Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Obes Res Clin Pract ; 17(1): 74-81, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36494293

RESUMO

AIMS: Naringin, a flavonoid present in citrus fruits, has been known for the capacity to reduce lipid synthesis and anti-inflammatory. In this study, we investigated whether naringin increases lipolysis and fatty acid ß-oxidation to change fat deposition. METHODS: In in vivo experiment, obese adult mice (20-weeks-old, n = 18) were divided into control group fed with normal diet and naringin-treated group fed with naringin-supplemented diet (5 g/kg) for 60 days, respectively. In in vitro experiment, differentiated 3T3-L1 adipocytes were treated for four days with or without naringin (100 µg/mL). RESULTS: Supplementing naringin significantly reduced the body weight, abdominal fat weight, blood total cholesterol content of mice, but did not affect food intake. In addition, naringin decreased levels of pro-inflammatory factors in adipose tissue including interleukin-1ß (IL-1ß), interleukin-6 (IL-6), and monocyte chemotactic protein 1 (MCP-1). Naringin increased the expression of AMP-activated protein kinase (AMPK), a key factor in cellular energy metabolism, and raised the ratio of p-AMPK/AMPK in mouse liver tissue. The protein expression of hormone-sensitive lipase (HSL), phospho-HSL563 (p-HSL563), p-HSL563/HSL, and adipocyte triglyceride lipase (ATGL) was significantly increased in the adipose tissue of naringin-treated mice. Furthermore, naringin enhanced the expression of fatty acid ß-oxidation genes, including carnitine palmitoyl transferase 1 (CPT1), uncoupling protein 2 (UCP2), and acyl-coenzyme A oxidase 1 (AOX1) in mouse adipose tissue. In in vitro experiment, similar findings were observed in differentiated 3T3-L1 adipocytes with naringin treatment. The treatment remarkably reduced intracellular lipid content, increased the number of mitochondria and promoted the gene expression of HSL, ATGL, CPT1, AOX1, and UCP2 and the phosphorylation of HSL protein. CONCLUSION: Naringin reduced body fat in obese mice and lipid content in differentiated 3T3-L1 adipocytes, which was associated with enhanced AMPK activation and upregulation of the expression of the lipolytic genes HSL, ATGL, and ß-oxidation genes CPT1, AOX1, and UCP2.


Assuntos
Proteínas Quinases Ativadas por AMP , Lipólise , Camundongos , Animais , Proteínas Quinases Ativadas por AMP/metabolismo , Esterol Esterase/metabolismo , Lipase , Ácidos Graxos , Lipídeos , Células 3T3-L1
2.
Phytomedicine ; 103: 154199, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35679793

RESUMO

BACKGROUND: Liver fibrosis can be easily developed into irreversible liver cirrhosis or even liver cancer. Lysosomal acid lipase (LAL), encoded by the lipase A (Lipa) gene, is a critical enzyme involved in liver fibrosis development. Morroniside, an iridoid glycoside isolated from Cornus officinalis Sieb. et Zucc., exerts hepatic protective effects. However, the mechanism of action underling the anti-liver fibrosis effects of morroniside have not been fully elucidated. PURPOSE: To explore whether Lipa served as a biomarker for liver fibrosis and investigate the anti-liver fibrosis effects of morroniside and the underlying action mechanism in liver fibrosis cell models. METHODS: LAL expression was examined in the liver tissues of CCl4 and high-fat diet (HFD)-induced liver fibrosis animal models. α-smooth muscle actin (α-SMA) level, collagen and GATA family expressions were analyzed by Real-time PCR and Western blot. Putative transcription factor binding sites in the DNA sequences of Lipa was identified by PROMO-ALGGEN v8.3 online software and ENCODE ChIP-Seq Significance Tool. MD simulation was performed to explore the protein-ligand interaction. RESULTS: We found that the expression of hepatic LAL is lower in the liver fibrosis animal models than the control models. The reduced LAL expression is associated with HSCs activation, suggesting LAL is novel liver fibrosis biomarker. More importantly, our data showed that morroniside exerts anti-liver fibrosis effects in vitro. Mechanistic studies reveal that it binds to the hydrophobic sites of GATA3 and also reduces GATA3 expression, which increases LAL expression. CONCLUSIONS: This study, for the first time, suggests LAL is a novel biomarker for liver fibrosis. Besides, morroniside exerts its anti-liver fibrosis effects by targeting GATA3 and LAL and hence inhibits HSC activation. These findings provide strong scientific evidence to support the development of morroniside as novel alternative or complementary therapeutics for liver injury prevention and treatment.


Assuntos
Células Estreladas do Fígado , Esterol Esterase , Animais , Biomarcadores/metabolismo , Glicosídeos , Fígado/metabolismo , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Esterol Esterase/metabolismo
3.
Int J Mol Sci ; 22(24)2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34948174

RESUMO

Methionine restriction reduces animal lipid deposition. However, the molecular mechanism underlying how the body reacts to the condition and regulates lipid metabolism remains unknown. In this study, a feeding trial was performed on rice field eel Monopterus albus with six isonitrogenous and isoenergetic feeds that included different levels of methionine (0, 2, 4, 6, 8, and 10 g/kg). Compared with M0 (0 g/kg), the crude lipid and crude protein of M. albus increased markedly in M8 (8 g/kg) (p < 0.05), serum (total cholesterol, triglyceride, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and non-esterified free fatty acids), and hepatic contents (hepatic lipase, apolipoprotein-A, fatty acid synthetase, total cholesterol, triglyceride, and lipoprteinlipase). However, in the serum, very-low-density lipoprotein and hepatic contents (hormone-sensitive triglyceride lipase, Acetyl CoA carboxylase, carnitine palmitoyltransterase, and mirosomal triglygeride transfer protein) decreased markedly in M8 (p < 0.05). The contents of hepatic C18:2n-6, C22:6n-3, and n-3PUFA in the M8 group were significantly higher than those in M0 (p < 0.05), and the contents of lipid droplets in M8 were higher than those in M0. Compared with M0, the hepatic gcn2, eif2α, hsl, mttp, ldlrap, pparα, cpt1, and cpt2 were remarkably downregulated in M8, while srebf2, lpl, moat2, dgat2, hdlbp, srebf1, fas, fads2, me1, pfae, and icdh were markedly upregulated in M8. Moreover, hepatic SREBP1 and FAS protein expression were upregulated significantly in M8 (p < 0.01). In short, methionine restriction decreased the lipid deposition of M. albus, especially for hepatic lipid deposition, and mainly downregulated hepatic fatty acid metabolism. Besides, gcn2 could be activated under methionine restriction.


Assuntos
Metabolismo dos Lipídeos/efeitos dos fármacos , Metionina/farmacologia , Smegmamorpha/metabolismo , Acetil-CoA Carboxilase/metabolismo , Animais , China , Dieta , Suplementos Nutricionais , Ácidos Graxos/metabolismo , Fígado Gorduroso/metabolismo , Metabolismo dos Lipídeos/fisiologia , Lipídeos/fisiologia , Lipoproteínas VLDL/metabolismo , Fígado/metabolismo , Metionina/deficiência , Metionina/metabolismo , RNA Mensageiro/metabolismo , Esterol Esterase/metabolismo , Triglicerídeos/metabolismo
4.
Molecules ; 26(15)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34361783

RESUMO

Amber-the fossilized resin of trees-is rich in terpenoids and rosin acids. The physiological effects, such as antipyretic, sedative, and anti-inflammatory, were used in traditional medicine. This study aims to clarify the physiological effects of amber extract on lipid metabolism in mouse 3T3-L1 cells. Mature adipocytes are used to evaluate the effect of amber extract on lipolysis by measuring the triglyceride content, glucose uptake, glycerol release, and lipolysis-related gene expression. Our results show that the amount of triacylglycerol, which is stored in lipid droplets in mature adipocytes, decreases following 96 h of treatment with different concentrations of amber extract. Amber extract treatment also decreases glucose uptake and increases the release of glycerol from the cells. Moreover, amber extract increases the expression of lipolysis-related genes encoding perilipin and hormone-sensitive lipase (HSL) and promotes the activity of HSL (by increasing HSL phosphorylation). Amber extract treatment also regulates the expression of other adipocytokines in mature adipocytes, such as adiponectin and leptin. Overall, our results indicate that amber extract increases the expression of lipolysis-related genes to induce lipolysis in 3T3-L1 cells, highlighting its potential for treating various obesity-related diseases.


Assuntos
Adipócitos/efeitos dos fármacos , Âmbar/farmacologia , Misturas Complexas/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Hipolipemiantes/farmacologia , Lipólise/efeitos dos fármacos , Células 3T3-L1 , Adipócitos/citologia , Adipócitos/metabolismo , Adiponectina/genética , Adiponectina/metabolismo , Âmbar/química , Animais , Diferenciação Celular , Misturas Complexas/química , Etanol/química , Glucose/metabolismo , Glicerol/metabolismo , Hipolipemiantes/química , Leptina/genética , Leptina/metabolismo , Gotículas Lipídicas/química , Gotículas Lipídicas/efeitos dos fármacos , Gotículas Lipídicas/metabolismo , Camundongos , Perilipina-1/genética , Perilipina-1/metabolismo , Fosforilação/efeitos dos fármacos , Esterol Esterase/genética , Esterol Esterase/metabolismo , Triglicerídeos/metabolismo
5.
Carbohydr Polym ; 269: 118334, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34294344

RESUMO

To explore the disease resistance mechanism of chitosan conjugates, chitosan-gentamicin conjugate (CS-GT) was synthesized and systematically characterized, the immune mechanism of CS-GT on Litopenaeus vannamei infected with Vibrio parahaemolyticus was further explored. The results showed that imine groups in CS-GT were effectively reduced. Dietary supplementation of CS-GT can significantly increase the survival rate, total hemocyte counts, the antioxidant and immune related enzyme activity levels of shrimps (P < 0.05), which are all dose-dependent under the experimental conditions. In addition, CS-GT can protect the hepatopancreas from invading bacteria and alleviate inflammation. Particularly, CS-GT promotes the expressions of legumain (LGMN), lysosomal acid lipase (LIPA) and Niemann-Pick type C2 (NPC2) up-regulated. It is speculated that CS-GT may stimulate the lysosome to phagocytose pathogens more effectively. In conclusions, shrimps fed with CS-GT can produce immune response via lysosome and greatly improve the disease resistance to Vibrio parahaemolyticus.


Assuntos
Quitosana/análogos & derivados , Quitosana/uso terapêutico , Gentamicinas/uso terapêutico , Imunidade Inata/efeitos dos fármacos , Fatores Imunológicos/uso terapêutico , Penaeidae/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Quitosana/síntese química , Cisteína Endopeptidases/metabolismo , Suplementos Nutricionais , Gentamicinas/síntese química , Hemócitos/metabolismo , Hepatopâncreas/efeitos dos fármacos , Hepatopâncreas/microbiologia , Hepatopâncreas/patologia , Fatores Imunológicos/síntese química , Penaeidae/imunologia , Penaeidae/metabolismo , Penaeidae/microbiologia , Fagócitos/metabolismo , Esterol Esterase/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Vibrio parahaemolyticus/patogenicidade
6.
Mol Metab ; 47: 101174, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33549847

RESUMO

OBJECTIVE: The goal of this study was to investigate the importance of central hormone-sensitive lipase (HSL) expression in the regulation of food intake and body weight in mice to clarify whether intracellular lipolysis in the mammalian hypothalamus plays a role in regulating appetite. METHODS: Using pharmacological and genetic approaches, we investigated the role of HSL in the rodent brain in the regulation of feeding and energy homeostasis under basal conditions during acute stress and high-fat diet feeding. RESULTS: We found that HSL, a key enzyme in the catabolism of cellular lipid stores, is expressed in the appetite-regulating centers in the hypothalamus and is activated by acute stress through a mechanism similar to that observed in adipose tissue and skeletal muscle. Inhibition of HSL in rodent models by a synthetic ligand, global knockout, or brain-specific deletion of HSL prevents a decrease in food intake normally seen in response to acute stress and is associated with the increased expression of orexigenic peptides neuropeptide Y (NPY) and agouti-related peptide (AgRP). Increased food intake can be reversed by adeno-associated virus-mediated reintroduction of HSL in neurons of the mediobasal hypothalamus. Importantly, metabolic stress induced by a high-fat diet also enhances the hyperphagic phenotype of HSL-deficient mice. Specific deletion of HSL in the ventromedial hypothalamic nucleus (VMH) or AgRP neurons reveals that HSL in the VMH plays a role in both acute stress-induced food intake and high-fat diet-induced obesity. CONCLUSIONS: Our results indicate that HSL activity in the mediobasal hypothalamus is involved in the acute reduction in food intake during the acute stress response and sensing of a high-fat diet.


Assuntos
Apetite/fisiologia , Homeostase , Hipotálamo/metabolismo , Esterol Esterase/metabolismo , Proteína Relacionada com Agouti/metabolismo , Animais , Peso Corporal , Dieta Hiperlipídica/efeitos adversos , Ingestão de Alimentos , Metabolismo Energético , Feminino , Hiperfagia/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Neuropeptídeo Y/metabolismo , Obesidade/metabolismo , Fatores de Processamento de RNA , Esterol Esterase/genética , Estresse Fisiológico/genética , Transcriptoma
7.
Br J Nutr ; 125(8): 876-890, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32854790

RESUMO

An 8-week feeding trial was conducted to evaluate the effects of dietary n-3 LC-PUFA levels on growth performance, tissue fatty acid profiles and relative expression of genes involved in the lipid metabolism of mud crab (Scylla paramamosain). Ten isonitrogenous diets were formulated to contain five n-3 LC-PUFA levels at 7 and 12 % dietary lipid levels. The highest weight gain and specific growth rate were observed in crabs fed the diets with 19·8 and 13·2 mg/g n-3 LC-PUFA at 7 and 12 % lipid, respectively. Moisture and lipid contents in hepatopancreas and muscle were significantly influenced by dietary n-3 LC-PUFA at the two lipid levels. The DHA, EPA, n-3 LC-PUFA contents and n-3:n-6 PUFA ratio in hepatopancreas and muscle significantly increased as dietary n-3 LC-PUFA levels increased at both lipid levels. The expression levels of -6 fatty acyl desaturase and acyl-CoA oxidase in hepatopancreas increased significantly, and expression levels of fatty acid synthase, carnitine palmitoyltransferase I and hormone-sensitive TAG lipase were down-regulated, with increased dietary n-3 LC-PUFA regardless of lipid level. Based on weight gain, n-3 LC-PUFA requirements of S. paramamosain were estimated to be 20·1 and 12·7 mg/g of diet at 7 and 12 % dietary lipid, respectively. Overall, dietary lipid level influenced lipid metabolism, and purified, high-lipid diets rich in palmitic acid reduced the n-3 LC-PUFA requirement of juvenile mud crab.


Assuntos
Braquiúros/crescimento & desenvolvimento , Braquiúros/metabolismo , Gorduras na Dieta/administração & dosagem , Ácidos Graxos Ômega-3/administração & dosagem , Metabolismo dos Lipídeos , Ração Animal , Animais , Carnitina O-Palmitoiltransferase/metabolismo , Regulação para Baixo , Ácidos Graxos Dessaturases/metabolismo , Ácido Graxo Sintases/metabolismo , Ácidos Graxos Insaturados/biossíntese , Hepatopâncreas/metabolismo , Músculos/metabolismo , Esterol Esterase/metabolismo , Aumento de Peso
8.
Nutrients ; 12(8)2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32781523

RESUMO

Obesity is associated with insulin resistance and cardiovascular complications. In this paper, we examine the possible beneficial role of lemon juice in dieting. Lemon extract (LE) has been proposed to improve serum insulin levels and decrease angiotensin converting enzyme (ACE) activity in mouse models. ACE is also a biomarker for sustained weight loss and ACE inhibitors improve insulin sensitivity in humans. Here, we show that LE impacts adipose tissue metabolism directly. In 3T3-L1 differentiated adipocyte cells, LE improved insulin sensitivity as evidenced by a 3.74 ± 0.54-fold increase in both pAKT and GLUT4 levels. LE also induced lipolysis as demonstrated by a 16.6 ± 1.2 fold-change in pHSL protein expression levels. ACE gene expression increased 12.0 ± 0.1 fold during differentiation of 3T3-L1 cells in the absence of LE, and treatment with LE decreased ACE gene expression by 80.1 ± 0.5% and protein expression by 55 ± 0.37%. We conclude that LE's reduction of ACE expression causes increased insulin sensitivity and breakdown of lipids in adipocytes.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/farmacologia , Citrus , Resistência à Insulina/fisiologia , Lipólise/efeitos dos fármacos , Peptidil Dipeptidase A/efeitos dos fármacos , Extratos Vegetais/farmacologia , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Tecido Adiposo , Animais , Diferenciação Celular/efeitos dos fármacos , Modelos Animais de Doenças , Transportador de Glucose Tipo 4/metabolismo , Insulina/sangue , Metabolismo dos Lipídeos/efeitos dos fármacos , Camundongos , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Esterol Esterase/metabolismo
9.
Curr Protein Pept Sci ; 21(8): 812-820, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32013830

RESUMO

Dietary protein from fermented cottonseed meal (FCSM), widely used in poultry diets in China, had regulating effects on lipid metabolism. To understand the effects of FCSM on lipid metabolism in broilers, we analyzed the biochemical indexes, enzyme activity, hormone level and metabolites in serum responses to FCSM intake. One hundred and eighty 21-d-old Chinese yellow feathered broilers (536.07±4.43 g) were randomly divided into 3 groups with 6 replicates and 3 diets with 6 % supplementation of unfermented CSM (control group), FCSM by C. Tropicalis (Ct CSM) or C. tropicalis plus S. Cerevisae (Ct-Sc CSM). Result showed that: (1) FCSM intake decreased significantly the content of triglyceride (TAG), total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) (P<0.05) in serum; (2) FCSM intake could significantly increase enzyme activity of acetyl CoA carboxylase (ACC), lipoprotein lipase (LPL), fatty acid synthase (FAS) and hormone sensitive lipase (HSL) (P<0.05); (3) Ct-Sc CSM intake increased significantly the levels of adiponectin (ADP) (P<0.05); (4) FCSM intake caused significant metabolic changes involving glycolysis, TCA cycle, synthesis of fatty acid and glycogen, and metabolism of glycerolipid, vitamins B group and amino acids. Our results strongly suggested that FCSM intake could significantly affect lipid metabolism via multiple pathways. These findings provided new essential information about the effect of FCSM on broilers and demonstrated the great potential of nutrimetabolomics, through which the research complex nutrients are included in animal diet.


Assuntos
Óleo de Sementes de Algodão/metabolismo , Proteínas Alimentares/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo , Adiponectina/genética , Adiponectina/metabolismo , Aminoácidos/metabolismo , Ração Animal/análise , Animais , Candida tropicalis/metabolismo , Galinhas , LDL-Colesterol/sangue , Proteínas Alimentares/farmacologia , Ácido Graxo Sintases/genética , Ácido Graxo Sintases/metabolismo , Ácidos Graxos/metabolismo , Fermentação , Mucosa Intestinal/microbiologia , Metabolismo dos Lipídeos/genética , Lipase Lipoproteica/genética , Lipase Lipoproteica/metabolismo , Metaboloma/fisiologia , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Esterol Esterase/genética , Esterol Esterase/metabolismo , Triglicerídeos/sangue
10.
Molecules ; 25(1)2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31906305

RESUMO

Lipid metabolism dysfunction and obesity are serious health issues to human beings. The current study investigated the effects of hyperbaric oxygen (HBO) against high fat diet (HFD)-induced lipid metabolism dysfunction and the roles of L-carnitine. C57/B6 mice were fed with HFD or normal chew diet, with or without HBO treatment. Histopathological methods were used to assess the adipose tissues, serum free fatty acid (FFA) levels were assessed with enzymatic methods, and the endogenous circulation and skeletal muscle L-carnitine levels were assessed with liquid chromatography-tandem mass spectrometry (LC-MS/MS). Additionally, western blotting was used to assess the expression levels of PPARα, CPT1b, pHSL/HSL, and UCP1. HFD treatment increased body/adipose tissue weight, serum FFA levels, circulation L-carnitines and decreased skeletal muscle L-carnitine levels, while HBO treatment alleviated such changes. Moreover, HFD treatment increased fatty acid deposition in adipose tissues and decreased the expression of HSL, while HBO treatment alleviated such changes. Additionally, HFD treatment decreased the expression levels of PPARα and increased those of CPT1b in skeletal muscle, while HBO treatment effectively reverted such changes as well. In brown adipose tissues, HFD increased the expression of UCP1 and the phosphorylation of HSL, which was abolished by HBO treatment as well. In summary, HBO treatment may alleviate HFD-induced fatty acid metabolism dysfunction in C57/B6 mice, which seems to be associated with circulation and skeletal muscle L-carnitine levels and PPARα expression.


Assuntos
Tecido Adiposo/metabolismo , Carnitina/metabolismo , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Tecido Adiposo/citologia , Animais , Carnitina/sangue , Carnitina/química , Carnitina O-Palmitoiltransferase/metabolismo , Cromatografia Líquida , Oxigenoterapia Hiperbárica , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/enzimologia , Músculo Esquelético/metabolismo , Obesidade/tratamento farmacológico , PPAR alfa/metabolismo , Fosforilação , Esterol Esterase/química , Esterol Esterase/metabolismo , Espectrometria de Massas em Tandem , Proteína Desacopladora 1/metabolismo
11.
Phytomedicine ; 65: 153064, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31645009

RESUMO

BACKGROUND: Obesity develops when dietary energy intake exceeds energy expenditure, and can be associated with metabolic syndrome. Recent studies have shown that dietary phytochemicals can promote energy expenditure by inducing the browning of white adipose tissue (WAT). PURPOSE: This study investigated whether cardamonin induces the browning of 3T3-L1 adipocytes through the activation of protein kinase A (PKA). METHODS: Anti-obesity potential of cardamonin was evaluated in 3T3-L1 adipocytes. Adipocyte-specific genes were observed using western blot, qPCR analysis and immunocytochemistry. RESULTS: Cardamonin treatment inhibited lipid droplet accumulation and reduced the expression of the adipogenic proteins C/EBPα and FABP4, and the lipogenic proteins LPAATθ, lipin 1, DGAT1, SREBP1, and FAS. Cardamonin also induced the expression of the browning marker genes PRDM16, PGC1α, and UCP1 at the mRNA and protein levels, and induced mRNA expression of CD137, a key marker of beige adipocytes. It also increased the expression of the ß-oxidation genes CPT1 and PPARα at the mRNA and protein levels. In addition, cardamonin increased PKA phosphorylation and the mRNA and protein expression of the downstream lipolytic enzymes adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL). CONCLUSION: Our findings demonstrate novel effects of cardamonin to stimulate adipocyte browning, suppress lipogenesis, and promote lipolysis, implying it may have potential as an anti-obesity agent.


Assuntos
Adipócitos/efeitos dos fármacos , Fármacos Antiobesidade/farmacologia , Chalconas/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Lipogênese/efeitos dos fármacos , Células 3T3-L1 , Adipócitos/metabolismo , Adipócitos/patologia , Adipogenia/efeitos dos fármacos , Adipogenia/genética , Animais , Regulação da Expressão Gênica/efeitos dos fármacos , Lipase/metabolismo , Lipólise/efeitos dos fármacos , Camundongos , Oxirredução/efeitos dos fármacos , Esterol Esterase/metabolismo , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo
12.
Nutrients ; 11(10)2019 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-31547031

RESUMO

Allium hookeri (AH) is widely consumed as a herbal medicine. It possesses biological activity against metabolic diseases. The objective of this study was to investigate effects of AH root water extract (AHR) on adipogenesis in 3T3-L1 cells and in high-fat diet (HFD)-induced obese mice. AHR inhibited lipid accumulation during adipocyte differentiation by downregulation of gene expression, such as hormone sensitive lipase (HSL), lipoprotein lipase (LPL) and an adipogenic gene, CCAAT/enhancer binding protein-α in 3T3-L1 preadipocytes. Oral administration of AHR significantly suppressed body weight gain, adipose tissue weight, serum leptin levels, and adipocyte cell size in HFD-induced obese mice. Moreover, AHR significantly decreased hepatic mRNA expression levels of cholesterol synthesis genes, such as 3-hydroxy-3-methylglutaryl CoA reductase, sterol regulatory element-binding transcription factor (SREBP)-2, and low-density lipoprotein receptor, as well as fatty acid synthesis genes, such as SREBP-1c and fatty acid synthase. Serum triglyceride levels were also lowered by AHR, likely as a result of the upregulating gene involved in fatty acid ß-oxidation, carnitine palmitoyltransferase 1a, in the liver. AHR treatment activated gene expression of peroxisome proliferator-activated receptor-γ, which might have promoted HSL and LPL-medicated lipolysis, thereby reducing white adipose tissue weight. In conclusion, AHR treatment can improve metabolic alterations induced by HFD in mice by modifying expression levels of genes involved in adipogenesis, lipogenesis, and lipolysis in the white adipose tissue and liver.


Assuntos
Adipogenia/efeitos dos fármacos , Allium , Fármacos Antiobesidade/farmacologia , Obesidade/tratamento farmacológico , Fitoterapia , Extratos Vegetais/farmacologia , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Tecido Adiposo/efeitos dos fármacos , Animais , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Diferenciação Celular/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Leptina/sangue , Lipogênese/efeitos dos fármacos , Lipólise/efeitos dos fármacos , Lipase Lipoproteica/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Obesos , Obesidade/etiologia , Esterol Esterase/metabolismo , Aumento de Peso/efeitos dos fármacos
13.
BMC Complement Altern Med ; 19(1): 242, 2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-31488210

RESUMO

BACKGROUND: Cyanidin-3-rutinoside (C3R), a naturally occurring anthocyanin, possesses anti-oxidant, anti-hyperglycemic, anti-glycation and cardioprotective properties. However, its mechanisms responsible for anti-hyperlipidemic activity have not been fully identified. The aim of the study was to investigate the lipid-lowering mechanisms of C3R through inhibition of lipid digestion and absorption in vitro. METHODS: The inhibitory activity of C3R against pancreatic lipase and cholesterol esterase was evaluated using enzymatic fluorometric and enzymatic colorimetric assays, respectively. An enzyme kinetic study using Michaelis-Menten and the derived Lineweaver-Burk plot was performed to understand the possible types of inhibition. The formation of cholesterol micelles was determined using the cholesterol assay kit. The bile acid binding was measured using the colorimetric assay. The NBD cholesterol uptake in Caco-2 cells was determined using fluorometric assay. The mRNA expression of cholesterol transporter (Niemann-Pick C1-like 1) was determined by RT-PCR. RESULTS: The results showed that C3R was a mixed-type competitive inhibitor of pancreatic lipase with the IC50 value of 59.4 ± 1.41 µM. Furthermore, C3R (0.125-1 mM) inhibited pancreatic cholesterol esterase about 5-18%. In addition, C3R inhibited the formation of cholesterol micelles and bound to primary and secondary bile acid. In Caco-2 cells, C3R (12.5-100 µM) exhibited a significant reduction in cholesterol uptake in both free cholesterol (17-41%) and mixed micelles (20-30%). Finally, C3R (100 µM) was able to suppress mRNA expression of NPC1L1 in Caco-2 cells after 24 h incubation. CONCLUSIONS: The present findings suggest that C3R acts as a lipid-lowering agent through inhibition of lipid digestion and absorption.


Assuntos
Antocianinas/farmacologia , Inibidores Enzimáticos/farmacologia , Absorção Intestinal/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Animais , Antocianinas/química , Transporte Biológico/efeitos dos fármacos , Células CACO-2 , Colesterol/química , Colesterol/metabolismo , Inibidores Enzimáticos/química , Humanos , Cinética , Esterol Esterase/antagonistas & inibidores , Esterol Esterase/química , Esterol Esterase/metabolismo , Suínos
14.
Photobiomodul Photomed Laser Surg ; 37(2): 66-69, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31050926

RESUMO

Background: The lipid metabolism is essential for maintaining the body's energy responses. Laser photobiomodulation triggers many important cellular effects, but these effects on lipid metabolism are not well described. In this study, we analyzed the laser photobiomodulation in the hormone-sensitive lipase (HSL) activity, a key enzyme in the triglycerides (TAG) hydrolysis in adipose tissue 3T3-L1. Methods: Cells were submitted to the differentiation protocol in adipose cells, irradiated with 1, 2, and 3J with laser (904 nm-60 mw-laser diode) and incubated for 4 h after irradiation. Results: The response of laser photobiomodulation was able to trigger an inhibition of HSL activity (control = 0.057 ± 0.0008; 1J = 0.050 ± 0.0003; 2J = 0.0477 ± 0.002; 3J = 0.051 ± 0.002; p = 0.0003 against the control), but no modulation was observed in TAG levels into the medium (control = 26.5856 ± 0.52; 1J = 26.5856 ± 0.52; 2J = 27.2372 ± 1.41; 3J = 25.9991 ± 0.1303; p = 0.18). Conclusions: This is the first study of HSL activity modulation with laser radiation, suggesting that photobiomodulation can influence adipose tissue metabolism and open a new field of study.


Assuntos
Adipócitos/metabolismo , Adipócitos/efeitos da radiação , Metabolismo dos Lipídeos/efeitos da radiação , Terapia com Luz de Baixa Intensidade , Esterol Esterase/metabolismo , Células 3T3-L1 , Animais , Técnicas de Cultura de Células , Diferenciação Celular , Camundongos
15.
Phytomedicine ; 55: 255-263, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30668437

RESUMO

BACKGROUND: We previously showed that 3-O-ß-D-glucopyranosyl-(3R)-hydroxybutanolide (kinsenoside), a major compound of Anoectochilus formosanus, increased lipolysis through an AMP-activated protein kinase (AMPK)-dependent pathway. PURPOSE: To extend our previous finding, we investigated the in vivo and in vitro effects of kinsenoside on lipolysis and the involvement of cyclic AMP (cAMP)-dependent protein kinase A (PKA) and AMPK in kinsenoside-mediated lipolysis. STUDY DESIGN/METHODS: Mice were fed a high-fat diet for six weeks to induce lipid deposition and then treated with 50 and 100  mg/kg kinsenoside for two weeks. The coordination of PKA and AMPK activation in lipolysis in C3H10T1/2 adipocytes was evaluated in vitro by using PKA and AMPK's corresponding inhibitors, oil-red O staining, a glycerol production assay, and Western blot analysis. RESULTS: Kinsenoside reduced body weight, fat pad mass, and hepatic lipid accumulation in obese mice, and concurrently increased the induction and activation of hormone-sensitive lipase (HSL), perilipin, adipose triglyceride lipase (ATGL), and carnitine palmitoyltransferase I (CPT1). Kinsenoside concentration-dependently increased PKA activation by increasing the phosphorylation of Ser/Thr-PKA substrates in vitro. These increases were accompanied by a reduction in fat accumulation. Using H89 and Rp-8-Br-cAMPs to inhibit PKA reduced the release of glycerol but did not alter the activation of peroxisome proliferator-activated receptor alpha or the expression of CPT1 or ATGL. By contrast, compound C, an AMPK inhibitor, inhibited CPT1 and ATGL expression in kinsenoside-treated C3H10T1/2 adipocytes. In addition, H89 caused the reactivation of AMPK downstream targets by increasing the levels of the active form of pAMPK-Thr172, suggesting that PKA negatively modulates AMPK activity. CONCLUSION: Kinsenoside increased HSL activation through PKA-mediated phosphorylation at Ser660/563 and concomitantly increased perilipin activation in lipolysis. These lipolytic effects of kinsenoside were validated using 6-Bnz-cAMPs, a PKA agonist. In this study, we demonstrated that in addition to AMPK, PKA also plays a crucial role in kinsenoside-mediated lipolysis.


Assuntos
4-Butirolactona/análogos & derivados , Proteínas Quinases Ativadas por AMP/metabolismo , Adipócitos/efeitos dos fármacos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Lipólise/efeitos dos fármacos , Monossacarídeos/metabolismo , Extratos Vegetais/metabolismo , Esterol Esterase/metabolismo , 4-Butirolactona/metabolismo , Animais , Masculino , Camundongos , Orchidaceae/química , Extratos Vegetais/química
16.
Biomed Pharmacother ; 109: 2441-2446, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30551504

RESUMO

Diabetes mellitus is characterized by hyperglycaemia that results from defects in insulin secretion or insulin action and is accompanied by general disturbances metabolism. Psidium guajava (PG) leaf is known to have antidiabetic effects that include lowering of blood glucose. The aim of the study was to investigate the effect of PG leaf extract on tissue activity of glycogen synthase (GS) and glycogen phosphorylase (GP); tissue activity of hormone sensitive lipase (HSL); serum lipid profile; and serum enzyme biomarkers of tissue damage. Diabetes was induced in male Sprague-Dawley rats with a single dose of 40 mg/kg body weight streptozotocin. The aqueous extract of PG leaves was used to treat both normal and diabetic animals (400 mg/kg body weight) for 2 weeks while control animals were treated with the vehicle. At the end of the treatment period, blood, liver and adipose tissue samples were collected from the euthanized animals. The results show that PG extract significantly decreased (P < 0.05) HSL activity in adipose tissue and liver of diabetic animals which was accompanied by increased glycogen levels, reduced serum triglycerides, total cholesterol, LDL-cholesterol and increased HDL-cholesterol. This study demonstrates that P. guajava has significant anti-diabetic effects that include increased glycogen storage and reduced HSL activity in the liver and adipose tissue with an improved serum lipid profile.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Lipídeos/sangue , Glicogênio Hepático/metabolismo , Extratos Vegetais/uso terapêutico , Psidium , Esterol Esterase/metabolismo , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Lipídeos/antagonistas & inibidores , Glicogênio Hepático/antagonistas & inibidores , Masculino , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Folhas de Planta , Ratos , Ratos Sprague-Dawley , Esterol Esterase/antagonistas & inibidores , Resultado do Tratamento
17.
Nutrients ; 12(1)2019 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-31892138

RESUMO

Sea buckthorn oil, derived from the fruits of the shrub, also termed seaberry or sandthorn, is without doubt a strikingly rich source of carotenoids, in particular zeaxanthin and ß-carotene. In the present study, sea buckthorn oil and an oil-in-water emulsion were subjected to a simulated gastro-intestinal in vitro digestion, with the main focus on xanthophyll bioaccessibility. Zeaxanthin mono- and di-esters were the predominant carotenoids in sea buckthorn oil, with zeaxanthin dipalmitate as the major compound (38.0%). A typical fatty acid profile was found, with palmitic (49.4%), palmitoleic (28.0%), and oleic (11.7%) acids as the dominant fatty acids. Taking into account the high amount of carotenoid esters present in sea buckthorn oil, the use of cholesterol esterase was included in the in vitro digestion protocol. Total carotenoid bioaccessibility was higher for the oil-in-water emulsion (22.5%) compared to sea buckthorn oil (18.0%) and even higher upon the addition of cholesterol esterase (28.0% and 21.2%, respectively). In the case of sea buckthorn oil, of all the free carotenoids, zeaxanthin had the highest bioaccessibility (61.5%), followed by lutein (48.9%), making sea buckthorn oil a potential attractive source of bioaccessible xanthophylls.


Assuntos
Hippophae/química , Óleos de Plantas/química , Xantofilas/farmacocinética , Disponibilidade Biológica , Digestão , Emulsões/química , Ácidos Graxos/análise , Frutas/química , Suco Gástrico/enzimologia , Humanos , Intestino Delgado/enzimologia , Luteína/farmacocinética , Esterol Esterase/metabolismo , Xantofilas/análise , Zeaxantinas/farmacocinética , beta Caroteno/farmacocinética
18.
BMC Complement Altern Med ; 18(1): 326, 2018 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-30526586

RESUMO

BACKGROUND: Cordyceps sinensis has been used for centuries in China as one of the most valued herbal medicine and tonic food. Paecilomyces hepiali, a fungal strain isolated from natural C. sinensis, has been used widely as a substitute of C. sinensis in medicine and health food. P. hepiali has been reported to have various pharmaceutical benefits, including triglyceride-lowing activity. However, its effects on triglyceride metabolism in adipocytes remain unknown. The purpose of the present study was to evaluate the effect of P. hepiali mycelia on adipocyte lipolysis and to clarify the underlying mechanisms. METHODS: The fully differentiated 3T3-L1 adipocytes were treated with methanol extract of Paecilomyces hepiali mycelia (PHME). Contents of glycerol released into the culture medium and intracellular triglyceride were measured as indices of lipolysis using glycerol assay kit and Oil red O staining, respectively. Then, effects of PHME on the main lipases or kinases involved in lipolysis regulation were investigated. Protein expression of adipose triglyceride lipase (ATGL) and perilipin, as well as phosphorylation of hormone-sensitive lipase (HSL), AMP-activated protein kinase (AMPK), and mitogen-activated protein kinases (MAPKs) were determined by western blotting. Moreover, nucleosides, important constituents of PHME, were analyzed using high performance liquid chromatography (HPLC). RESULTS: Treatment with PHME led to a significant increase in glycerol release thereby reduced intracellular triglyceride accumulation in fully differentiated adipocytes. PHME upregulated protein kinase (PK) A-mediated phosphorylation of HSL at serine residues of 563 and 660. Meanwhile, PHME treatment also upregulated phosphorylation of extracellular signal-regulated kinase (ERK), and downregulated the protein level of perilipin. Pretreatment with the PKA inhibitor, H89, blunted the PHME-induced lipolysis and the phosphorylation of HSL (Ser 563 and 660). Moreover, pretreatment with ERK inhibitor, PD98059, weakened the PHME-caused glycerol release and downregulation of perilipin expression. HPLC analysis indicated there were adenosine, cordycepin, uridine and vernine in PHME. CONCLUSIONS: Our results showed that PHME significantly induced lipolysis in 3T3-L1 adipocytes, which is mainly mediated by activation of HSL through PKA pathway and by downregulation of perilipin through activation of ERK pathway.


Assuntos
Produtos Biológicos/farmacologia , Lipólise/efeitos dos fármacos , Paecilomyces/química , Perilipina-1/metabolismo , Esterol Esterase/metabolismo , Células 3T3-L1 , Animais , Sobrevivência Celular/efeitos dos fármacos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Regulação para Baixo/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Camundongos , Micélio/química , Fosforilação
19.
Am J Physiol Endocrinol Metab ; 315(5): E1053-E1061, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30153067

RESUMO

An ethanolic extract of Artemisia scoparia (SCO) has metabolically favorable effects on adipocyte development and function in vitro and in vivo. In diet-induced obese mice, SCO supplementation significantly reduced fasting glucose and insulin levels. Given the importance of adipocyte lipolysis in metabolic health, we hypothesized that SCO modulates lipolysis in vitro and in vivo. Free fatty acids and glycerol were measured in the sera of mice fed a high-fat diet with or without SCO supplementation. In cultured 3T3-L1 adipocytes, the effects of SCO on lipolysis were assessed by measuring glycerol and free fatty acid release. Microarray analysis, qPCR, and immunoblotting were used to assess gene expression and protein abundance. We found that SCO supplementation of a high-fat diet in mice substantially reduces circulating glycerol and free fatty acid levels, and we observed a cell-autonomous effect of SCO to significantly attenuate tumor necrosis factor-α (TNFα)-induced lipolysis in cultured adipocytes. Although several prolipolytic and antilipolytic genes were identified by microarray analysis of subcutaneous and visceral adipose tissue from SCO-fed mice, regulation of these genes did not consistently correlate with SCO's ability to reduce lipolytic metabolites in sera or cell culture media. However, in the presence of TNFα in cultured adipocytes, SCO induced antilipolytic changes in phosphorylation of hormone-sensitive lipase and perilipin. Together, these data suggest that the antilipolytic effects of SCO on adipose tissue play a role in the ability of this botanical extract to improve whole body metabolic parameters and support its use as a dietary supplement to promote metabolic resiliency.


Assuntos
Adipócitos/efeitos dos fármacos , Artemisia , Lipólise/efeitos dos fármacos , Extratos Vegetais/farmacologia , Células 3T3-L1 , Adipócitos/metabolismo , Animais , Células Cultivadas , Ácidos Graxos não Esterificados/sangue , Glicerol/sangue , Camundongos , Perilipina-1/metabolismo , Fosforilação/efeitos dos fármacos , Esterol Esterase/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
20.
Sci Rep ; 8(1): 11151, 2018 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-30042516

RESUMO

It is currently unclear as to whether sex hormones are significantly affected by soy or whey protein consumption. Additionally, estrogenic signaling may be potentiated via soy protein supplementation due to the presence of phytoestrogenic isoflavones. Limited also evidence suggests that whey protein supplementation may increase androgenic signaling. Therefore, the purpose of this study was to examine the effects of soy protein concentrate (SPC), whey protein concentrate (WPC), or placebo (PLA) supplementation on serum sex hormones, androgen signaling markers in muscle tissue, and estrogen signaling markers in subcutaneous (SQ) adipose tissue of previously untrained, college-aged men (n = 47, 20 ± 1 yrs) that resistance trained for 12 weeks. Fasting serum total testosterone increased pre- to post-training, but more so in subjects consuming WPC (p < 0.05), whereas serum 17ß-estradiol remained unaltered. SQ estrogen receptor alpha (ERα) protein expression and hormone-sensitive lipase mRNA increased with training regardless of supplementation. Muscle androgen receptor (AR) mRNA increased while ornithine decarboxylase mRNA (a gene target indicative of androgen signaling) decreased with training regardless of supplementation (p < 0.05). No significant interactions of supplement and time were observed for adipose tissue ERα/ß protein levels, muscle tissue AR protein levels, or mRNAs in either tissue indicative of altered estrogenic or androgenic activity. Interestingly, WPC had the largest effect on increasing type II muscle fiber cross sectional area values (Cohen's d = 1.30), whereas SPC had the largest effect on increasing this metric in type I fibers (Cohen's d = 0.84). These data suggest that, while isoflavones were detected in SPC, chronic WPC or SPC supplementation did not appreciably affect biomarkers related to muscle androgenic signaling or SQ estrogenic signaling. The noted fiber type-specific responses to WPC and SPC supplementation warrant future research.


Assuntos
Suplementos Nutricionais , Genisteína/administração & dosagem , Isoflavonas/administração & dosagem , Fitoestrógenos/administração & dosagem , Extratos Vegetais/administração & dosagem , Treinamento Resistido , Proteínas de Soja/química , Proteínas do Soro do Leite/química , Tecido Adiposo/metabolismo , Adulto , Estradiol/sangue , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/metabolismo , Humanos , Masculino , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares de Contração Lenta/metabolismo , Músculo Esquelético/metabolismo , Ornitina Descarboxilase/metabolismo , Receptores Androgênicos/metabolismo , Esterol Esterase/metabolismo , Testosterona/sangue , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA