Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phytomedicine ; 107: 154469, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36202056

RESUMO

BACKGROUND: Acute lung injury (ALI) is a serious health issue which causes significant morbidity and mortality. Inflammation is an important factor in the pathogenesis of ALI. Even though ALI has been successfully managed using a traditiomal Chinese medicine (TCM), Huanglian Jiedu Decoction (HLD), its mechanism of action remains unknown. PURPOSE: This study explored the therapeutic potential of HLD in lipopolysaccharide (LPS)-induced ALI rats by utilizing integrative pharmacology. METHODS: Here, the therapeutic efficacy of HLD was evaluated using lung wet/dry weight ratio (W/D), myeloperoxide (MPO) activity, and levels of tumor necrosis factor (TNF-α), interleukin (IL)-1ß and IL-6. Network pharmacology predictd the active components of HLD in ALI. Lung tissues were subjected to perform Hematoxylin-eosin (H&E) staining, metabolomics, and transcriptomics. The acid ceramidase (ASAH1) inhibitor, carmofur, was employedto suppress the sphingolipid signaling pathway. RESULTS: HLD reduced pulmonary edema and vascular permeability, and suppressed the levels of TNF-α, IL-6, and IL-1ß in lung tissue, Bronchoalveolar lavage fluid (BALF), and serum. Network pharmacology combined with transcriptomics and metabolomics showed that sphingolipid signaling was the main regulatory pathway for HLD to ameliorate ALI, as confirmed by immunohistochemical analysis. Then, we reverse verified that the sphingolipid signaling pathway was the main pathway involed in ALI. Finally, berberine, baicalein, obacunone, and geniposide were docked with acid ceramidase to further explore the mechanisms of interaction between the compound and protein. CONCLUSION: HLD does have a better therapeutic effect on ALI, and its molecular mechanism is better elucidated from the whole, which is to balance lipid metabolism, energy metabolism and amino acid metabolism, and inhibit NLRP3 inflammasome activation by regulating the sphingolipid pathway. Therefore, HLD and its active components can be used to develop new therapies for ALI and provide a new model for exploring complex TCM systems for treating ALI.


Assuntos
Lesão Pulmonar Aguda , Berberina , Ceramidase Ácida/farmacologia , Ceramidase Ácida/uso terapêutico , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Aminoácidos , Animais , Berberina/farmacologia , Medicamentos de Ervas Chinesas , Amarelo de Eosina-(YS)/efeitos adversos , Hematoxilina/farmacologia , Hematoxilina/uso terapêutico , Inflamassomos , Interleucina-6/farmacologia , Lipopolissacarídeos/farmacologia , Pulmão , Proteína 3 que Contém Domínio de Pirina da Família NLR , Ratos , Esfingolipídeos/efeitos adversos , Fator de Necrose Tumoral alfa/farmacologia
2.
Chin J Integr Med ; 28(11): 1015-1022, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34586559

RESUMO

OBJECTIVE: To elucidate the mechanism of Lizhong Decoction (LZD) in treating dextran sodium sulfate (DSS)-induced colitis in mice based on metabonomics. METHODS: Thirty-six mice were randomly divided into 6 groups, including normal, model, low- (1.365 g/kg), medium- (4.095 g/kg) and high dose (12.285 g/kg) LZD and salazosulfadimidine (SASP) groups, 6 mice in each group. Colitis model mice were induced by DSS admistration for 7 days, and treated with low, medium and high dose LZD extract and positive drug SASP. Metabolic comparison of DSS-induced colitis and normal mice was investigated by using ultra-performance liquid chromatography coupled to quadrupole time-of-flight mass (UPLC-Q-TOF/MS) combined with Metabolynx™ software. RESULTS: The metabolic profiles of plasma and urine in colitis mice were distinctly ameliorated after LZD treatment (P<0.05). Potential biomarkers (9 in serum and 4 in urine) were screened and tentatively identified. The endogenous metabolites were mainly involved in primary bile acid, sphingolipid, linoleic acid, arachidonic acid, amino acids (alanine, aspartate, and glutamate), butanoate and glycerophospholipid metabolism in plasma, and terpenoid backbone biosynthesis, glycerophospholipid and tryptophan metabolism in urine. After LZD treatment, these markers notably restored to normal levels. CONCLUSIONS: The study revealed the underlying mechanism of LZD on amelioration of ulcerative colitis based on metabonomics, which laid a foundation for further exploring the pathological and physiological mechanism, early diagnosis, and corresponding drug development of colitis.


Assuntos
Colite Ulcerativa , Colite , Medicamentos de Ervas Chinesas , Camundongos , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Triptofano/efeitos adversos , Ácido Aspártico , Dextranos/efeitos adversos , Medicamentos de Ervas Chinesas/efeitos adversos , Colite/induzido quimicamente , Colite/tratamento farmacológico , Biomarcadores/metabolismo , Aminoácidos/efeitos adversos , Glicerofosfolipídeos/uso terapêutico , Esfingolipídeos/efeitos adversos , Ácidos e Sais Biliares/efeitos adversos , Glutamatos/efeitos adversos , Alanina/efeitos adversos , Ácidos Araquidônicos/efeitos adversos , Ácidos Linoleicos/efeitos adversos , Terpenos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA