when compared with control calves. Together, these results suggest that enteric-coated formulation of the standardized crofelemer extract, a natural-product with antisecretory properties, can significantly increase fecal dry matter of neonatal calves with experimentally induced enterotoxigenic Escherichia coli diarrhea. More research is needed to test the efficacy of enteric-coated crofelemer on incidence and severity of secretory diarrhea on calves under natural challenge conditions.
Assuntos
Doenças dos Bovinos/tratamento farmacológico , Diarreia/veterinária , Escherichia coli Enterotoxigênica/fisiologia , Infecções por Escherichia coli/veterinária , Extratos Vegetais/farmacologia , Proantocianidinas/química , Animais , Animais Recém-Nascidos , Bovinos , Doenças dos Bovinos/induzido quimicamente , Colostro/metabolismo , Indústria de Laticínios , Desidratação/veterinária , Diarreia/tratamento farmacológico , Diarreia/microbiologia , Método Duplo-Cego , Infecções por Escherichia coli/induzido quimicamente , Infecções por Escherichia coli/tratamento farmacológico , Fezes/microbiologia , Feminino , Masculino , GravidezRESUMO
Enterotoxigenic Escherichia coli (ETEC) K88 is the most prevalent enteropathogen in weaned piglets, with the ability to express fimbria F4 and specifically attach to intestinal receptors in the young piglet. The prevention of ETEC K88 adhesion to the epithelium by interfering in this fimbria-receptor recognition provides an alternative approach to prevent the initial stage of disease. The aim of this study is to screen, among different feed ingredients (FI), their ability to reduce ETEC K88 attachment to the porcine intestinal epithelial cell-line (IPEC-J2). The selected FI consisted of products of a vegetable or dairy origin, and microbial by-products, which could be suitable to be included in piglet's diet. Incubation of a mixture of each FI extract with the bacteria on IPEC-J2 monolayer was allowed. After washing with PBS to remove the non-adhered bacteria, the culture medium was added to grow the adhered bacteria and, simultaneously, to keep the cells alive. Then, the bacterial growth was monitored in a spectrophotometer reader for 12h. Casein glycomacropeptide (CGMP), locust bean (LB), exopolysaccharide (EPS) and wheat bran (WB) reduced the number of attached ETEC K88 to IPEC-J2, but no anti-adhesive effect was found for soybean hulls, sugar-beet pulp, locust gum, fructooligosaccharides, inulin, mushroom, mannanoligosaccharides or the fermented product from Aspergillus oryzae. The lineal analysis of dose responses demonstrated lineal activity (P<0.0001) for CGMP, LB, EPS and WB. These in vitro results suggest CGMP, LB, EPS and WB as good candidates to be included in piglet's diet with supported functional activity against colibacillosis.
Assuntos
Ração Animal/análise , Aderência Bacteriana/efeitos dos fármacos , Escherichia coli Enterotoxigênica/fisiologia , Células Epiteliais/microbiologia , Infecções por Escherichia coli/veterinária , Extratos Vegetais/farmacologia , Doenças dos Suínos/prevenção & controle , Animais , Antibacterianos/farmacologia , Linhagem Celular , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/prevenção & controle , Fímbrias Bacterianas/metabolismo , Intestinos/microbiologia , Polissacarídeos/farmacologia , Células-Tronco , Suínos , Doenças dos Suínos/microbiologiaRESUMO
This work is aimed at investigating the effects of recombinant bovine lactoferrampin-lactoferricin (LFA-LFC) instead of chlortetracycline on intestinal microflora in weaned piglets. The high cost of peptide production from either native digestion or chemical synthesis limits the clinical application of antimicrobial peptides. The expression of recombinant peptides in yeast may be an effective alternative. In the current study, recombinant LFA-LFC was produced via fed-batch fermentation in recombinant strain Pichia pastoris (KM71) XS10. Uniform design U6(6(4)) was used to optimize the fermentation conditions. The target peptide purified via cation-exchange and size-exclusion chromatography was added into the dietary of weaned piglets. After 21 days, the Lactobacilli, Bifidobacteria, and Enterobacteria in the chyme of the gut were quantified using real-time polymerase chain reaction. The results showed that approximately 82 mg of LFA-LFC was secreted into 1 L of medium under optimized conditions. Moreover, purified peptide showed strong antimicrobial activities against all the tested microorganisms. Compared with the control group, the LFA-LFC group increased the amount of Lactobacilli and Bifidobacteria (P<0.05) in the chyme of the stomach, duodenum, jejunum, ileum, colon, and caecum. These results show that dietary supplementation with LFA-LFC can affect intestinal microflora in weaned piglets.
Assuntos
Suplementos Nutricionais , Fermentação , Intestinos/microbiologia , Lactoferrina/biossíntese , Lactoferrina/farmacologia , Pichia/metabolismo , Desmame , Animais , Bovinos , Escherichia coli Enterotoxigênica/efeitos dos fármacos , Escherichia coli Enterotoxigênica/fisiologia , Lactoferrina/genética , Lactoferrina/isolamento & purificação , Testes de Sensibilidade Microbiana , Fragmentos de Peptídeos/biossíntese , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/isolamento & purificação , Fragmentos de Peptídeos/farmacologia , Pichia/efeitos dos fármacos , Pichia/genética , SuínosRESUMO
Tempe extracts can inhibit the adhesion of enterotoxigenic Escherichia coli (ETEC) to intestinal cells and thereby can play a role in controlling ETEC-induced diarrhea. The component responsible for this adhesion inhibition activity is still unknown. This research describes the purification and partial characterization of this bioactive component of tempe. After heating, defatting, and protease treatment, the extracts were found to remain active. However, after treatment with polysaccharide-degrading enzyme mixtures the bioactivity was lost. Ultrafiltration revealed the active component to be >30 kDa. Further purification of the bioactive tempe extracts yielded an active fraction with an increased carbohydrate content of higher arabinose content than the nonactive fractions. In conclusion, the bioactive component contains arabinose and originates from the arabinan or arabinogalactan side chain of the pectic cell wall polysaccharides of the soybeans, which is probably released or formed during fermentation by enzymatic modifications.