Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nutrients ; 13(11)2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34836248

RESUMO

The microalgal genus Nannochloropsis has broad applicability to produce biofuels, animal feed supplements and other value-added products including proteins, carotenoids and lipids. This study investigated a potential role of N. oceanica in the reversal of metabolic syndrome. Male Wistar rats (n = 48) were divided into four groups in a 16-week protocol. Two groups were fed either corn starch or high-carbohydrate, high-fat diets (C and H, respectively) for the full 16 weeks. The other two groups received C and H diets for eight weeks and then received 5% freeze-dried N. oceanica in these diets for the final eight weeks (CN and HN, respectively) of the protocol. The H diet was high in fructose and sucrose, together with increased saturated and trans fats. H rats developed obesity, hypertension, dyslipidaemia, fatty liver disease and left ventricular fibrosis. N. oceanica increased lean mass in CN and HN rats, possibly due to the increased protein intake, and decreased fat mass in HN rats. Intervention with N. oceanica did not change cardiovascular, liver and metabolic parameters or gut structure. The relative abundance of Oxyphotobacteria in the gut microbiota was increased. N. oceanica may be an effective functional food against metabolic syndrome as a sustainable protein source.


Assuntos
Dieta Hiperlipídica , Alimentos , Síndrome Metabólica/etiologia , Síndrome Metabólica/terapia , Microalgas/fisiologia , Estramenópilas/fisiologia , Animais , Bactérias/classificação , Fezes/microbiologia , Microbioma Gastrointestinal , Masculino , Microbiota , Especificidade de Órgãos , Filogenia , Ratos Wistar
2.
Photosynth Res ; 140(3): 337-354, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30701484

RESUMO

This work highlights spectroscopic investigations on a new representative of photosynthetic antenna complexes in the LHC family, a putative violaxanthin/vaucheriaxanthin chlorophyll a (VCP) antenna complex from a freshwater Eustigmatophyte alga FP5. A representative VCP-like complex, named as VCP-B3 was studied with both static and time-resolved spectroscopies with the aim of obtaining a deeper understanding of excitation energy migration within the pigment array of the complex. Compared to other VCP representatives, the absorption spectrum of the VCP-B3 is strongly altered in the range of the chlorophyll a Qy band, and is substantially red-shifted with the longest wavelength absorption band at 707 nm at 77 K. VCP-B3 shows a moderate xanthophyll-to-chlorophyll a efficiency of excitation energy transfer in the 50-60% range, 20-30% lower from comparable VCP complexes from other organisms. Transient absorption studies accompanied by detailed data fitting and simulations support the idea that the xanthophylls that occupy the central part of the complex, complementary to luteins in the LHCII, are violaxanthins. Target analysis suggests that the primary route of xanthophyll-to-chlorophyll a energy transfer occurs via the xanthophyll S1 state.


Assuntos
Transferência de Energia , Complexos de Proteínas Captadores de Luz/metabolismo , Estramenópilas/fisiologia , Clorofila A/metabolismo , Luz , Fotossíntese , Estramenópilas/efeitos da radiação , Tilacoides/metabolismo , Xantofilas/metabolismo
3.
Harmful Algae ; 76: 66-79, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29887206

RESUMO

The potential for toxic contaminants and nutrient pollution to alter natural cycles of estuarine phytoplankton blooms is well known, yet few studies have examined how these combined stressors affect harmful algal species. Here, a robust testing protocol was developed to enable an ecotoxicological assessment of responses to commonly co-occurring estuarine contaminants by harmful algal bloom species. The population growth and toxicity (as cell density and hemolytic activity, respectively) of a cultured strain of the toxigenic raphidiophycean, Chattonella subsalsa, were assessed in two experiments (duration 10 days and 28 days) across a gradient of atrazine concentrations and N:P ratios simulating nutrient-rich versus nutrient-depleted regimes. The response of this large-celled, slowly growing alga to atrazine × nutrients depended on growth phase; atrazine was most inhibitory during early exponential population growth (day 10), whereas nutrient regime was a more important influence during later phases of growth (day 28). Without atrazine, toxicity toward fish was highest in low-P cultures. At atrazine levels >25 µg L-1, hemolytic activity was highest in low-N cultures, and increased with increasing atrazine concentration in all nutrient-limited cultures. Hemolytic activity varied inversely with atrazine concentration in N,P-replete conditions. Overall, atrazine inhibitory effects on population growth of this C. subsalsa strain depended on the growth phase and the nutrient regime; hemolytic activity was higher and further enhanced by atrazine in low N-P regimes; and atrazine inhibited hemolytic activity in nutrient-replete conditions. The data suggest that, depending on the growth phase and nutrient regime, atrazine can help promote toxic C. subsalsa blooms.


Assuntos
Proliferação Nociva de Algas/fisiologia , Fitoplâncton/fisiologia , Estramenópilas/fisiologia , Poluentes Químicos da Água/análise , Animais , Atrazina/análise , Estuários , Peixes/sangue , Hemólise , Nitrogênio/análise , Nutrientes/análise , Fósforo/análise , Fitoplâncton/crescimento & desenvolvimento , Estramenópilas/crescimento & desenvolvimento , Fatores de Tempo
4.
Plant Physiol ; 175(4): 1543-1559, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29051196

RESUMO

Molecular mechanisms of phosphorus (P) limitation are of great interest for understanding algal production in aquatic ecosystems. Previous studies point to P limitation-induced changes in lipid composition. As, in microalgae, the molecular mechanisms of this specific P stress adaptation remain unresolved, we reveal a detailed phospholipid-recycling scheme in Nannochloropsis oceanica and describe important P acquisition genes based on highly corresponding transcriptome and lipidome data. Initial responses to P limitation showed increased expression of genes involved in P uptake and an expansion of the P substrate spectrum based on purple acid phosphatases. Increase in P trafficking displayed a rearrangement between compartments by supplying P to the chloroplast and carbon to the cytosol for lipid synthesis. We propose a novel phospholipid-recycling scheme for algae that leads to the rapid reduction of phospholipids and synthesis of the P-free lipid classes. P mobilization through membrane lipid degradation is mediated mainly by two glycerophosphoryldiester phosphodiesterases and three patatin-like phospholipases A on the transcriptome level. To compensate for low phospholipids in exponential growth, N. oceanica synthesized sulfoquinovosyldiacylglycerol and diacylglyceroltrimethylhomoserine. In this study, it was shown that an N. oceanica strain has a unique repertoire of genes that facilitate P acquisition and the degradation of phospholipids compared with other stramenopiles. The novel phospholipid-recycling scheme opens new avenues for metabolic engineering of lipid composition in algae.


Assuntos
Organismos Aquáticos , Microalgas/metabolismo , Fósforo/metabolismo , Estramenópilas/fisiologia , Transporte Biológico/fisiologia , Carbono/metabolismo , Metabolismo dos Lipídeos , Lipídeos/classificação
5.
Sci Rep ; 7: 44869, 2017 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-28303953

RESUMO

While it is crucial to understand the factors that determine the biodiversity of primary producer communities, the relative importance of bottom-up and top-down control factors is still poorly understood. Using freshwater benthic algal communities in the laboratory as a model system, we find an unimodal relationship between nutrient availability and producer diversity, and that increasing number of consumer species increases producer diversity, but overall grazing decreases algal biodiversity. Interestingly, these two factors interact strongly in determining producer diversity, as an increase in nutrient supply diminishes the positive effect of consumer species richness on producer biodiversity. This novel and thus-far overlooked interaction of bottom-up and top-down control mechanisms of biodiversity may have a pronounced impact on ecosystem functioning and thus have repercussions for the fields of biodiversity conservation and restoration.


Assuntos
Biodiversidade , Ecossistema , Fenômenos Fisiológicos da Nutrição , Estramenópilas/fisiologia , Biomassa , Fósforo/metabolismo
6.
Environ Sci Pollut Res Int ; 23(17): 17793-800, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27250087

RESUMO

The effects of five natural products from Chinese herbs including evodiamine, curcumin, 4-methoxysalicylaldehyde, esculin hydrate, and gramine on the growth of Chattonella marina, one of the most noxious red tide algae, were observed. Among them, gramine exhibited the highest inhibitory rate with LC50, 96h of 0.51 mg/l. After exposure to gramine, the activities of superoxide dismutase (SOD) and catalase (CAT), and content of malondialdehyde (MDA) increased in C. marina, suggesting that gramine could induce microalgae oxidative stress. In addition, chlorophyll a and the maximum quantum yield of photosynthesis (Fv/Fm) decreased following exposure to gramine, indicating the inhibition of photosynthesis activity in the microalgae. Combined with the fast inhibition against the algal cells and environmentally friendly character of gramine, we proposed that gramine might be a potential algaecide against marine harmful algae and that the oxidative damage and photosynthesis inhibition might be responsible for the toxicity of gramine on harmful algae.


Assuntos
Produtos Biológicos/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Estramenópilas/efeitos dos fármacos , Alcaloides/farmacologia , Benzaldeídos/farmacologia , Catalase/metabolismo , Clorofila/metabolismo , Curcumina/farmacologia , Proliferação Nociva de Algas/efeitos dos fármacos , Alcaloides Indólicos , Malondialdeído/metabolismo , Microalgas/metabolismo , Oxirredução , Estresse Oxidativo , Fotossíntese/efeitos dos fármacos , Quinazolinas/farmacologia , Estramenópilas/fisiologia , Superóxido Dismutase/metabolismo
7.
J Anim Sci ; 92(5): 2202-13, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24668954

RESUMO

Microalgae are the original source of docosahexaenoic acid (DHA; 22:6n-3) in the marine food chain, and its inclusion in animal feeds has been considered as a means of increasing the DHA level in foods of animal origin. As such, this study aimed to investigate the effects of supplementing an algal meal, high in DHA derived from Schizochytrium spp. (DHA-G), in the diet of Canadian Arcott lambs, on growth, carcass characteristics, wool production, and fatty acid (FA) profiles of subcutaneous adipose tissues (SAT), perirenal adipose tissues (PAT), and skirt muscle (SM). Forty-four lambs were randomly assigned to dietary treatments. Diets consisted of a pelleted, barley-based finishing diet with DHA-G supplemented at 0, 1, 2, or 3% DM as a replacement for flax oil and barley grain. Feed deliveries and orts were recorded daily. Lambs were weighed weekly and slaughtered once they reached ≥ 45 kg live weight. Carcass characteristics, ruminal pH, and liver weights were determined at slaughter. Wool yield was determined on mid-side patches of 100 cm(2) shorn at d 0 and on the day before slaughter (d 105 or 140). Dye bands were used to determine wool growth, fiber diameter, and staple length. Adipose tissues and SM samples were taken at slaughter and analyzed for FA profiles. Data were analyzed using mixed procedure in SAS with orthogonal contrasts testing for linear, quadratic, or cubic responses to increasing levels of DHA-G. Daily DMI, ADG, and G:F were similar as were wool quality and yield (P > 0.05). Carcass characteristics were generally unaffected (P > 0.05), except for body wall thickness (mm), which showed a quadratic response (P = 0.01) with increasing DHA-G. The concentration of eicosapentaenoic acid (EPA; 20:5n-6; mg/100 g fresh tissue) linearly increased (P < 0.001) with DHA-G in both adipose tissues and responded quadratically in SM (P = 0.05). Similarly, DHA (mg/100 g fresh tissue) increased linearly (P < 0.01) with DHA-G in all tissue types (P < 0.001). Supplementing DHA-G decreased (P < 0.001) the n-6:n-3 ratio in all tissues. No effects (P ≥ 0.05) on PUFA or SFA were observed across the 3 tissues, with no response (P ≥ 0.10) in the SFA:PUFA ratio in either SM or SAT; however, the SFA:PUFA ratio linearly decreased in PAT (P = 0.01) as DHA-G increased. These results indicate that DHA-G can be successfully included in the diets of growing lambs, up to 3% DM, with the potential to improve carcass characteristics and the FA profile of adipose tissue and muscle.


Assuntos
Ácidos Graxos/metabolismo , Ovinos/fisiologia , Estramenópilas/fisiologia , Lã/crescimento & desenvolvimento , Tecido Adiposo/química , Tecido Adiposo/metabolismo , Animais , Suplementos Nutricionais , Relação Dose-Resposta a Droga , Ácidos Graxos/química , Feminino , Masculino , Músculo Esquelético/química , Músculo Esquelético/metabolismo
8.
ISME J ; 7(7): 1333-43, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23466703

RESUMO

The trace element selenium (Se) is required for the biosynthesis of selenocysteine (Sec), the 21st amino acid in the genetic code, but its role in the ecology of harmful algal blooms (HABs) is unknown. Here, we examined the role of Se in the biology and ecology of the harmful pelagophyte, Aureococcus anophagefferens, through cell culture, genomic analyses, and ecosystem studies. This organism has the largest and the most diverse selenoproteome identified to date that consists of at least 59 selenoproteins, including known eukaryotic selenoproteins, selenoproteins previously only detected in bacteria, and novel selenoproteins. The A. anophagefferens selenoproteome was dominated by the thioredoxin fold proteins and oxidoreductase functions were assigned to the majority of detected selenoproteins. Insertion of Sec in these proteins was supported by a unique Sec insertion sequence. Se was required for the growth of A. anophagefferens as cultures grew maximally at nanomolar Se concentrations. In a coastal ecosystem, dissolved Se concentrations were elevated before and after A. anophagefferens blooms, but were reduced by >95% during the peak of blooms to 0.05 nM. Consistent with this pattern, enrichment of seawater with selenite before and after a bloom did not affect the growth of A. anophagefferens, but enrichment during the peak of the bloom significantly increased population growth rates. These findings demonstrate that Se inventories, which can be anthropogenically enriched, can support proliferation of HABs, such as A. anophagefferens through its synthesis of a large arsenal of Se-dependent oxidoreductases that fine-tune cellular redox homeostasis.


Assuntos
Água do Mar/parasitologia , Selênio/metabolismo , Selenoproteínas/genética , Selenoproteínas/metabolismo , Estramenópilas/fisiologia , Bioquímica , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Elementos de DNA Transponíveis/genética , Ecologia , Genes de Protozoários/genética , Proteoma , Selênio/farmacologia , Estramenópilas/efeitos dos fármacos , Estramenópilas/genética , Estramenópilas/crescimento & desenvolvimento , Estramenópilas/metabolismo , Oligoelementos/farmacologia
9.
J Basic Microbiol ; 53(1): 29-36, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22581481

RESUMO

Alteration of lipid biosynthesis is one of important biochemical changes when oleaginous microalgae grow under varied environmental conditions. The effects of culture age and nutrient limitation on triacylglycerol (TAG) accumulation and fatty acid content were investigated in four eicosapentaenoic acid (EPA)-rich marine microalgae. The amounts of TAGs in Chaetoceros sp., Phaeodactylum tricornutum and Nannochloropsis oculata increased sharply from day 4 to day 11, and then the former two remained nearly unchanged while the latter declined gradually during the batch culture. In contrast, no marked increase in TAG accumulation was observed in Pavlova viridis during the culture. Changes in total fatty acid (TFA) content mirrored those observed for TAG accumulation, while the EPA content reached a maximum generally at day 7 or 11 in the range of 11 - 32 mg g(-1) dry cell weight (DCW) and then declined. Nitrogen limitation led to a gradual increase in the amounts of TAGs from N. oculata pronouncedly but almost no change in other three species. The TFA content of the cultures after 5 days of nitrogen limitation was nearly twice that after 1 day in Chaetoceros sp., P. tricornutum and P. viridis, while the lowest increase (220 - 283 mg g(-1) DCW) was observed in N. oculata. TAGs increased gradually under phosphorus limitation in all four species but not sharply compared with that under nitrogen limitation in N. oculata. The TFA content increased gradually under phosphorus limitation and after 5 days of phosphorus limitation it was 1.5 - 2 times that after 1 day. The EPA content was generally not significantly affected by nitrogen or phosphorus limitation. Culture age and nutrient limitation could be useful variables for optimizing TAG accumulation and fatty acid content with potential for biodiesel production.


Assuntos
Técnicas de Cultura de Células/métodos , Ácidos Graxos/metabolismo , Microalgas/fisiologia , Triglicerídeos/metabolismo , Organismos Aquáticos , Ácidos Graxos/análise , Ácidos Graxos/química , Haptófitas/metabolismo , Haptófitas/fisiologia , Microalgas/metabolismo , Fósforo/metabolismo , Estramenópilas/metabolismo , Estramenópilas/fisiologia , Triglicerídeos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA