Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 271
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Pharmacol Biochem Behav ; 229: 173589, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37348609

RESUMO

Schizophrenia is a severe and debilitating psychiatric disorder characterized by early cognitive deficits, emotional and behavioral abnormalities resulted by a dysfunctional gene x environment interaction. Genetic and epigenetic abnormalities in cortical parvalbumin-positive GABAergic interneurons lead to alterations in glutamate-mediated excitatory neurotransmission, synaptic plasticity, and neuronal development. Epigenetic alterations during pregnancy or early phases of postnatal life are associated with schizophrenia vulnerability as well as inflammatory processes which are at the basis of brain pathology. An epigenetic animal model of schizophrenia showed specific changes in promoter DNA methylation activity of genes related to schizophrenia such as reelin, BDNF and GAD67, and altered expression and function of mGlu2/3 receptors in the frontal cortex. Although antipsychotic medications represent the main treatment for schizophrenia and generally show an optimal efficacy profile for positive symptoms and relatively poor efficacy for negative or cognitive symptoms, a considerable percentage of individuals show poor response, do not achieve a complete remission, and approximately 30 % of patients show treatment-resistance. Here, we explore the potential role of epigenetic abnormalities linked to metabotropic glutamate 2/3 receptors changes in expression and function as key molecular factors underlying the difference in response to antipsychotics.


Assuntos
Esquizofrenia , Animais , Feminino , Gravidez , Esquizofrenia/tratamento farmacológico , Esquizofrenia/genética , Epigênese Genética , Metilação de DNA , Ácido Glutâmico/metabolismo , Lobo Frontal/metabolismo
3.
Viruses ; 15(1)2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36680208

RESUMO

Human endogenous retroviruses (HERVs) are remnants of ancestral germline infections by exogenous retroviruses. Human endogenous retroviruses W family envelope gene (HERV-W env, also called ERVWE1), located on chromosome 7q21-22, encodes an envelope glycoprotein from the HERV-W family. Mounting evidence suggests that aberrant expression of ERVWE1 involves the etiology of schizophrenia. Moreover, the genetic and morphological studies indicate that dendritic spine deficits may contribute to the onset of schizophrenia. Here, we reported that ERVWE1 changed the density and morphology of the dendritic spine through inhibiting Wingless-type (Wnt)/c-Jun N-terminal kinases (JNK) non-canonical pathway via miR-141-3p in schizophrenia. In this paper, we found elevated levels of miR-141-3p and a significant positive correlation with ERVWE1 in schizophrenia. Moreover, serum Wnt5a and actin-related protein 2 (Arp2) levels decreased and demonstrated a significant negative correlation with ERVWE1 in schizophrenia. In vitro experiments disclosed that ERVWE1 up-regulated miR-141-3p expression by interacting with transcription factor (TF) Yin Yang 1 (YY1). YY1 modulated miR-141-3p expression by binding to its promoter. The luciferase assay revealed that YY1 enhanced the promoter activity of miR-141-3p. Using the miRNA target prediction databases and luciferase reporter assays, we demonstrated that miR-141-3p targeted Wnt5a at its 3' untranslated region (3' UTR). Furthermore, ERVWE1 suppressed the expression of Arp2 through non-canonical pathway, Wnt5a/JNK signaling pathway. In addition, ERVWE1 inhibited Wnt5a/JNK/Arp2 signal pathway through miR-141-3p. Finally, functional assays showed that ERVWE1 induced the abnormalities in hippocampal neuron morphology and spine density through inhibiting Wnt/JNK non-canonical pathway via miR-141-3p in schizophrenia. Our findings indicated that miR-141-3p, Wnt5a, and Arp2 might be potential clinical blood-based biomarkers or therapeutic targets for schizophrenia. Our work also provided new insight into the role of ERVWE1 in schizophrenia pathogenesis.


Assuntos
MicroRNAs , Esquizofrenia , Humanos , Espinhas Dendríticas , Regulação da Expressão Gênica , Sistema de Sinalização das MAP Quinases , MicroRNAs/genética , Esquizofrenia/genética
4.
J Transl Med ; 20(1): 501, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36329495

RESUMO

BACKGROUND: Previous studies on European (EUR) samples have obtained inconsistent results regarding the genetic correlation between type 2 diabetes mellitus (T2DM) and Schizophrenia (SCZ). A large-scale trans-ethnic genetic analysis may provide additional evidence with enhanced power. OBJECTIVE: We aimed to explore the genetic basis for both T2DM and SCZ based on large-scale genetic analyses of genome-wide association study (GWAS) data from both East Asian (EAS) and EUR subjects. METHODS: A range of complementary approaches were employed to cross-validate the genetic correlation between T2DM and SCZ at the whole genome, autosomes (linkage disequilibrium score regression, LDSC), loci (Heritability Estimation from Summary Statistics, HESS), and causal variants (MiXeR and Mendelian randomization, MR) levels. Then, genome-wide and transcriptome-wide cross-trait/ethnic meta-analyses were performed separately to explore the effective shared organs, cells and molecular pathways. RESULTS: A weak genome-wide negative genetic correlation between SCZ and T2DM was found for the EUR (rg = - 0.098, P = 0.009) and EAS (rg =- 0.053 and P = 0.032) populations, which showed no significant difference between the EUR and EAS populations (P = 0.22). After Bonferroni correction, the rg remained significant only in the EUR population. Similar results were obtained from analyses at the levels of autosomes, loci and causal variants. 25 independent variants were firstly identified as being responsible for both SCZ and T2DM. The variants associated with the two disorders were significantly correlated to the gene expression profiles in the brain (P = 1.1E-9) and pituitary gland (P = 1.9E-6). Then, 61 protein-coding and non-coding genes were identified as effective genes in the pituitary gland (P < 9.23E-6) and were enriched in metabolic pathways related to glutathione mediated arsenate detoxification and to D-myo-inositol-trisphosphate. CONCLUSION: Here, we show that a negative genetic correlation exists between SCZ and T2DM at the whole genome, autosome, locus and causal variant levels. We identify pituitary gland as a common effective organ for both diseases, in which non-protein-coding effective genes, such as lncRNAs, may be responsible for the negative genetic correlation. This highlights the importance of molecular metabolism and neuroendocrine modulation in the pituitary gland, which may be responsible for the initiation of T2DM in SCZ patients.


Assuntos
Diabetes Mellitus Tipo 2 , Esquizofrenia , Humanos , Esquizofrenia/genética , Estudo de Associação Genômica Ampla/métodos , Diabetes Mellitus Tipo 2/genética , Etnicidade/genética , Hipófise , Polimorfismo de Nucleotídeo Único/genética , Predisposição Genética para Doença
5.
Neurosci Biobehav Rev ; 142: 104894, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36181926

RESUMO

Schizophrenia has been an evolutionary paradox: it has high heritability, but it is associated with decreased reproductive success. The causal genetic variants underlying schizophrenia are thought to be under weak negative selection. To unravel this paradox, many evolutionary explanations have been suggested for schizophrenia. We critically discuss the constellation of evolutionary hypotheses for schizophrenia, highlighting the lack of empirical support for most existing evolutionary hypotheses-with the exception of the relatively well supported evolutionary mismatch hypothesis. It posits that evolutionarily novel features of contemporary environments, such as chronic stress, low-grade systemic inflammation, and gut dysbiosis, increase susceptibility to schizophrenia. Environmental factors such as microbial infections (e.g., Toxoplasma gondii) can better predict the onset of schizophrenia than polygenic risk scores. However, researchers have not been able to explain why only a small minority of infected people develop schizophrenia. The new etiological synthesis of schizophrenia indicates that an interaction between host genotype, microbe infection, and chronic stress causes schizophrenia, with neuroinflammation and gut dysbiosis mediating this etiological pathway. Instead of just alleviating symptoms with drugs, the parasite x genotype x stress model emphasizes that schizophrenia treatment should focus on detecting and treating possible underlying microbial infection(s), neuroinflammation, gut dysbiosis, and chronic stress.


Assuntos
Esquizofrenia , Toxoplasma , Humanos , Esquizofrenia/genética , Disbiose/complicações , Evolução Biológica , Inflamação/complicações
6.
Mol Psychiatry ; 27(12): 5167-5176, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36100668

RESUMO

Patients with schizophrenia have consistently shown brain volumetric abnormalities, implicating both etiological and pathological processes. However, the genetic relationship between schizophrenia and brain volumetric abnormalities remains poorly understood. Here, we applied novel statistical genetic approaches (MiXeR and conjunctional false discovery rate analysis) to investigate genetic overlap with mixed effect directions using independent genome-wide association studies of schizophrenia (n = 130,644) and brain volumetric phenotypes, including subcortical brain and intracranial volumes (n = 33,735). We found brain volumetric phenotypes share substantial genetic variants (74-96%) with schizophrenia, and observed 107 distinct shared loci with sign consistency in independent samples. Genes mapped by shared loci revealed (1) significant enrichment in neurodevelopmental biological processes, (2) three co-expression clusters with peak expression at the prenatal stage, and (3) genetically imputed thalamic expression of CRHR1 and ARL17A was associated with the thalamic volume as early as in childhood. Together, our findings provide evidence of shared genetic architecture between schizophrenia and brain volumetric phenotypes and suggest that altered early neurodevelopmental processes and brain development in childhood may be involved in schizophrenia development.


Assuntos
Esquizofrenia , Humanos , Esquizofrenia/genética , Estudo de Associação Genômica Ampla , Encéfalo/patologia , Fenótipo , Tálamo , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Loci Gênicos
7.
Int J Mol Sci ; 23(16)2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-36012679

RESUMO

Symptoms of schizophrenia (SZ) typically emerge during adolescence to young adulthood, which gives a window before full-blown psychosis for early intervention. Strategies for preventing the conversion from the prodromal phase to the psychotic phase are warranted. Heterozygous (Het) Disc1 mutant mice are considered a prodromal model of SZ, suitable for studying psychotic conversion. We evaluated the preventive effect of chronic N-acetylcysteine (NAC) administration, covering the prenatal era to adulthood, on the reaction following the Amph challenge, which mimics the outbreak or conversion of psychosis, in adult Het Disc1 mice. Biochemical and morphological features were examined in the striatum of NAC-treated mice. Chronic NAC treatment normalized the Amph-induced activity in the Het Disc1 mice. Furthermore, the striatal phenotypes of Het Disc1 mice were rescued by NAC including dopamine receptors, the expression of GSK3s, MSN dendritic impairments, and striatal PV density. The current study demonstrated a potent preventive effect of chronic NAC treatment in Disc1 Het mice on the acute Amph test, which mimics the outbreak of psychosis. Our findings not only support the benefit of NAC as a dietary supplement for SZ prodromes, but also advance our knowledge of striatal dopamine receptors, PV neurons, and GSK3 signaling pathways as therapeutic targets for treating or preventing the pathogenesis of mental disorders.


Assuntos
Anfetamina , Esquizofrenia , Acetilcisteína/farmacologia , Anfetamina/farmacologia , Animais , Modelos Animais de Doenças , Dopamina/metabolismo , Feminino , Quinase 3 da Glicogênio Sintase , Humanos , Camundongos , Proteínas do Tecido Nervoso , Gravidez , Receptores Dopaminérgicos , Esquizofrenia/tratamento farmacológico , Esquizofrenia/genética , Esquizofrenia/prevenção & controle
8.
Front Neural Circuits ; 15: 769969, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34955759

RESUMO

Schizophrenia is a severe, chronic psychiatric disorder that devastates the lives of millions of people worldwide. The disease is characterized by a constellation of symptoms, ranging from cognitive deficits, to social withdrawal, to hallucinations. Despite decades of research, our understanding of the neurobiology of the disease, specifically the neural circuits underlying schizophrenia symptoms, is still in the early stages. Consequently, the development of therapies continues to be stagnant, and overall prognosis is poor. The main obstacle to improving the treatment of schizophrenia is its multicausal, polygenic etiology, which is difficult to model. Clinical observations and the emergence of preclinical models of rare but well-defined genomic lesions that confer substantial risk of schizophrenia (e.g., 22q11.2 microdeletion) have highlighted the role of the thalamus in the disease. Here we review the literature on the molecular, cellular, and circuitry findings in schizophrenia and discuss the leading theories in the field, which point to abnormalities within the thalamus as potential pathogenic mechanisms of schizophrenia. We posit that synaptic dysfunction and oscillatory abnormalities in neural circuits involving projections from and within the thalamus, with a focus on the thalamocortical circuits, may underlie the psychotic (and possibly other) symptoms of schizophrenia.


Assuntos
Síndrome de DiGeorge , Esquizofrenia , Síndrome de DiGeorge/genética , Humanos , Esquizofrenia/genética , Tálamo
9.
Lancet Psychiatry ; 8(12): 1062-1070, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34735824

RESUMO

BACKGROUND: Although studies suggest that concentrations of omega-3 and omega-6 fatty acids are lower in individuals with schizophrenia, evidence for beneficial effects of fatty acid supplementation is scarce. Therefore, in this study, we aimed to determine whether omega-3 and omega-6 fatty acid concentrations are causally related to schizophrenia. METHODS: We did a two-sample Mendelian randomisation study, using deidentified summary-level data that were publicly available. Exposure-outcome relationships were evaluated using the inverse variance weighted two-sample Mendelian randomisation method using results from genome-wide association studies (GWASs) of fatty acid concentrations and schizophrenia. GWAS results were available for European (fatty acids) and European and Asian (schizophrenia) ancestry samples. Overall age and gender information were not calculable from the summary-level GWAS results. Weighted median, weighted mode, and Mendelian randomisation Egger regression methods were used as sensitivity analyses. To address underlying mechanisms, further analyses were done using single instruments within the FADS gene cluster and ELOVL2 gene locus. FADS gene cluster and ELOVL2 gene causal effects on schizophrenia were calculated by dividing the single nucleotide polymorphism (SNP)-schizophrenia effect estimate by the SNP-fatty acid effect estimate with standard errors derived using the first term from a delta method expansion for the ratio estimate. Multivariable Mendelian randomisation was used to estimate direct effects of omega-3 fatty acids on schizophrenia, independent of omega-6 fatty acids, lipoproteins (ie, HDL and LDL), and triglycerides. FINDINGS: Mendelian randomisation analyses indicated that long-chain omega-3 and long-chain omega-6 fatty acid concentrations were associated with a lower risk of schizophrenia (eg, inverse variance weighted odds ratio [OR] 0·83 [95% CI 0·75-0·92] for docosahexaenoic acid). By contrast, there was weak evidence that short-chain omega-3 and short-chain omega-6 fatty acids were associated with an increased risk of schizophrenia (eg, inverse variance weighted OR 1·07 [95% CI 0·98-1·18] for α-linolenic acid). Effects were consistent across the sensitivity analyses and the FADS single-SNP analyses, suggesting that long-chain omega-3 and long-chain omega-6 fatty acid concentrations were associated with lower risk of schizophrenia (eg, OR 0·74 [95% CI 0·58-0·96] for docosahexaenoic acid) whereas short-chain omega-3 and short-chain omega-6 fatty acid concentrations were associated with an increased risk of schizophrenia (eg, OR 1·08 [95% CI 1·02-1·15] for α-linolenic acid). By contrast, estimates from the ELOVL2 single-SNP analyses were more imprecise and compatible with both risk-increasing and protective effects for each of the fatty acid measures. Multivariable Mendelian randomisation indicated that the protective effect of docosahexaenoic acid on schizophrenia persisted after conditioning on other lipids, although evidence was slightly weaker (multivariable inverse variance weighted OR 0·84 [95% CI 0·71-1·01]). INTERPRETATION: Our results are compatible with the protective effects of long-chain omega-3 and long-chain omega-6 fatty acids on schizophrenia, suggesting that people with schizophrenia might have difficulty converting short-chain polyunsaturated fatty acids to long-chain polyunsaturated fatty acids. Further studies are required to determine whether long-chain polyunsaturated fatty acid supplementation or diet enrichment might help prevent onset of schizophrenia. FUNDING: National Institute for Health Research Biomedical Research Centre at University Hospitals Bristol and Weston NHS Foundation Trust and the University of Bristol.


Assuntos
Ácidos Graxos Ômega-3/sangue , Ácidos Graxos Ômega-6/sangue , Esquizofrenia/sangue , Esquizofrenia/genética , Humanos , Análise da Randomização Mendeliana
10.
Eur Rev Med Pharmacol Sci ; 25(18): 5701-5724, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34604962

RESUMO

OBJECTIVE: Bipolar disorder (BD) is a severe disorder, and it is associated with an increased risk of mortality. About 25% of patients with BD have attempted and 11% have died by suicide. All these characteristics suggest that the disorders within the bipolar spectrum are a crucial public health problem. With the development of molecular genetics in recent decades, it was possible to more easily detect risk genes associated with this disorder. This study aimed at summarizing the findings of systematic reviews and meta-analyses on the topic and assessing the quality of the available evidence. MATERIALS AND METHODS: PubMed/Medline and Web of Science were searched to identify systematic reviews and meta-analyses published during 2013-2019. Standard methodology was applied to synthesize and assess the retrieved literature. RESULTS: This systematic review identifies a number of potential risk genes associated with bipolar disorder whose mechanism of action has yet to be confirmed. They are divided into several groups: 1) a list of the most significant susceptibility genetic factors associated with BD; 2) the implication of the ZNF804A gene in BD; 3) the role of genes involved in calcium signaling in BD; 4) DNA methylation in BD; 5) BD and risk suicide genes; 6) susceptibility genes for early-onset BD; 7) candidate genes common to both BD and schizophrenia; 8) genes involved in cognitive status in BD cases; 9) genes involved in structural alteration in BD brain tissue; 10) genes involved in lithium response in BD. CONCLUSIONS: Future research should concentrate on molecular mechanisms by which genetic variants play a major role in BD. Supplemental research is needed to replicate the applicable results.


Assuntos
Transtorno Bipolar/genética , Sinalização do Cálcio/genética , Metilação de DNA/genética , Genes Transgênicos Suicidas/genética , Estudos de Associação Genética , Predisposição Genética para Doença/genética , Fatores de Transcrição Kruppel-Like/genética , Humanos , Esquizofrenia/genética
11.
Eur J Pharmacol ; 909: 174383, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34332923

RESUMO

Due to its various function vasopressin has been associated with many psychiatric disorders, including schizophrenia. Our previous study confirmed that vasopressin-deficient (di/di) Brattleboro rat can be a good genetic model for schizophrenia. Our present aim was to confirm whether the treatment effects of marketed antipsychotics are similar in di/di rats to those seen in human schizophrenic patients. Chronic subcutaneous administration of aripiprazole (5 mg/kg), clozapine (1 mg/kg), haloperidol (0.1 mg/kg), olanzapine (0.3 mg/kg) or risperidone (0.25 mg/kg) was used for 15 days in control (+/+ Brattleboro) and di/di rats. Social discrimination, social avoidance and prepulse inhibition tests were conducted on day 1, 8 and 15 of the treatment. Vasopressin-deficient rats showed social memory- and sensorimotor gating deficit. All used antipsychotics successfully normalized the reduced prepulse inhibition of di/di animals. However, most were effective only after prolonged treatment. Aripiprazole, clozapine, and olanzapine normalized the social memory deficit, while the effects of haloperidol and risperidone were not unequivocal. All drugs reduced social interest to some extent both in control and in di/di animals, aripiprazole being the less implicated in this regard during the social avoidance test. The restoration of schizophrenia-like behavior by antipsychotic treatment further support the utility of the vasopressin-deficient Brattleboro rat as a good preclinical model. Reduced social interest might be a general side-effect of antipsychotics, and aripiprazole has the most favorable profile in this regard.


Assuntos
Antipsicóticos/administração & dosagem , Esquizofrenia/tratamento farmacológico , Vasopressinas/deficiência , Animais , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Humanos , Injeções Subcutâneas , Masculino , Ratos , Ratos Brattleboro , Ratos Transgênicos , Esquizofrenia/genética , Comportamento Social , Vasopressinas/genética
12.
J Pharmacol Sci ; 147(1): 9-17, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34294378

RESUMO

Schizophrenia is one of the foremost psychological illness around the world, and recent evidence shows that inflammation and oxidative stress may play a critical role in the etiology of schizophrenia. Andrographolide is a diterpenoid lactone from Andrographis paniculate, which has shown anti-inflammation and anti-oxidative effects. In this study, we explored whether andrographolide can improve schizophrenia-like behaviors through its inhibition of inflammation and oxidative stress in Phencyclidine (PCP)-induced mouse model of schizophrenia. We found that abnormal behavioral including locomotor activity, forced swimming and novel object recognition were ameliorated following andrographolide administration (5 mg/kg and 10 mg/kg). Andrographolide inhibited PCP-induced production of inflammatory cytokines, decreased p-p65, p-IκBα, p-p38 and p-ERK1/2 in the prefrontal cortex. Andrographolide significantly declined the level of MDA and GSH, as well as elevated the activity of SOD, CAT and GCH-px. In addition, andrographolide increased expression of NRF-2, HO-1 and NQO-1, promoted nuclear translocation of NRF-2 through blocking the interaction between NRF-2 and KEAP1, which may be associated with directly binding to NRF-2. Furthermore, antioxidative effects and anti-schizophrenia-like behaviors of andrographolide were compromised by the application of NRF-2 inhibitor ML385. In conclusion, these results suggested that andrographolide improved oxidative stress and schizophrenia-like behaviors induced by PCP through increasing NRF-2 pathway.


Assuntos
Diterpenos/administração & dosagem , Diterpenos/farmacologia , Epistasia Genética/efeitos dos fármacos , Epistasia Genética/genética , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fenciclidina/efeitos adversos , Fitoterapia , Esquizofrenia/tratamento farmacológico , Esquizofrenia/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Andrographis paniculata/química , Animais , Anti-Inflamatórios , Antioxidantes , Modelos Animais de Doenças , Diterpenos/isolamento & purificação , Inflamação , Masculino , Camundongos Endogâmicos ICR , Estresse Oxidativo/efeitos dos fármacos , Esquizofrenia/induzido quimicamente , Esquizofrenia/etiologia
13.
Mol Psychiatry ; 26(11): 6896-6911, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33931730

RESUMO

Genome-wide association studies (GWASs) have revealed that genetic variants at the 22q13.2 risk locus were robustly associated with schizophrenia. However, the causal variants at this risk locus and their roles in schizophrenia remain elusive. Here we identify the risk missense variant rs1801311 (located in the 1st exon of NDUFA6 gene) as likely causal for schizophrenia at 22q13.2 by disrupting binding of YY1, TAF1, and POLR2A. We systematically elucidated the regulatory mechanisms of rs1801311 and validated the regulatory effect of this missense variant. Intriguingly, rs1801311 physically interacted with NAGA (encodes the alpha-N-acetylgalactosaminidase, which is mainly involved in regulating metabolisms of glycoproteins and glycolipids in lysosome) and showed the most significant association with NAGA expression in the human brain, with the risk allele (G) associated with higher NAGA expression. Consistent with eQTL analysis, expression analysis showed that NAGA was significantly upregulated in brains of schizophrenia cases compared with controls, further supporting that rs1801311 may confer schizophrenia risk by regulating NAGA expression. Of note, we found that NAGA regulates important neurodevelopmental processes, including proliferation and differentiation of neural stem cells. Transcriptome analysis corroborated that NAGA regulates pathways associated with neuronal differentiation. Finally, we independently confirmed the association between rs1801311 and schizophrenia in a large Chinese cohort. Our study elucidates the regulatory mechanisms of the missense schizophrenia risk variant rs1801311 and provides mechanistic links between risk variant and schizophrenia etiology. In addition, this study also revealed the novel role of coding variants in gene regulation and schizophrenia risk, i.e., genetic variant in coding region of a specific gene may confer disease risk through regulating distal genes (act as regulatory variant for distal genes).


Assuntos
Esquizofrenia , Alelos , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Humanos , Mutação de Sentido Incorreto/genética , Polimorfismo de Nucleotídeo Único/genética , Esquizofrenia/genética , Fator de Transcrição YY1/genética , alfa-N-Acetilgalactosaminidase/genética , alfa-N-Acetilgalactosaminidase/metabolismo
14.
Mol Psychiatry ; 26(11): 6912-6925, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33981006

RESUMO

Reduced activity of the mediodorsal thalamus (MD) and abnormal functional connectivity of the MD with the prefrontal cortex (PFC) cause cognitive deficits in schizophrenia. However, the molecular basis of MD hypofunction in schizophrenia is not known. Here, we identified leucine-rich-repeat transmembrane neuronal protein 1 (LRRTM1), a postsynaptic cell-adhesion molecule, as a key regulator of excitatory synaptic function and excitation-inhibition balance in the MD. LRRTM1 is strongly associated with schizophrenia and is highly expressed in the thalamus. Conditional deletion of Lrrtm1 in the MD in adult mice reduced excitatory synaptic function and caused a parallel reduction in the afferent synaptic activity of the PFC, which was reversed by the reintroduction of LRRTM1 in the MD. Our results indicate that chronic reduction of synaptic strength in the MD by targeted deletion of Lrrtm1 functionally disengages the MD from the PFC and may account for cognitive, social, and sensorimotor gating deficits, reminiscent of schizophrenia.


Assuntos
Esquizofrenia , Animais , Cognição/fisiologia , Proteínas de Membrana , Camundongos , Proteínas do Tecido Nervoso/genética , Córtex Pré-Frontal , Esquizofrenia/genética , Filtro Sensorial , Tálamo
15.
Life Sci ; 277: 119417, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33794248

RESUMO

AIMS: Schizophrenia (SZ) is recognized as a neuropsychiatric disorder in humans with accelerated mortality and profound morbidity followed with impairments in social as well as vocational functioning. Though various antipsychotics are being considered as approved treatment therapy for the psychotic symptoms of SZ but they also exert adverse effects and also lack efficacy in treating full spectrum of the disorder. Spirulina platensis (blue-green algae), a nutritional supplement, constitutes a variety of multi-nutrients and possesses a large number of neuroprotective activities. Therefore, present experimental work was designed to evaluate the neuroprotective effects of spirulina in ameliorating the psychosis-like symptoms in dizocilpine-induced rat model of SZ. MATERIALS AND METHODS: The spirulina was tested as preventive and therapeutic regimen at the dose of 180 mg/kg. After pre- and post-treatment with spirulina, rats were subjected to behavioral assessments followed by biochemical and neurochemical estimations. Biomarkers including APO-E, RTN-4, TNF-α, and IL-6 were also estimated using ELISA. KEY FINDINGS: Present results showed that administration of spirulina not only improved behavioral deficits induced by dizocilpine but it also regulates neurotransmission, oligodendrocyte dysfunction and APO-E over expression. Moreover, it also restores the immune response dysfunction by reducing inflammatory cytokines. SIGNIFICANCE: Thus, from present findings it may be suggested that spirulina aids in ameliorating the psychosis-like symptoms induced by dizocilpine in animal model possibly via regulation of neurotransmission and other biomarkers that are extensively used to uncover the etiopathology of SZ. Hence, blue-green algae can be used as an effective therapy for preventive or therapeutic measures in SZ.


Assuntos
Apolipoproteínas E/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Proteínas Nogo/metabolismo , Córtex Pré-Frontal/efeitos dos fármacos , Esquizofrenia/prevenção & controle , Spirulina/fisiologia , Animais , Apolipoproteínas E/genética , Comportamento Animal/efeitos dos fármacos , Suplementos Nutricionais , Modelos Animais de Doenças , Masculino , Proteínas Nogo/genética , Estresse Oxidativo , Córtex Pré-Frontal/metabolismo , Ratos , Ratos Wistar , Esquizofrenia/genética , Esquizofrenia/metabolismo , Esquizofrenia/patologia
16.
Schizophr Res ; 230: 111-113, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32763113

RESUMO

BACKGROUND: Disrupted thalamic connectivity system, which encompasses the deficits in the thalamus and thalamocortical connectivity, is regarded to contribute to the pathophysiology of schizophrenia. Recent reports suggest the possible genetic contribution to the disrupted thalamo-prefrontal connectivity, however, research on elucidating thalamic connectivity system components, specifically the thalamic nuclei, associated with the genetic predisposition to schizophrenia has been limited. Here, we investigated the genetic aspects of thalamic nuclei-specific microstructural integrities in schizophrenia. METHODS: A total of 34 asymptomatic relatives of schizophrenia patients with high genetic loading and 33 healthy control subjects underwent diffusion tensor imaging, diffusion kurtosis imaging, and T1-weighted magnetic resonance imaging. The thalamus was segmented via a connectivity-based segmentation method using the region-of-interest masks. The microstructural integrity of each thalamic nucleus, measured by averages of the diffusion kurtosis values, was then compared between the groups. RESULTS: The volumetric and mean kurtosis values of the thalamic nuclei were intact in asymptomatic relatives of schizophrenia patients with high genetic loading. CONCLUSIONS: Our results revealed that, in the thalamic connectivity system, the genetics may hold different weights of effects on different components, and that more is given on the thalamo-prefrontal connectivity than on the thalamus. Further, the current results may add further evidence to the current literature that thalamic nuclei microstructural abnormalities present in psychosis may have state marker characteristics.


Assuntos
Transtornos Psicóticos , Esquizofrenia , Imagem de Tensor de Difusão , Humanos , Imageamento por Ressonância Magnética , Vias Neurais/diagnóstico por imagem , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/genética , Tálamo/diagnóstico por imagem
17.
Early Interv Psychiatry ; 15(3): 652-661, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32567764

RESUMO

BACKGROUND: Prepulse inhibition (PPI) is a measure of sensorimotor gating used to identify deficits in early-stage information processing and inhibitory function defects. Many studies support the presence of PPI deficits in schizophrenia patients. However, very few studies have explored PPI levels among first-degree relatives (FDR) of schizophrenia patients, and the results have been inconsistent. This review article explored PPI levels in FDR of schizophrenia patients. METHODS: We performed a systematic literature review using the PubMed, Cochrane, Embase, EBSCO and Chinese databases from inception to January 2020. A series of related factors (eg, PPI paradigm, heritability and sample characteristics) and outcomes were summarized from the literature that met the inclusion criteria. The Newcastle-Ottawa Scale was used to assess the quality of the included studies. RESULTS: A total of eight studies were eligible for systematic review after screening. A meta-analysis of the selected studies was not conducted due to the limitations of quantity and paradigm heterogeneity. A majority of the studies' subjects were siblings of schizophrenia patients and different paradigms were applied. Most of the included studies reported no difference in PPI values between FDR of schizophrenia patients and healthy controls. CONCLUSION: Contrary to traditional certainty that unaffected FDR of schizophrenia patients have PPI defects, our review found no sufficient evidence supporting that the PPI level in FDR of schizophrenia patients was lower than in healthy controls. A prospective cohort study focusing on different outcomes such as developing schizophrenia is required to explore PPI levels in FDR of schizophrenia patients.


Assuntos
Inibição Pré-Pulso , Esquizofrenia , Estimulação Acústica , Humanos , Estudos Prospectivos , Reflexo de Sobressalto , Esquizofrenia/genética
18.
Schizophr Res ; 224: 33-39, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33189519

RESUMO

BACKGROUND: Latency of the acoustic startle reflex is the time from presentation of the startling stimulus until the response, and provides an index of neural processing speed. Schizophrenia subjects exhibit slowed latency compared to healthy controls. One prior publication reported significant heritability of latency. The current study was undertaken to replicate and extend this solitary finding in a larger cohort. METHODS: Schizophrenia probands, their relatives, and control subjects from the Consortium on the Genetics of Schizophrenia (COGS-1) were tested in a paradigm to ascertain magnitude, latency, and prepulse inhibition of startle. Trial types in the paradigm were: pulse-alone, and trials with 30, 60, or 120 ms between the prepulse and pulse. Comparisons of subject groups were conducted with ANCOVAs to assess startle latency and magnitude. Heritability of startle magnitude and latency was analyzed with a variance component method implemented in SOLAR v.4.3.1. RESULTS: 980 subjects had analyzable startle results: 199 schizophrenia probands, 456 of their relatives, and 325 controls. A mixed-design ANCOVA on startle latency in the four trial types was significant for subject group (F(2,973) = 4.45, p = 0.012) such that probands were slowest, relatives were intermediate and controls were fastest. Magnitude to pulse-alone trials differed significantly between groups by ANCOVA (F(2,974) = 3.92, p = 0.020) such that controls were lowest, probands highest, and relatives intermediate. Heritability was significant (p < 0.0001), with heritability of 34-41% for latency and 45-59% for magnitude. CONCLUSION: Both startle latency and magnitude are significantly heritable in the COGS-1 cohort. Startle latency is a strong candidate for being an endophenotype in schizophrenia.


Assuntos
Esquizofrenia , Estimulação Acústica , Acústica , Humanos , Inibição Pré-Pulso , Reflexo de Sobressalto/genética , Esquizofrenia/genética
19.
Mol Cell Neurosci ; 109: 103562, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32987141

RESUMO

Abnormal dendritic arbor development has been implicated in a number of neurodevelopmental disorders, such as autism and Rett syndrome, and the neuropsychiatric disorder schizophrenia. Postmortem brain samples from subjects with schizophrenia show elevated levels of NOS1AP in the dorsolateral prefrontal cortex, a region of the brain associated with cognitive function. We previously reported that the long isoform of NOS1AP (NOS1AP-L), but not the short isoform (NOS1AP-S), negatively regulates dendrite branching in rat hippocampal neurons. To investigate the role that NOS1AP isoforms play in human dendritic arbor development, we adapted methods to generate human neural progenitor cells and neurons using induced pluripotent stem cell (iPSC) technology. We found that increased protein levels of either NOS1AP-L or NOS1AP-S decrease dendrite branching in human neurons at the developmental time point when primary and secondary branching actively occurs. Next, we tested whether pharmacological agents can decrease the expression of NOS1AP isoforms. Treatment of human iPSC-derived neurons with d-serine, but not clozapine, haloperidol, fluphenazine, or GLYX-13, results in a reduction in endogenous NOS1AP-L, but not NOS1AP-S, protein expression; however, d-serine treatment does not reverse decreases in dendrite number mediated by overexpression of NOS1AP isoforms. In summary, we demonstrate how an in vitro model of human neuronal development can help in understanding the etiology of schizophrenia and can also be used as a platform to screen drugs for patients.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Dendritos/ultraestrutura , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Neurais/citologia , Neurônios/citologia , Proteínas Adaptadoras de Transdução de Sinal/biossíntese , Proteínas Adaptadoras de Transdução de Sinal/genética , Células Cultivadas , Clozapina/farmacologia , Avaliação Pré-Clínica de Medicamentos , Flufenazina/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Ácido Glutâmico/fisiologia , Haloperidol/farmacologia , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Canais Iônicos/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Células-Tronco Neurais/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Oligopeptídeos/farmacologia , Técnicas de Patch-Clamp , Isoformas de Proteínas/fisiologia , Esquizofrenia/etiologia , Esquizofrenia/genética , Serina/farmacologia
20.
Sci Rep ; 10(1): 13162, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32753748

RESUMO

A common missense variant in SLC39A8 is convincingly associated with schizophrenia and several additional phenotypes. Homozygous loss-of-function mutations in SLC39A8 result in undetectable serum manganese (Mn) and a Congenital Disorder of Glycosylation (CDG) due to the exquisite sensitivity of glycosyltransferases to Mn concentration. Here, we identified several Mn-related changes in human carriers of the common SLC39A8 missense allele. Analysis of structural brain MRI scans showed a dose-dependent change in the ratio of T2w to T1w signal in several regions. Comprehensive trace element analysis confirmed a specific reduction of only serum Mn, and plasma protein N-glycome profiling revealed reduced complexity and branching. N-glycome profiling from two individuals with SLC39A8-CDG showed similar but more severe alterations in branching that improved with Mn supplementation, suggesting that the common variant exists on a spectrum of hypofunction with potential for reversibility. Characterizing the functional impact of this variant will enhance our understanding of schizophrenia pathogenesis and identify novel therapeutic targets and biomarkers.


Assuntos
Encéfalo/diagnóstico por imagem , Proteínas de Transporte de Cátions/genética , Manganês/metabolismo , Esquizofrenia/genética , Encéfalo/metabolismo , Feminino , Glicosilação , Humanos , Mutação com Perda de Função , Imageamento por Ressonância Magnética , Masculino , Manganês/sangue , Mutação de Sentido Incorreto , Polissacarídeos/sangue , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA