Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 620
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Food Chem ; 444: 138631, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38325079

RESUMO

Naringenin (NGE), a typical flavanone abundant in citrus fruits, exhibits remarkable antioxidant activities. However, its low solubility in oil restricts its widespread use in inhibiting lipid oxidation. In this study, we present a novel and effective approach to address this limitation by developing a naringenin-phospholipid complex (NGE-PC COM). Comprehensive analytical techniques including Fourier transform infrared (FTIR), differential scanning calorimetry (DSC), and X-ray diffraction (XRD) were employed to confirm the formation of the NGE-PC COM and elucidate the interaction mechanism between NGE and phospholipids molecules. Notably, the oil-solubility of NGE was significantly enhanced by approximately 2700-fold when formulated as a phospholipid complex in soybean oil. The improved oil-solubility of NGE-PC COM enabled effective inhibition of oil thermal oxidation under high temperature conditions. Generally, this investigation proposed a novel and promising strategy for employing flavanones with strong antioxidant activities to enhance the thermal oxidative stability of edible oil during heating processes.


Assuntos
Flavanonas , Fosfolipídeos , Fosfolipídeos/química , Óleo de Soja , Antioxidantes , Calefação , Flavanonas/química , Solubilidade , Estresse Oxidativo , Varredura Diferencial de Calorimetria , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Difração de Raios X
2.
J Tradit Chin Med ; 44(1): 54-62, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38213239

RESUMO

OBJECTIVE: To prepare aloe-emodin solid dispersion (AE-SD) and determine the metabolic process of AE and AE-SD in vivo. METHODS: AE-SD was prepared viasolvent evaporation or solvent melting using PEG-6000 and PVP-K30 as carriers. Thermogravimetric analysis, X-ray diffraction spectroscopy, differential scanning calorimetry, Fourier transform infrared spectroscopy and scanning electron microscopy were used to identify the physical state of AE-SD. Optimal prescriptions were screened viathe dissolution degree determination method. Using Phoenix software, AE suspension and AE-SD were subjected to a pharmacokinetic comparison study analyzing the alteration of behavior in vivo after AE was prepared as a solid dispersion. Acute toxicity was assessed in mice, and the physiological toxicity was used as the determination criterion for toxicity. RESULTS: AE-SD showed that AE existed in the carrier in an amorphous state. Compared with polyethylene glycol, polyvinylpyrrolidone (PVP) inhibited AE crystallization, causing the drug to transform from a dense crystalline state to an amorphous form and increasing the degree of drug dispersion. Therefore, it was more suitable as a carrier material for AE-SD. The addition of poloxamer (POL) was more beneficial to the stability of solid dispersions and could reduce the amount of PVP. The dissolution test confirmed that the optimal ratio of AE to the composite vector AE-PVP-POL was 1:2:2, and its dissolution effect was also optimal. Based on the pharmacokinetic comparison, the drug absorption was faster and quickly reached the peak of blood drug concentration in AE-SD compared to AE, the Cmax of AE-SD was greater than that of AE, and t1/2 and mean residence time of AE-SD were less than AE. The results showed that the drug metabolism in AE-SD was better, and the residence time was shorter. The toxicology study showed that both AE and AE-SD had no toxicity. CONCLUSION: This paper established that the solubility of the drug could be increased after preparing a solid dispersion, as demonstrated by in vitro dissolution experiments. In vivo pharmacokinetics studies confirmed that AE-SD could improve the bioavailability of AE in vivo, providing a new concept for the research and development of AE preparations.


Assuntos
Aloe , Emodina , Camundongos , Animais , Difração de Raios X , Povidona/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Poloxâmero
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 310: 123922, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38295589

RESUMO

The fruit of Crataegus sp. is known as "Shanzha (SZ)" in China and is widely used in the food, beverage, and traditional Chinese medicine (TCM) industries. SZ usually requires thermal processing to reduce the irritation of its acidity to the gastric mucosa. Different processed products of SZ resulting from thermal processing have different or even opposite functions in clinical applications. In addition, 5-hydroxymethylfurfural (5-HMF) intermediates produced during thermal processing are carcinogenic to humans. Therefore, the aim of this study was to explore a rapid and accurate method by Fourier transform infrared spectroscopy (FT-IR) for the identification of different processed products and the determination of 5-HMF in extracts. In qualitative identification, a three-stage infrared spectroscopy identification method (raw spectra, the second derivative spectra, and two-dimensional correlation (2DCOS) spectra) was developed to distinguish different processed products of SZ step by step. In quantitative determination, partial least squares regression combined with different variable selection methods, especially the 2DCOS method, was applied to determine the 5-HMF content. The results show that temperature-induced 2DCOS synchronous spectra can effectively identify different processed products of SZ by shape, intensity, and position of auto-peaks or cross-peaks, and the variables selected by power spectra from concentration-induced 2DCOS synchronous spectra have better prediction ability for 5-HMF compared to full variables. The above results demonstrate that 2D-COS analysis is a potential tool in qualitative and quantitative analysis, which can improve sample identification accuracy and determination capabilities. This study not only establishes a rapid and accurate method for the identification of different processed products but also provides a practical reference for food safety and the efficient use of TCM.


Assuntos
Crataegus , Frutas , Humanos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Espectrofotometria Infravermelho/métodos , Medicina Tradicional Chinesa
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 310: 123848, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38266602

RESUMO

Gentian, an herb resource known for its antioxidant properties, has garnered significant attention. However, existing methods are time-consuming and destructive for assessing the antioxidant activity in gentian root samples. In this study, we propose a method for swiftly predicting the antioxidant activity of gentian root using FT-IR spectroscopy combined with chemometrics. We employed machine learning and deep learning models to establish the relationship between FT-IR spectra and DPPH free radical scavenging activity. The results of model fitting reveal that the deep learning model outperforms the machine learning model. The model's performance was enhanced by incorporating the Double-Net and residual connection strategy. The enhanced model, named ResD-Net, excels in feature extraction and also avoids gradient vanishing. The ResD-Net model achieves an R2 of 0.933, an RMSE of 0.02, and an RPD of 3.856. These results support the accuracy and applicability of this method for rapidly predicting antioxidant activity in gentian root samples.


Assuntos
Antioxidantes , Gentiana , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Extratos Vegetais
5.
Int J Biol Macromol ; 260(Pt 2): 129546, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38246461

RESUMO

Present investigation deals with the synthesis of psyllium based copolymeric hydrogels and evaluation of their physiochemical and biomedical properties. These copolymers have been prepared by grafting of poly(vinyl phosphonic acid) (poly (VPA)) and poly(acrylamide) (poly(AAm)) onto psyllium in the presence of crosslinker N,N-methylene bis acrylamide (NNMBA). These copolymers [psyllium-poly(VPA-co-AAm)-cl-NNMBA] were characterized by field emission-scanning electron micrographs (FE-SEM), electron dispersion X-ray analysis (EDAX), Atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR), 13C-nuclear magnetic resonance (NMR), X-ray diffraction (XRD), and thermogravimetric analysis (TGA)- differential thermal analysis (DTG). FESEM, AFM and XRD demonstrated heterogeneous morphology with a rough surface and an amorphous nature. Diffusion of ornidazole occurred with a non-Fickian diffusion mechanism, and the release profile data was fitted in the Korsemeyer-Peppas kinetic model. Biochemical analysis of hydrogel properties confirmed the blood-compatible nature during blood-polymer interactions and revealed haemolysis value 3.95 ± 0.05 %. The hydrogels exhibited mucoadhesive character during biomembrane-polymer interactions and demonstrated detachment force = 99.0 ± 0.016 mN. During 2,2-diphenyl-1-picrylhydrazyl reagent (DPPH) assay, free radical scavenging was observed 37.83 ± 3.64 % which illustrated antioxidant properties of hydrogels. Physiological and biomedical properties revealed that these hydrogels could be explored for drug delivery uses.


Assuntos
Acrilamida , Ácidos Fosforosos , Psyllium , Acrilamida/química , Psyllium/química , Hidrogéis/química , Acrilamidas/química , Polímeros/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Concentração de Íons de Hidrogênio
6.
J Biomol Struct Dyn ; 42(3): 1319-1335, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37054451

RESUMO

A new binary charge transfer (CT) complex between imidazole (IMZ) and oxyresveratrol (OXA) was synthesized and characterized experimentally and theoretically. The experimental work was carried out in solution and solid state in selected solvents such as chloroform (CHL), methanol (Me-OH), ethanol (Et-OH), and acetonitrile (AN). The newly synthesized CT complex (D1) has been characterized by various techniques such as UV-visible spectroscopy, FTIR, 1H-NMR, and powder-XRD. The 1:1 composition of D1 is confirmed by Jobs' method of continuous variation and spectrophotometric (at λmax 554 nm) methods at 298 K. The infrared spectra of D1 confirmed the existence of proton transfer hydrogen bond beside charge transfer interaction. These findings indicate that the cation and anion are joined together by the weak hydrogen bonding as N+-H-O-. Reactivity parameters strongly recommended that IMZ behaves as a good electron donor and OXA an efficient electron acceptor. Density functional theory (DFT) computations with basis set B3LYP/6-31G (d,p) was applied to support the experimental results. TD-DFT calculations gives HOMO (-5.12 eV) → LUMO (-1.14 eV) electronic energy gap (ΔE) to be 3.80 eV. The bioorganic chemistry of D1 was well established after antioxidant, antimicrobial, and toxicity screening in Wistar rat. The type of interactions between HSA and D1 at the molecular level was studied through fluorescence spectroscopy. Binding constant along with the type of quenching mechanism, was investigated through the Stern-Volmer equation. Molecular docking demonstrated that D1 binds perfectly with human serum albumin and EGFR (1M17) and exposes free energy of binding (FEB) values of -295.2 and -283.3 kcal/mol, respectively. The D1 fits successfully into the minor groove of HAS and 1M17, the results of molecular docking show that the D1 binds perfectly with the HAS and 1M17, the higher value of binding energy shows stronger interaction between HAS and 1M17 with D1. Our synthesized complex shows good binding results with HAS compared to 1M17.Communicated by Ramaswamy H. Sarma.


Assuntos
Imidazóis , Extratos Vegetais , Estilbenos , Tomografia Computadorizada por Raios X , Animais , Ratos , Humanos , Simulação de Acoplamento Molecular , Ratos Wistar , Imidazóis/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
7.
Food Chem ; 438: 138029, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38006696

RESUMO

Food fraud, along with many challenges to the integrity and sustainability, threatens the prosperity of businesses and society as a whole. Tea is the second most commonly consumed non-alcoholic beverage globally. Challenges to tea authenticity require the development of highly efficient and rapid solutions to improve supply chain transparency. This study has produced an innovative workflow for black tea geographical indications (GI) discrimination based on non-targeted spectroscopic fingerprinting techniques. A total of 360 samples originating from nine GI regions worldwide were analysed by Fourier Transform Infrared (FTIR) and Near Infrared spectroscopy. Machine learning algorithms (k-nearest neighbours and support vector machine models) applied to the test data greatly improved the GI identification achieving 100% accuracy using FTIR. This workflow will provide a low-cost and user-friendly solution for on-site and real-time determination of black tea geographical origin along supply chains.


Assuntos
Camellia sinensis , Chá , Chá/química , Fluxo de Trabalho , Camellia sinensis/química , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Aprendizado de Máquina , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
8.
Molecules ; 28(21)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37959713

RESUMO

The dried roots of the perennial herb Angelica sinensis (Oliv.) Diels (AS) are commonly used as medicinal and edible resources. In commercial planting, early bolting and flowering (EB) of ca. 60% in the medicine formation period reduces root yield and quality, becoming a significant bottleneck in agricultural production. In the cultivation process, summer bolting (SB) occurs from June to July, and autumn bolting (AB) occurs in September. The AB root is often mistaken for the AS root due to its similar morphological characteristics. Few studies have involved whether the root of AB could be used as herbal medicine. This study explored and compared the accumulation dynamics of primary and secondary metabolites in AS and EB roots during the vegetative growth stage (from May to September) by light microscopy, ultraviolet spectrometry, and HPLC methods. Under a microscope, the amount of free starch granules and oil chamber in the AS root increased. On the contrary, they decreased further from EB-Jul to EB-Sep. By comparison, the wall of the xylem vessel was slightly thickened and stacked, and the cell walls of parenchyma and root cortex tissue were thickened in the EB root. Early underground bolting reduces soluble sugar, soluble protein, free amino acids, total C element, total N element, ferulic acid, and ligustilide accumulation, accompanied by the lignification of the root during the vegetative growth stage. Furthermore, a total of 55 root samples from different bolting types of AS root (29 samples), SB root (14 samples), and AB root (12 samples) were collected from Gansu Province during the harvesting period (October). The later the bolting occurred, the less difference there was between unbolted and bolted roots in terms of morphological appearance and efficacy components. Fourier transform infrared spectroscopy with the attenuated total reflection mode (ATR-FTIR) provides a "holistic" spectroscopic fingerprinting of all compositions in the tested sample. The ATR-FTIR spectrum of the AB root was similar to that of the AS root. However, the number and location of absorption peaks in the spectra of SB were different, and only one strong absorption peak at 1021 cm-1 was regarded as the characteristic peak of C-O stretching vibration in lignin. The ATR-FTIR spectra can be effectively differentiated based on their various characteristics using orthogonal partial least squares discrimination analysis (OPLS-DA). Results were assessed using multiple statistical techniques, including Spearman's correlation, principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA), and OPLS-DA. Among these methods, the ATR-FTIR data demonstrated the most effective outcomes in differentiating between viable and non-viable roots for their application in herbal medicine. Essential substances are ferulic acid and flavonoid, which are much more abundant in the AB root. It provides a material basis for the pharmacological action of the AB roots and a theoretical basis for improving their availability.


Assuntos
Angelica sinensis , Plantas Medicinais , Angelica sinensis/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Quimiometria , Extratos Vegetais , Análise dos Mínimos Quadrados
9.
Molecules ; 28(19)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37836721

RESUMO

Brazil nut oil is highly valued in the food, cosmetic, chemical, and pharmaceutical industries, as well as other sectors of the economy. This work aims to use the Fourier transform infrared (FTIR) technique associated with partial least squares regression (PLSR) and principal component analysis (PCA) to demonstrate that these methods can be used in a prior and rapid analysis in quality control. Natural oils were extracted and stored for chemical analysis. PCA presented two groups regarding the state of degradation, subdivided into super-degraded and partially degraded groups in 99.88% of the explained variance. The applied PLS reported an acidity index (AI) prediction model with root mean square error of calibration (RMSEC) = 1.8564, root mean square error of cross-validation (REMSECV) = 4.2641, root mean square error of prediction (RMSEP) = 2.1491, R2cal (calibration correlation coefficient) equal to 0.9679, R2val (validation correlation coefficient) equal to 0.8474, and R2pred (prediction correlation coefficient) equal to 0, 8468. The peroxide index (PI) prediction model showed RMSEC = 0.0005, REMSECV = 0.0016, RMSEP = 0.00079, calibration R2 equal to 0.9670, cross-validation R2 equal to 0.7149, and R2 of prediction equal to 0.9099. The physical-chemical analyses identified that five samples fit in the food sector and the others fit in other sectors of the economy. In this way, the preliminary monitoring of the state of degradation was reported, and the prediction models of the peroxide and acidity indexes in Brazil nut oil for quality control were determined.


Assuntos
Bertholletia , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Quimiometria , Óleos de Plantas/análise , Análise dos Mínimos Quadrados , Peróxidos
10.
Spectrochim Acta A Mol Biomol Spectrosc ; 303: 123228, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37579664

RESUMO

Despite the invaluable role of transition metals in every living organism, it should be remembered that failure to maintain the proper balance and exceed the appropriate dose may have the opposite effect. In the era of such a popular and propagated need for supplementation in the media, one should bear in mind the harmful effects that may become the result of improper and excessive intake of transition metals. This article establishes the feasibility of Raman (RS) and Fourier-transform infrared (FT-IR) spectroscopic imaging at the single-cell level to investigate the cellular response to various transition metals. These two non-destructive and perfectly complementary methods allow for in-depth monitoring of changes taking place within the cell under the influence of the agent used. HepG2 liver carcinoma cells were exposed to chromium, iron, cobalt, molybdenum, and nickel at 1 and 2 mM concentrations. Spectroscopic results were further supported by biological evaluation of selected caspases concentration. The caspase- 3, 6, 8, 9, and 12 concentrations were determined with the use of the enzyme-linked immunosorbent assay (ELISA) method. This study shows the induction of apoptosis in the intrinsic pathway by all studied transition metals. Cellular metabolism alterations are induced by mitochondrial metabolism changes and endoplasmic reticulum (ER) metabolism variations. Moreover, nickel induces not only the intrinsic pathway of apoptosis but also the extrinsic pathway of this process.


Assuntos
Carcinoma , Níquel , Humanos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Apoptose , Fígado
11.
Molecules ; 28(12)2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37375216

RESUMO

Virgin coconut oil (VCO) is a functional food with important health benefits. Its economic interest encourages fraudsters to deliberately adulterate VCO with cheap and low-quality vegetable oils for financial gain, causing health and safety problems for consumers. In this context, there is an urgent need for rapid, accurate, and precise analytical techniques to detect VCO adulteration. In this study, the use of Fourier transform infrared (FTIR) spectroscopy combined with multivariate curve resolution-alternating least squares (MCR-ALS) methodology was evaluated to verify the purity or adulteration of VCO with reference to low-cost commercial oils such as sunflower (SO), maize (MO) and peanut (PO) oils. A two-step analytical procedure was developed, where an initial control chart approach was designed to assess the purity of oil samples using the MCR-ALS score values calculated on a data set of pure and adulterated oils. The pre-treatment of the spectral data by derivatization with the Savitzky-Golay algorithm allowed to obtain the classification limits able to distinguish the pure samples with 100% of correct classifications in the external validation. In the next step, three calibration models were developed using MCR-ALS with correlation constraints for analysis of adulterated coconut oil samples in order to assess the blend composition. Different data pre-treatment strategies were tested to best extract the information contained in the sample fingerprints. The best results were achieved by derivative and standard normal variate procedures obtaining RMSEP and RE% values in the ranges of 1.79-2.66 and 6.48-8.35%, respectively. The models were optimized using a genetic algorithm (GA) to select the most important variables and the final models in the external validations gave satisfactory results in quantifying adulterants, with absolute errors and RMSEP of less than 4.6% and 1.470, respectively.


Assuntos
Contaminação de Alimentos , Óleos de Plantas , Óleo de Coco , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Análise de Fourier , Contaminação de Alimentos/análise , Óleos de Plantas/análise , Análise dos Mínimos Quadrados , Azeite de Oliva/análise
12.
Sensors (Basel) ; 23(9)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37177451

RESUMO

Soybean oil produces harmful substances after long durations of frying. A rapid and nondestructive identification approach for soybean oil was proposed based on photoacoustic spectroscopy and stacking integrated learning. Firstly, a self-designed photoacoustic spectrometer was built for spectral data collection of soybean oil with various frying times. At the same time, the actual free fatty acid content and acid value in soybean oil were measured by the traditional titration experiment, which were the basis for soybean oil quality detection. Next, to eliminate the influence of noise, the spectrum from 1150 cm-1 to 3450 cm-1 was selected to remove noise by ensemble empirical mode decomposition. Then three dimensionality reduction methods of principal component analysis, successive projection algorithm, and competitive adaptive reweighting algorithm were used to reduce the dimension of spectral information to extract the characteristic wavelength. Finally, an integrated model with three weak classifications was used for soybean oil detection by stacking integrated learning. The results showed that three obvious absorption peaks existed at 1747 cm-1, 2858 cm-1, and 2927 cm-1 for soluble sugars and unsaturated oils, and the model based on stacking integrated learning could improve the classification accuracy from 0.9499 to 0.9846. The results prove that photoacoustic spectroscopy has a good detection ability for edible oil quality detection.


Assuntos
Óleos de Plantas , Óleo de Soja , Óleo de Soja/análise , Óleo de Soja/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Óleos de Plantas/análise
13.
Appl Spectrosc ; 77(7): 774-785, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37101402

RESUMO

Herbal powder preparations (HPPs) are common forms of traditional medicine made by blending the powder of two or more ingredients. The first step to ensure the safety and efficacy of HPPs is to confirm the prescribed ingredients and screen the abnormal ingredients. With the help of attenuated total reflection Fourier transform infrared spectroscopy (ATR FT-IR) imaging or mapping, the particles of different ingredients in an HPP sample can be measured individually. In this way, the overlapped absorption signals of different ingredients in the ATR FT-IR spectrum of the bulk sample can be isolated in the ATR FT-IR spectra of the microscopic particles, which leads to the substantial increase of the specificity and sensitivity of the infrared spectral identification method. The characteristic particles of each ingredient can be identified by the objective comparison of the microscopic ATR FT-IR spectra against the reference spectra based on the correlation coefficients. Since the ATR FT-IR imaging or mapping tests of HPPs are free of the separation preprocess, multiple organic and inorganic ingredients are able to be recognized by a single identification procedure simultaneously rather than by different separation and identification procedures. As an example, the ATR FT-IR mapping method was used in this research to successfully identify three prescribed ingredients and two abnormal ingredients in oral ulcer pulvis, which is a classic HPP for oral ulcer in traditional Chinese medicine. The results show the feasibility of the ATR FT-IR microspectroscopic identification method for the objective and simultaneous identification of the prescribed and abnormal ingredients of HPPs.


Assuntos
Úlceras Orais , Humanos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Pós , Análise de Fourier
14.
Food Chem ; 419: 136055, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37027973

RESUMO

Fourier transform infrared (FTIR) spectroscopy is established as an effective and fast method for the confirmation of the authenticity of food and among other, edible oils. However, no standard procedure is available for applying preprocessing as a vital step in obtaining accurate results from spectra. This study proposes a methodological approach to preprocessing FTIR spectra of sesame oil adulterated with vegetable oils (canola oil, corn oil, and sunflower oil). The primary preprocessing methods investigated are orthogonal signal correction (OSC), standard normal variate transformation (SNV), and extended multiplicative scatter correction (EMSC). Other preprocessing methods are used both as standalone methods and in combination with the primary preprocessing methods. The preprocessing results are compared using partial least squares regression (PLSR). OSC alone or with detrending were the most accurate in predicting the adulteration level of sesame oil, with a maximum coefficient of prediction (R2p) range of 0.910 to 0.971 for different adulterants.


Assuntos
Contaminação de Alimentos , Óleo de Gergelim , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Análise de Fourier , Contaminação de Alimentos/análise , Óleos de Plantas/química , Análise dos Mínimos Quadrados
15.
Molecules ; 28(5)2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36903631

RESUMO

INTRODUCTION: Medulloblastoma (MB) is the most common malignant tumor of the central nervous system in childhood. FTIR spectroscopy provides a holistic view of the chemical composition of biological samples, including the detection of molecules such as nucleic acids, proteins, and lipids. This study evaluated the applicability of FTIR spectroscopy as a potential diagnostic tool for MB. MATERIALS AND METHODS: FTIR spectra of MB samples from 40 children (boys/girls: 31/9; age: median 7.8 years, range 1.5-21.5 years) treated in the Oncology Department of the Children's Memorial Health Institute in Warsaw between 2010 and 2019 were analyzed. The control group consisted of normal brain tissue taken from four children diagnosed with causes other than cancer. Formalin-fixed and paraffin-embedded tissues were sectioned and used for FTIR spectroscopic analysis. The sections were examined in the mid-infrared range (800-3500 cm-1) by ATR-FTIR. Spectra were analysed using a combination of principal component analysis, hierarchical cluster analysis, and absorbance dynamics. RESULTS: FTIR spectra in MB were significantly different from those of normal brain tissue. The most significant differences related to the range of nucleic acids and proteins in the region 800-1800 cm-1. Some major differences were also revealed in the quantification of protein conformations (α-helices, ß-sheets, and others) in the amide I band, as well as in the absorbance dynamics in the 1714-1716 cm-1 range (nucleic acids). It was not, however, possible to clearly distinguish between the various histological subtypes of MB using FTIR spectroscopy. CONCLUSIONS: MB and normal brain tissue can be distinguished from one another to some extent using FTIR spectroscopy. As a result, it may be used as a further tool to hasten and enhance histological diagnosis.


Assuntos
Neoplasias Cerebelares , Meduloblastoma , Ácidos Nucleicos , Masculino , Criança , Feminino , Humanos , Lactente , Pré-Escolar , Adolescente , Adulto Jovem , Adulto , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Proteínas
16.
Int J Cosmet Sci ; 45(4): 444-457, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36987749

RESUMO

BACKGROUND: The employment of Fourier transforms infrared (FT-IR) spectroscopy combined with chemometrics for determination and quantification of lard in a binary blend with palm oil in a cosmetic soap formulations. OBJECTIVE: To determine and quantify lard as an adulterant in a binary blend with palm oil in a cosmetic soap formulations by FT-IR and multivariate analysis. METHODS: Fatty acids in lard, palm oil and binary blends were extracted via liquid-liquid extraction and were subjected to FTIR spectrometry, combined with principal component analysis (PCA) and discriminant analysis (DA) for the classification of lard in cosmetic soap formulations via two DA models: Model A (percentage of lard in cosmetic soap) and Model B (porcine and non-porcine cosmetic soap). Linear regression (MLR), partial least square regression (PLS-R) and principal components regression (PCR) were used to assess the degree of adulteration of lard in the cosmetic soap. FINDINGS: The FTIR spectrum of palm oil slightly differed from that of lard at the wavenumber range of 1453 cm -1 and 1415 cm -1 in palm oil and lard, respectively, indicating the bending vibrations of CH2 and CH3 aliphatic groups and OH carboxyl group respectively. Both of the DA models could accurately classify 100% of cosmetic soap formulations. Nevertheless, less than 100% of verification value was obtained when it was further used to predict the unknown cosmetic soap sample suspected of containing lard or a different percentage of lard. The PCA for Model A and Model B explained a similar cumulative variability (CV) of 92.86% for the whole dataset. MLR and PCR showed the highest determination coefficient (R2) of 0.996, and the lowest relative standard error (RSE) and mean square error (MSE), indicating that both regression models were effective in quantifying the lard adulterant in cosmetic soap. CONCLUSION: FTIR spectroscopy coupled with chemometrics with DA, PCA and MLR or PCR can be used to analyse the presence of lard and quantify its percentage in cosmetic soap formulations.


CONTEXTE: Combinée à la chimiométrie, la spectroscopie infrarouge à transformée de Fourier (SI-TF) permet de déterminer et de quantifier la présence du saindoux dans un mélange binaire avec de l'huile de palme parmi des formulations de savon cosmétique. OBJECTIF: Déterminer et quantifier le saindoux comme adultérant dans un mélange binaire avec de l'huile de palme parmi des formulations de savon cosmétique par SI-TF et analyse multivariée. MÉTHODES: Les acides gras dans le saindoux, l'huile de palme et les mélanges binaires ont été extraits par extraction liquide-liquide, puis ont été soumis à une SI-TF. Ils ont également fait l'objet d'une analyse en composantes principales (ACP) et d'une analyse discriminante (AD) pour la classification du saindoux dans les formulations de savons cosmétiques via deux modèles d'AD : le modèle A (pourcentage de saindoux dans le savon cosmétique) et le modèle B (savon cosmétique de porc et non de porc). Le degré d'altération du saindoux dans le savon cosmétique a été évalué selon une régression linéaire (régression L), une régression des moindres carrés partiels (régression PLS) et une régression sur composantes principales (régression CP). RÉSULTATS: Le spectre SI-TF de l'huile de palme différait légèrement de celui du saindoux sur la plage de nombre d'ondes de 1 453 cm −1 et 1 415 cm −1 dans l'huile de palme et le saindoux, respectivement, et indiquait les vibrations de flexion des groupes aliphatiques CH2 et CH3, et du groupe carboxyle OH, respectivement. Les deux modèles d'AD ont permis de classer avec précision 100 % des formulations de savon cosmétique. Néanmoins, la valeur de vérification obtenue s'est avérée inférieure à 100 % une fois les modèles utilisés pour prédire l'échantillon de savon cosmétique inconnu suspecté de contenir du saindoux ou un pourcentage de saindoux différent. L'ACP du modèle A et du modèle B expliquait une variabilité cumulée (VC) similaire de 92,86 % pour l'ensemble de l'ensemble des données. La régression L et la régression PLS ont montré le coefficient de détermination le plus élevé (R2), soit 0,996, ainsi que l'erreur type relative (ETR) et l'erreur carrée moyenne (EMM) les plus faibles, indiquant que les deux modèles de régression ont été efficaces pour quantifier le saindoux adultérant dans le savon cosmétique. CONCLUSION: Couplée à la chimiométrie avec une AD, une ACP et une régression L ou une régression PLS, la SI-TF permet d'analyser la présence de saindoux et de quantifier son pourcentage dans les formulations de savon cosmétique.


Assuntos
Gorduras na Dieta , Sabões , Animais , Suínos , Óleo de Palmeira , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Gorduras na Dieta/análise , Análise dos Mínimos Quadrados
17.
Spectrochim Acta A Mol Biomol Spectrosc ; 293: 122468, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36787676

RESUMO

X-ray fluorescence (XRF) and Fourier transform infrared (FTIR) microscopy techniques are now considered popular for rapid and label-free complementary spectrochemical analysis of chemical elements and molecular systems in biological specimens. The morphological heterogeneity but also the inhomogeneities associated with the thickness/density of biological samples demonstrate challenges for the quantitative XRF microimaging. Therefore, in the present work, we proposed for the first time the application of the total absorbance under the FTIR spectra as a mass surface correction procedure for two-dimensional (2D) XRF microimaging of tissues. We also evaluated the equivalence of the developed correction method based on total absorbance of FTIR spectra with the proposed approaches based on incoherent scattering of primary X-rays as well as on the membrane Si-Kα transmission signal, on the example of selected rat organ tissues. Thin cryo-sections taken from various organs of Wistar rats were deposited on silicon nitride membranes (Si3N4). The FTIR microscopy studies were performed to collect infrared absorption spectra, used then for the determination of total absorbance values in the selected areas of tissue samples. In turn, hard X-ray imaging based on synchrotron radiation allowed the determination of characteristic radiation intensities of the elements detectable from the tissue, as well as the characteristic radiation of the membrane Si and incoherently scattered X-ray photons (Compton scattering). The latter served as correction factors for the surface mass of the sample alongside the FTIR total absorbance. The qualitative and quantitative analyses showed a high agreement between the results of elemental surface mass correction using total absorbance under FTIR spectra of tissues with those obtained using surface mass correction factors determined directly from XRF spectra. Therefore, the proposed procedure is a good alternative in cases where the surface mass effect of the sample cannot be eliminated based on the information provided directly by the XRF spectrum, as in the case of using polymer films as sample support. We have also proposed a procedure for synchronizing SRXRF and FTIR images, not limited to visual inspection of imaging/mapping data, but also enabling quantitative analysis. We found that the total absorbance determined from FTIR spectra can be successfully used as a correction factor for eliminating the surface mass effect in XRF microimaging of thin freeze-fried tissues and therefore to obtain the surface mass-independent elemental quantities. The proposed approach for 2D-FTIR-XRF analysis can also be a powerful and versatile tool for fostering a correlation and co-localization analysis to search for common distribution patterns between molecular arrangements and chemical elements.


Assuntos
Microscopia , Ratos , Animais , Raios X , Análise de Fourier , Ratos Wistar , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
18.
Artigo em Inglês | MEDLINE | ID: mdl-36735915

RESUMO

Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy is an essential tool for the determination of mineral chelation in proteinates used as animal feed additives. With advances in feed formulations and stringent regulatory requirements to confirm the degree of chelation in animal feed supplements, the aim of this work was to further refine the method and demonstrate its applicability to newly formulated, higher concentration (20% (w/w)) manganese and zinc proteinates of industrial relevance. Calibration and prediction models were created using multivariate analysis with R2 > 0.99 for both mineral proteinates tested. Root mean square error of calibration (RMSEC) values were found to be 1.7% and 2.1% respectively for the manganese and zinc products. The refined method produced reliable data for various applications with excellent specificity, selectivity, and reproducibility. Consequently, the proposed refinements are expected to be of interest from a regulatory perspective and for those in the feed industry for conclusively determining the percentage chelation of minerals in high concentration proteinate products.


Assuntos
Manganês , Zinco , Animais , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Reprodutibilidade dos Testes , Minerais , Ração Animal/análise , Análise dos Mínimos Quadrados
19.
Molecules ; 28(1)2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36615530

RESUMO

Fourier-Transform mid-infrared (FTIR) spectroscopy offers a strong candidate screening tool for rapid, non-destructive and early detection of unauthorized virgin olive oil blends with other edible oils. Potential applications to the official anti-fraud control are supported by dozens of research articles with a "proof-of-concept" study approach through different chemometric workflows for comprehensive spectral analysis. It may also assist non-targeted authenticity testing, an emerging goal for modern food fraud inspection systems. Hence, FTIR-based methods need to be standardized and validated to be accepted by the olive industry and official regulators. Thus far, several literature reviews evaluated the competence of FTIR standalone or compared with other vibrational techniques only in view of the chemometric methodology, regardless of the inherent characteristics of the product spectra or the application scope. Regarding authenticity testing, every step of the methodology workflow, and not only the post-acquisition steps, need thorough validation. In this context, the present review investigates the progress in the research methodology on FTIR-based detection of virgin olive oil adulteration over a period of more than 25 years with the aim to capture the trends, identify gaps or misuses in the existing literature and highlight intriguing topics for future studies. An extensive search in Scopus, Web of Science and Google Scholar, combined with bibliometric analysis, helped to extract qualitative and quantitative information from publication sources. Our findings verified that intercomparison of literature results is often impossible; sampling design, FTIR spectral acquisition and performance evaluation are critical methodological issues that need more specific guidance and criteria for application to product authenticity testing.


Assuntos
Olea , Projetos de Pesquisa , Azeite de Oliva/análise , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Quimiometria , Óleos de Plantas/química , Contaminação de Alimentos/análise
20.
Micron ; 165: 103396, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36521319

RESUMO

A substantial part of our written heritage is threatened by the fact that much of it has been written using iron-gall ink (IGI). One such example is the documents of the Portuguese Inquisition Tribunals, held by the Arquivo Nacional da Torre do Tombo. Here we present the first systematic analytical approach, using SEM/EDS, µ-FT-IR-ATR and µ-Raman techniques, to characterise fragments from historical records of the Inquisition Tribunals of Évora, Lisboa and Coimbra from the 16th to 18th centuries. The writing ink was identified as IGI, providing complementary compositional data and establishing differences between various formulations of the ink. Additionally, the deleterious effects of the inks-associated degradation phenomena were highlighted. This work allowed understand the writing inks used by this Portuguese institution.


Assuntos
Tinta , Ferro , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Portugal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA