Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Mol Plant Pathol ; 25(2): e13438, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38393695

RESUMO

Pectin has been extensively studied in animal immunity, and exogenous pectin as a food additive can provide protection against inflammatory bowel disease. However, the utility of pectin to improve immunity in plants is still unstudied. Here, we found exogenous application of pectin triggered stomatal closure in Arabidopsis in a dose- and time-dependent manner. Additionally, pectin activated peroxidase and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase to produce reactive oxygen species (ROS), which subsequently increased cytoplasmic Ca2+ concentration ([Ca2+ ]cyt ) and was followed by nitric oxide (NO) production, leading to stomatal closure in an abscisic acid (ABA) and salicylic acid (SA) signalling-dependent mechanism. Furthermore, pectin enhanced the disease resistance to Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) with mitogen-activated protein kinases (MPKs) MPK3/6 activated and upregulated expression of defence-responsive genes in Arabidopsis. These results suggested that exogenous pectin-induced stomatal closure was associated with ROS and NO production regulated by ABA and SA signalling, contributing to defence against Pst DC3000 in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Pectinas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estômatos de Plantas/genética , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo
2.
Genes (Basel) ; 13(3)2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35328077

RESUMO

Calcium acts as a universal secondary messenger that transfers developmental cues and stress signals for gene expression and adaptive growth. A prior study showed that abiotic stresses induce mutually independent cytosolic Ca2+ ([Ca2+]cyt) and nucleosolic Ca2+ ([Ca2+]nuc) increases in Arabidopsis thaliana root cells. However, gene expression networks deciphering [Ca2+]cyt and [Ca2+]nuc signalling pathways remain elusive. Here, using transgenic A. thaliana to selectively impair abscisic acid (ABA)- or methyl jasmonate (MeJA)-induced [Ca2+]cyt and [Ca2+]nuc increases, we identified [Ca2+]cyt- and [Ca2+]nuc-regulated ABA- or MeJA-responsive genes with a genome oligo-array. Gene co-expression network analysis revealed four Ca2+ signal-decoding genes, CAM1, CIPK8, GAD1, and CPN20, as hub genes co-expressed with Ca2+-regulated hormone-responsive genes and hormone signalling genes. Luciferase complementation imaging assays showed interactions among CAM1, CIPK8, and GAD1; they also showed interactions with several proteins encoded by Ca2+-regulated hormone-responsive genes. Furthermore, CAM1 and CIPK8 were required for MeJA-induced stomatal closure; they were associated with ABA-inhibited seed germination. Quantitative reverse transcription polymerase chain reaction analysis showed the unique expression pattern of [Ca2+]-regulated hormone-responsive genes in cam1, cipk8, and gad1. This comprehensive understanding of distinct Ca2+ and hormonal signalling will allow the application of approaches to uncover novel molecular foundations for responses to developmental and stress signals in plants.


Assuntos
Ácido Abscísico , Arabidopsis , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Acetatos , Arabidopsis/metabolismo , Cálcio/metabolismo , Ciclopentanos , Hormônios , Oxilipinas , Estômatos de Plantas/genética , Estômatos de Plantas/metabolismo
3.
Mol Biol Rep ; 48(5): 4497-4515, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34101109

RESUMO

Cestrum is the second largest genus of family Solanaceae, after Solanum, distributed in warm to subtropical regions. Species of genus Cestrum are one of the most ethnopharmacological relevant plants, for their broad biological and pharmacological properties. There is a scarcity to taxonomical studies and identification of these plants in Egypt, thus, the objective of this study was to implement various morphological features, chemical markers and molecular tools to emphasize the taxonomical features of the different Cestrum species. Morphologically, the epidermal cells of C. diurnum, C. elegans and C. parqui were irregular with sinuate anticlinal wall patterns for both surfaces, while, C. nocturnum has anticlinal walls, sinuolate with polygonal to irregular epidermal cells on the abaxial surface. The species of Cestrum have hypostomatic leaves, except C. parqui that has amphistomatic leaves. The experimented species of Cestrum have Anomocytic and anisocytic stomata, while, C. elegans has a diacytic stomata. The morphologically identified Cestrum spp were molecular confirmed based on their ITS sequences, the sequences of C. diurnum, C. nocturnum, C. elegans and C. parqui were deposited on genbank with accession # MT742788.1, MT749390.1, MW091481.1 and MW023744.1, respectively. From the SCOT analyses, the four species of Cestrum were grouped into 2 clusters (I, II), cluster I contains C. elegans, C. nocturnum and C. parqui, while cluster II contains only C. diurnum with 100% polymorphism for all primers. From the GC-MS profile, the C. diurnum exhibited a diverse metabolic paradigm, ensuring their richness with different metabolites comparing to other experimented Cestrum species. Among the total resolved metabolites, 15-methyltricyclo 6.5.2-pentadeca-1,3,5,7,9, 11,13-heptene was the highly incident compound in C. elegans (35.89%) followed by C. parqui (21.81%) and C. diurnum (11.28%), while it absent on C. nocturnum. The compound, 2,2',6,6'-tetra-tert-butyl-4,4'-methylenediphenol was highly detected in C. elegans and C. dirunum with minor amounts in the other Cestrum species. Cypermethrin and 3-butynyl-2,2,5-trimethyl-1,3-dioxane-5-methanol were pivotally reported in C. nocturnum. Taken together, from molecular and metabolic markers, C. diurnum, C. parqui and C. elegans have higher proximity unlike to C. nocturnum.


Assuntos
Cestrum/classificação , Cestrum/genética , Filogenia , Estômatos de Plantas/genética , Estômatos de Plantas/ultraestrutura , Cestrum/anatomia & histologia , Cestrum/metabolismo , Primers do DNA , DNA de Plantas/genética , DNA de Plantas/isolamento & purificação , DNA Espaçador Ribossômico/genética , Egito , Microscopia Eletrônica de Varredura/métodos , Estômatos de Plantas/metabolismo , Polimorfismo Genético , Piretrinas/metabolismo
5.
Mol Plant Pathol ; 22(1): 48-63, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33118686

RESUMO

Nonspecific lipidtransfer proteins (nsLTPs), which are small, cysteine-rich proteins, belong to the pathogenesis-related protein family, and several of them act as positive regulators during plant disease resistance. However, the underlying molecular mechanisms of these proteins in plant immune responses are unclear. In this study, a typical nsLTP gene, StLTP10, was identified and functionally analysed in potato. StLTP10 expression was significantly induced by Phytophthora infestans, which causes late blight in potato, and defence-related phytohormones, including abscisic acid (ABA), salicylic acid, and jasmonic acid. Characterization of StLTP10-overexpressing and knockdown lines indicated that StLTP10 positively regulates plant resistance to P. infestans. This resistance was coupled with enhanced expression of reactive oxygen species scavenging- and defence-related genes. Furthermore, we identified that StLTP10 physically interacts with ABA receptor PYL4 and affects its subcellular localization. These two proteins work together to regulate stomatal closure during pathogen infection. Interestingly, we also found that wound-induced protein kinase interacts with StLTP10 and positively regulates its protein abundance. Taken together, our results provide insight into the role of StLTP10 in resistance to P. infestans and suggest candidates to enhance broad-spectrum resistance to pathogens in potato.


Assuntos
Proteínas de Transporte/metabolismo , Resistência à Doença/genética , Phytophthora infestans/fisiologia , Doenças das Plantas/imunologia , Solanum tuberosum/genética , Ácido Abscísico/metabolismo , Proteínas de Transporte/genética , Doenças das Plantas/parasitologia , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estômatos de Plantas/genética , Estômatos de Plantas/imunologia , Estômatos de Plantas/parasitologia , Ácido Salicílico/metabolismo , Solanum tuberosum/imunologia , Solanum tuberosum/parasitologia
6.
Biochem Biophys Res Commun ; 523(2): 416-422, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-31870548

RESUMO

Poplar is a superior forestation species with high adaptability. The woody tissue of poplar is mainly derived from cell wall. Cell wall formation determines cell shape and woody growth. Pectin is rich in primary cell wall, but it is also involved in the regulation of wood formation. In our study, we cloned a gene from poplar (Populus tomentos), designed as PtoPME35, which encodes a putative pectin methylesterase. PtoPME35 has higher sequence similarity with Arabidopsis AtPME35. Gene expression analysis shows that PtoPME35 has a constitutive expression pattern in multiple tissues, with the highest expression in stem. Subcellular localization result indicates that PtoPME35 is localized to the cell wall. To elucidate the biological function of PtoPME35 in vivo, we generated overexpression plants in poplar and Arabidopsis. The degree of pectin methylesterification is decreased in PtoPME35-overexpressing transgenic poplar, although no obvious phenotypes were displayed. In PtoPME35-overexpressing Arabidopsis plants, stomatal opening is inhibited and water loss rate is decreased under the drought condition. Moreover, the expression levels of drought-stress responsive genes were higher with mannitol treatment in PtoPME35-overexpressing Arabidopsis plants than in wild type controls. Accordingly, these results suggest that PtoPME35 may regulate osmotic stress responses by modulating stomatal functions.


Assuntos
Arabidopsis/fisiologia , Hidrolases de Éster Carboxílico/genética , Estômatos de Plantas/fisiologia , Populus/genética , Arabidopsis/genética , Secas , Regulação da Expressão Gênica de Plantas , Osmose/fisiologia , Pectinas/genética , Pectinas/metabolismo , Folhas de Planta/genética , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Estômatos de Plantas/genética , Plantas Geneticamente Modificadas
7.
Plant Cell Environ ; 43(1): 87-102, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31423592

RESUMO

Element content and expression of genes of interest on single cell types, such as stomata, provide valuable insights into their specific physiology, improving our understanding of leaf gas exchange regulation. We investigated how far differences in stomatal conductance (gs ) can be ascribed to changes in guard cells functioning in amphistomateous leaves. gs was measured during the day on both leaf sides, on well-watered and drought-stressed trees (two Populus euramericana Moench and two Populus nigra L. genotypes). In parallel, guard cells were dissected for element content and gene expressions analyses. Both were strongly arranged according to genotype, and drought had the lowest impact overall. Normalizing the data by genotype highlighted a structure on the basis of leaf sides and time of day both for element content and gene expression. Guard cells magnesium, phosphorus, and chlorine were the most abundant on the abaxial side in the morning, where gs was at the highest. In contrast, genes encoding H+ -ATPase and aquaporins were usually more abundant in the afternoon, whereas genes encoding Ca2+ -vacuolar antiporters, K+ channels, and ABA-related genes were in general more abundant on the adaxial side. Our work highlights the unique physiology of each leaf side and their analogous rhythmicity through the day.


Assuntos
Folhas de Planta/genética , Populus/genética , ATPases Translocadoras de Prótons/genética , RNA de Plantas/isolamento & purificação , Árvores/genética , DNA Complementar/genética , DNA Complementar/isolamento & purificação , Secas , Microanálise por Sonda Eletrônica , Regulação da Expressão Gênica de Plantas , Genótipo , Desenvolvimento Vegetal , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estômatos de Plantas/genética , Estômatos de Plantas/metabolismo , Transpiração Vegetal/fisiologia , Populus/classificação , Populus/metabolismo , ATPases Translocadoras de Prótons/metabolismo , RNA de Plantas/genética , Árvores/metabolismo , Água/fisiologia
8.
Plant Mol Biol ; 98(1-2): 137-152, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30143991

RESUMO

KEY MESSAGE: In this study we show that expression of the Arabidopsis ABF4 gene in potato increases tuber yield under normal and abiotic stress conditions, improves storage capability and processing quality of the tubers, and enhances salt and drought tolerance. Potato is the third most important food crop in the world. Potato plants are susceptible to salinity and drought, which negatively affect crop yield, tuber quality and market value. The development of new varieties with higher yields and increased tolerance to adverse environmental conditions is a main objective in potato breeding. In addition, tubers suffer from undesirable sprouting during storage that leads to major quality losses; therefore, the control of tuber sprouting is of considerable economic importance. ABF (ABRE-binding factor) proteins are bZIP transcription factors that regulate abscisic acid signaling during abiotic stress. ABF proteins also play an important role in the tuberization induction. We developed transgenic potato plants constitutively expressing the Arabidopsis ABF4 gene (35S::ABF4). In this study, we evaluated the performance of 35S::ABF4 plants grown in soil, determining different parameters related to tuber yield, tuber quality (carbohydrates content and sprouting behavior) and tolerance to salt and drought stress. Besides enhancing salt stress and drought tolerance, constitutive expression of ABF4 increases tuber yield under normal and stress conditions, enhances storage capability and improves the processing quality of the tubers.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Secas , Regulação da Expressão Gênica de Plantas , Tubérculos/genética , Tubérculos/fisiologia , Tolerância ao Sal/genética , Solanum tuberosum/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Clorofila/metabolismo , Transporte de Elétrons/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Oxirredução , Fotossíntese/efeitos dos fármacos , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/genética , Estômatos de Plantas/fisiologia , Transpiração Vegetal/efeitos dos fármacos , Transpiração Vegetal/genética , Tubérculos/efeitos dos fármacos , Plantas Geneticamente Modificadas , Prolina/metabolismo , Tolerância ao Sal/efeitos dos fármacos , Cloreto de Sódio/farmacologia , Solanum tuberosum/efeitos dos fármacos , Água
9.
Biomed Res Int ; 2018: 3246398, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29862263

RESUMO

Bletilla striata (Thunb.), an ornamental and medicinal plant, is on the list of endangered plants in China. Its pseudobulb is abundant in polysaccharide and has been used for centuries as a herbal remedy. However, a recent rise in demand has placed it at risk of extinction, and therefore, research on its propagation and genetic improvement is essential. Since polyploids tend to possess advantageous qualities, we incubated B. striata seeds with colchicine with the aim of creating tetraploid plantlets. Aseptic seeds treated with 0.1% colchicine for 7 days showed the highest tetraploid induction rate of 40.67 ± 0.89%. Compared with the wild-type, the tetraploids could be identified by their morphological characteristics including larger stomata at a lower density, larger leaf blades, and a thicker petiole. Contents of polysaccharide and phenolic compounds were also determined in the tetraploid pseudobulbs, revealing significantly higher values than in the wild-type. In vitro colchicine treatment can therefore be used to successfully produce B. striata tetraploids with superior pseudobulbs.


Assuntos
Colchicina/farmacologia , Orchidaceae , Sementes , Tetraploidia , Orchidaceae/genética , Orchidaceae/crescimento & desenvolvimento , Estômatos de Plantas/genética , Estômatos de Plantas/crescimento & desenvolvimento , Sementes/genética , Sementes/crescimento & desenvolvimento
10.
Plant Physiol ; 174(2): 788-797, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28584065

RESUMO

As one of the earliest plant groups to evolve stomata, hornworts are key to understanding the origin and function of stomata. Hornwort stomata are large and scattered on sporangia that grow from their bases and release spores at their tips. We present data from development and immunocytochemistry that identify a role for hornwort stomata that is correlated with sporangial and spore maturation. We measured guard cells across the genera with stomata to assess developmental changes in size and to analyze any correlation with genome size. Stomata form at the base of the sporophyte in the green region, where they develop differential wall thickenings, form a pore, and die. Guard cells collapse inwardly, increase in surface area, and remain perched over a substomatal cavity and network of intercellular spaces that is initially fluid filled. Following pore formation, the sporophyte dries from the outside inwardly and continues to do so after guard cells die and collapse. Spore tetrads develop in spore mother cell walls within a mucilaginous matrix, both of which progressively dry before sporophyte dehiscence. A lack of correlation between guard cell size and DNA content, lack of arabinans in cell walls, and perpetually open pores are consistent with the inactivity of hornwort stomata. Stomata are expendable in hornworts, as they have been lost twice in derived taxa. Guard cells and epidermal cells of hornworts show striking similarities with the earliest plant fossils. Our findings identify an architecture and fate of stomata in hornworts that is ancient and common to plants without sporophytic leaves.


Assuntos
Anthocerotophyta/anatomia & histologia , Fósseis , Células Vegetais , Estômatos de Plantas/citologia , Anthocerotophyta/citologia , Parede Celular/ultraestrutura , Tamanho do Genoma , Genoma de Planta , Microscopia Eletrônica de Transmissão , Pectinas/química , Células Vegetais/ultraestrutura , Estômatos de Plantas/anatomia & histologia , Estômatos de Plantas/genética
11.
Plant Biotechnol J ; 15(1): 107-121, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27368149

RESUMO

Plant MYB transcription factors control diverse biological processes, such as differentiation, development and abiotic stress responses. In this study, we characterized BplMYB46, an MYB gene from Betula platyphylla (birch) that is involved in both abiotic stress tolerance and secondary wall biosynthesis. BplMYB46 can act as a transcriptional activator in yeast and tobacco. We generated transgenic birch plants with overexpressing or silencing of BplMYB46 and subjected them to gain- or loss-of-function analysis. The results suggest that BplMYB46 improves salt and osmotic tolerance by affecting the expression of genes including SOD, POD and P5CS to increase both reactive oxygen species scavenging and proline levels. In addition, BplMYB46 appears to be involved in controlling stomatal aperture to reduce water loss. Overexpression of BplMYB46 increases lignin deposition, secondary cell wall thickness and the expression of genes in secondary cell wall formation. Further analysis indicated that BplMYB46 binds to MYBCORE and AC-box motifs and may directly activate the expression of genes involved in abiotic stress responses and secondary cell wall biosynthesis whose promoters contain these motifs. The transgenic BplMYB46-overexpressing birch plants, which have improved salt and osmotic stress tolerance, higher lignin and cellulose content and lower hemicellulose content than the control, have potential applications in the forestry industry.


Assuntos
Betula/genética , Parede Celular/química , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Fatores de Transcrição/genética , Arabidopsis/genética , Morte Celular , Núcleo Celular , Celulose/metabolismo , Técnicas de Silenciamento de Genes , Inativação Gênica , Vetores Genéticos , Lignina/metabolismo , Cebolas/citologia , Cebolas/genética , Pressão Osmótica , Proteínas de Plantas/genética , Estômatos de Plantas/genética , Estômatos de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Polissacarídeos/metabolismo , Ligação Proteica , Espécies Reativas de Oxigênio/metabolismo , Tolerância ao Sal/genética , Cloreto de Sódio/metabolismo , Estresse Fisiológico/genética , Ativação Transcricional/genética , Água , Xilema/citologia , Xilema/genética
12.
Plant Physiol ; 171(2): 974-85, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27208238

RESUMO

GPI-anchored proteins (GPI-APs) are essential for plant growth and development; knockout mutations in enzymes responsible for anchor biosynthesis or attachment are gametophyte or embryo lethal. In a genetic screen targeted to identify genes regulating stomata formation, we discovered a missense mutation in the Arabidopsis (Arabidopsis thaliana) homolog of GPI8/PIG-K, a Cys protease that transfers an assembled GPI anchor to proteins. The Arabidopsis genome has a single copy of AtGPI8, and the atgpi8-1 mutation reduces the efficiency of this enzyme, leading to reduced accumulation of GPI-anchored proteins. While the atgpi8-1 mutation strongly disrupts plant growth, it is not lethal. Phenotypic analysis of atgpi8-1 mutants suggests that GPI-APs are important for root and shoot growth, stomata formation, apical dominance, transition to flowering, and male gametophyte viability. In addition, atgpi8-1 mutants accumulate higher levels of callose and have reduced plasmodesmata permeability. Genetic interactions of atgpi8-1 with mutations in ERECTA family (ERf) genes suggest the existence of a GPI-AP in a branch of the ERf signaling pathway that regulates stomata formation. Activation of the ERf signal transduction cascade by constitutively active YODA rescues stomata clustering in atgpi8-1, indicating that a GPI-AP functions upstream of the MAP kinase cascade. TOO MANY MOUTHS (TMM) is a receptor-like protein that is able to form heterodimers with ERfs. Our analysis demonstrates that tmm-1 is epistatic to atgpi8-1, indicating that either TMM is a GPI-AP or there is another GPI-AP regulating stomata development whose function is dependent upon TMM.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Cisteína Proteases/metabolismo , Glicosilfosfatidilinositóis/metabolismo , Sequência de Aminoácidos , Aminoaciltransferases/genética , Aminoaciltransferases/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/genética , Domínio Catalítico , Cisteína Proteases/genética , Fertilidade , Glucanos/metabolismo , Mutação , Estômatos de Plantas/enzimologia , Estômatos de Plantas/genética , Estômatos de Plantas/crescimento & desenvolvimento , Estômatos de Plantas/ultraestrutura , Plasmodesmos/metabolismo , Pólen , Plântula/enzimologia , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/ultraestrutura , Alinhamento de Sequência , Transdução de Sinais
13.
Nature ; 530(7590): 331-5, 2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-26814964

RESUMO

Seagrasses colonized the sea on at least three independent occasions to form the basis of one of the most productive and widespread coastal ecosystems on the planet. Here we report the genome of Zostera marina (L.), the first, to our knowledge, marine angiosperm to be fully sequenced. This reveals unique insights into the genomic losses and gains involved in achieving the structural and physiological adaptations required for its marine lifestyle, arguably the most severe habitat shift ever accomplished by flowering plants. Key angiosperm innovations that were lost include the entire repertoire of stomatal genes, genes involved in the synthesis of terpenoids and ethylene signalling, and genes for ultraviolet protection and phytochromes for far-red sensing. Seagrasses have also regained functions enabling them to adjust to full salinity. Their cell walls contain all of the polysaccharides typical of land plants, but also contain polyanionic, low-methylated pectins and sulfated galactans, a feature shared with the cell walls of all macroalgae and that is important for ion homoeostasis, nutrient uptake and O2/CO2 exchange through leaf epidermal cells. The Z. marina genome resource will markedly advance a wide range of functional ecological studies from adaptation of marine ecosystems under climate warming, to unravelling the mechanisms of osmoregulation under high salinities that may further inform our understanding of the evolution of salt tolerance in crop plants.


Assuntos
Adaptação Fisiológica/genética , Evolução Molecular , Genoma de Planta/genética , Água do Mar , Zosteraceae/genética , Aclimatação/genética , Parede Celular/química , Etilenos/biossíntese , Duplicação Gênica , Genes de Plantas/genética , Redes e Vias Metabólicas , Dados de Sequência Molecular , Oceanos e Mares , Osmorregulação/genética , Filogenia , Folhas de Planta/metabolismo , Estômatos de Plantas/genética , Pólen/metabolismo , Salinidade , Tolerância ao Sal/genética , Alga Marinha/genética , Terpenos/metabolismo
14.
Genet Mol Res ; 12(4): 4879-94, 2013 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-24301749

RESUMO

Cassava periclinal cytochimeras, cultivars, and interspecific hybrid and polyploid types were studied in relation to embryonic, cytogenetic, and anatomical behavior. Their apical shoots, pollen grains, male and female buds, roots, stomata, and flowering period were analyzed. Chimeras exhibited increased size of L1 and L2 cells. Polyploidy led to enlargement of stomata in chimeras whereas L2 gave tetraploid chromosome configurations, tetrad irregularity, decrease of pollen viability, and increase in frequency of polyembryo sacs. The chimeric composition of tetraploids L1 and L2 and diploid L3 expressed a notable epigenetic effect seen in a marked enlargement of edible roots compared to total diploid. One of the chimeric types was accompanied by complete flowering inhibition. Pollen viability and diameter appeared to be reliable markers to determine ploidy levels.


Assuntos
Quimera , Manihot/anatomia & histologia , Manihot/genética , Poliploidia , Cromossomos de Plantas , Análise Citogenética , Diploide , Manihot/embriologia , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/anatomia & histologia , Estômatos de Plantas/genética , Pólen/genética , Triploidia
15.
Am J Bot ; 99(6): 967-82, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22575370

RESUMO

PREMISE OF THE STUDY: Anatomical and morphological features of Satanocrater were studied to test hypotheses of xeric adaptations in the genus, which is endemic to arid tropical Africa. These features, together with molecular data, were used to test the phylogenetic placement of Satanocrater within the large plant family Acanthaceae. METHODS: We undertook a comparative study of four species of Satanocrater. Carbon isotope ratios were generated to test a hypothesis of C(4) photosynthesis. Molecular data from chloroplast (trnG-trnS, trnG-trnR, psbA-trnH) and nuclear (Eif3E) loci were used to test the placement of Satanocrater within Acanthaceae. KEY RESULTS: Anatomical features reflecting xeric adaptations of species of Satanocrater included a thick-walled epidermis, thick cuticle, abundant trichomes and glandular scales, stomata overarched by subsidiary cells, tightly packed mesophyll cells, and well-developed palisade parenchyma on both leaf surfaces. Although two species had enlarged bundle sheath cells, a feature often implicated in C(4) photosynthesis, isotope ratios indicated all species of Satanocrater use the C(3) pathway. Molecular data resolved Satanocrater within tribe Ruellieae with strong support. Within Ruellieae, our data suggest that pollen morphology of Satanocrater may represent an intermediate stage in a transition series. CONCLUSIONS: Anatomical and morphological features of Satanocrater reflect adaptation to xeric environments and add new information about the biology of xerophytes. Morphological and molecular data place Satanocrater in the tribe Ruellieae with confidence. This study adds to our capacity to test hypotheses of broad evolutionary and ecological interest in a diverse and important family of flowering plants.


Assuntos
Acanthaceae/genética , Núcleo Celular/genética , Genes de Cloroplastos/genética , Filogenia , Proteínas de Plantas/genética , Acanthaceae/anatomia & histologia , Acanthaceae/classificação , Adaptação Fisiológica/genética , África , DNA de Plantas/química , DNA de Plantas/genética , Clima Desértico , Evolução Molecular , Variação Genética , Microscopia Eletrônica de Varredura , Dados de Sequência Molecular , Fotossíntese/genética , Epiderme Vegetal/anatomia & histologia , Epiderme Vegetal/genética , Epiderme Vegetal/ultraestrutura , Folhas de Planta/anatomia & histologia , Folhas de Planta/genética , Folhas de Planta/ultraestrutura , Estômatos de Plantas/anatomia & histologia , Estômatos de Plantas/genética , Estômatos de Plantas/ultraestrutura , Pólen/anatomia & histologia , Pólen/genética , Pólen/ultraestrutura , Análise de Sequência de DNA , Especificidade da Espécie
16.
Plant Cell ; 23(12): 4382-93, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22167058

RESUMO

Increased cellular ploidy is widespread during developmental processes of multicellular organisms, especially in plants. Elevated ploidy levels are typically achieved either by endoreplication or endomitosis, which are often regarded as modified cell cycles that lack an M phase either entirely or partially. We identified GIGAS CELL1 (GIG1)/OMISSION OF SECOND DIVISION1 (OSD1) and established that mutation of this gene triggered ectopic endomitosis. On the other hand, it has been reported that a paralog of GIG1/OSD1, UV-INSENSITIVE4 (UVI4), negatively regulates endoreplication onset in Arabidopsis thaliana. We showed that GIG1/OSD1 and UVI4 encode novel plant-specific inhibitors of the anaphase-promoting complex/cyclosome (APC/C) ubiquitin ligase. These proteins physically interact with APC/C activators, CDC20/FZY and CDH1/FZR, in yeast two-hybrid assays. Overexpression of CDC20.1 and CCS52B/FZR3 differentially promoted ectopic endomitosis in gig1/osd1 and premature occurrence of endoreplication in uvi4. Our data suggest that GIG1/OSD1 and UVI4 may prevent an unscheduled increase in cellular ploidy by preferentially inhibiting APC/C(CDC20) and APC/C(FZR), respectively. Generation of cells with a mixed identity in gig1/osd1 further suggested that the APC/C may have an unexpected role for cell fate determination in addition to its role for proper mitotic progression.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Ciclo Celular/metabolismo , Mitose , Complexos Ubiquitina-Proteína Ligase/metabolismo , Alelos , Ciclossomo-Complexo Promotor de Anáfase , Arabidopsis/citologia , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas Cdc20 , Proteínas de Ciclo Celular/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cromossomos de Plantas/genética , Cromossomos de Plantas/metabolismo , Clonagem Molecular , Cotilédone/genética , Cotilédone/metabolismo , Ciclina B/genética , Ciclina B/metabolismo , Citocinese , Inibidores Enzimáticos/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Teste de Complementação Genética , Mutação , Células Vegetais/metabolismo , Epiderme Vegetal/citologia , Epiderme Vegetal/genética , Epiderme Vegetal/crescimento & desenvolvimento , Epiderme Vegetal/metabolismo , Estômatos de Plantas/citologia , Estômatos de Plantas/genética , Estômatos de Plantas/crescimento & desenvolvimento , Estômatos de Plantas/metabolismo , Plantas Geneticamente Modificadas/citologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Plasmídeos/genética , Plasmídeos/metabolismo , Ploidias , Pólen/crescimento & desenvolvimento , Pólen/metabolismo , Mapeamento de Interação de Proteínas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ativação Transcricional , Técnicas do Sistema de Duplo-Híbrido , Complexos Ubiquitina-Proteína Ligase/genética
17.
J Exp Bot ; 62(14): 5179-89, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21813794

RESUMO

Stomatal movements require massive changes in guard cell osmotic content, and both stomatal opening and stomatal closure have been shown to be energy-requiring processes. A possible role for glycolysis in contributing to the energetic, reducing requirements, or signalling processes regulating stomatal movements has not been investigated previously. Glycolysis, oxidization of glucose to pyruvate, is a central metabolic pathway and yields a net gain of 2 ATP and 2 NADH. 2,3-biphosphoglycerate-independent phosphoglycerate mutase (iPGAM) is a key enzymatic activity in glycolysis and catalyses the reversible interconversion of 3-phosphoglycerate to 2-phosphoglycerate. To investigate functions of iPGAMs and glycolysis in stomatal function and plant growth, Arabidopsis insertional mutants in At1g09780 and At3g08590, both of which have been annotated as iPGAMs on the basis of sequence homology, were identified and characterized. While single mutants were indistinguishable from the wild type in all plant phenotypes assayed, double mutants had no detectable iPGAM activity and showed defects in blue light-, abscisic acid-, and low CO(2)-regulated stomatal movements. Vegetative plant growth was severely impaired in the double mutants and pollen was not produced. The data demonstrate that iPGAMs and glycolytic activity are critical for guard cell function and fertility in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Fosfoglicerato Mutase/metabolismo , Estômatos de Plantas/fisiologia , Pólen/crescimento & desenvolvimento , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Ácidos Glicéricos/metabolismo , Glicólise , Dados de Sequência Molecular , Fosfoglicerato Mutase/química , Fosfoglicerato Mutase/genética , Estômatos de Plantas/enzimologia , Estômatos de Plantas/genética , Estômatos de Plantas/crescimento & desenvolvimento , Pólen/enzimologia , Pólen/genética , Pólen/metabolismo , Alinhamento de Sequência
18.
J Plant Res ; 124(4): 477-87, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21706139

RESUMO

Abscisic acid (ABA) signaling mechanisms have been studied in a broad variety of plant species using complementary analyses, taking advantage of different methodologies suitable for each plant species. Early studies on ABA biosynthesis using Solanum lycopersicum mutants suggested an importance of ABA synthesis in stomatal closure. To understand ABA signaling in guard cells, cellular, biochemical and electrophysiological studies in Vicia faba and Commelina communis have been conducted, providing fundamental knowledge that was further reconfirmed by molecular genetic studies of Arabidopsis. In this article, examples of stomatal studies in several plants and prospects in ABA research are discussed.


Assuntos
Ácido Abscísico/metabolismo , Commelina/fisiologia , Estômatos de Plantas/fisiologia , Transdução de Sinais , Vicia/fisiologia , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Dióxido de Carbono/metabolismo , Membrana Celular/metabolismo , Commelina/genética , Germinação , Células do Mesofilo/metabolismo , Estômatos de Plantas/genética , Sementes/metabolismo , Vicia/genética
19.
Plant J ; 67(5): 885-94, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21575091

RESUMO

In plants, water vapour is released into the atmosphere through stomata in a process called transpiration. Abscisic acid (ABA) is a key phytohormone that facilitates stomatal closure through its action on guard cells. Recently, ATP-binding cassette (ABC) transporter genes, AtABCG25 and AtABCG40, were shown to be involved in ABA transport and responses. However, the functions of many other AtABCG family genes are still unknown. Here, we identified another ABCG gene (AtABCG22) that is required for stomatal regulation in Arabidopsis. The atabcg22 mutant plants had lower leaf temperatures and increased water loss, implying elevated transpiration through an influence on stomatal regulation. We also found that atabcg22 plants were more suspectible to drought stress than wild-type plants. AtABCG22 was expressed in aerial organs, mainly guard cells, in which the gene expression pattern was consistent with the mutant phenotypes. Using double mutants, we investigated the genetic relationships between the mutations. The atabcg22 mutation further increased the water loss of srk2e/ost1 mutants, which were defective in ABA signalling in guard cells. Also, the atabcg22 mutation enhanced the phenotype of nced3 mutants, which were defective in ABA biosynthesis. Accordingly, the additive roles of AtABCG22 functions in ABA signalling and ABA biosynthesis are discussed.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Transpiração Vegetal/genética , Água/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Ácido Abscísico/metabolismo , Arabidopsis/genética , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/genética , Secas , Flores/genética , Flores/fisiologia , Frutas/genética , Frutas/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Genótipo , Mutagênese Insercional , Cebolas/genética , Cebolas/metabolismo , Cebolas/ultraestrutura , Fenótipo , Filogenia , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Caules de Planta/genética , Caules de Planta/fisiologia , Estômatos de Plantas/genética , Estômatos de Plantas/fisiologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/fisiologia , Plantas Geneticamente Modificadas/ultraestrutura , Plântula/genética , Plântula/fisiologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA