Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 922: 171219, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38408665

RESUMO

Strobilurin fungicides (SFs) are commonly used in agriculture worldwide and frequently detected in aquatic environments. High toxicity of SFs to aquatic organisms has caused great concerns. To explore whether vitamin E (VE) can relieve the toxicity caused by pyraclostrobin (PY), zebrafish were exposed to PY with or without VE supplementation. When co-exposure with VE (20 µM), the 96 h-LC50 values of PY to zebrafish embryos, adult, and the 24 h-LC50 value of PY to larvae increased from 43.94, 58.36 and 38.16 µg/L to 64.72, 108.62 and 72.78 µg/L, respectively, indicating that VE significantly decreased the toxicity of PY to zebrafish at different life stages. In addition, VE alleviated the deformity symptoms (pericardial edema and brain damage), reduced speed and movement distance, and decreased heart rate caused by 40 µg/L PY in zebrafish larvae. Co-exposure of PY with VE significantly reduced PY-caused larval oxidative stress and immunotoxicity via increasing the activities of superoxide dismutase, catalase and level of glutathione, as well as reducing the malondialdehyde production and the expression levels of Nrf2, Ucp2, IL-8, IFN and CXCL-C1C. Meanwhile, the expression levels of gria4a and cacng4b genes, which were inhibited by PY, were significantly up-regulated after co-exposure of PY with VE. Moreover, co-exposure with VE significantly reversed the increased mitochondrial DNA copies and reduced ATP content caused by PY in larvae, but had no effect on the expression of cox4i1l and activity of complex III that reduced by PY, suggesting VE can partially improve PY-induced mitochondrial dysfunction. In conclusion, the potential mechanisms of VE alleviating PY-induced toxicity may be ascribed to decreasing the oxidative stress level, restoring the functions of heart and nervous system, and improving the immunity and mitochondrial function in zebrafish.


Assuntos
Fungicidas Industriais , Poluentes Químicos da Água , Animais , Estrobilurinas/toxicidade , Peixe-Zebra/metabolismo , Vitamina E/metabolismo , Vitamina E/farmacologia , Poluentes Químicos da Água/metabolismo , Estresse Oxidativo , Fungicidas Industriais/metabolismo , Larva , Embrião não Mamífero
2.
J Environ Sci Health B ; 59(4): 152-159, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38347689

RESUMO

Picoxystrobin is a systemic fungicide widely used on potato, citrus fruit, and Dendrobium officinale. To provide information for the risk assessment of potato, citrus, and Dendrobium officinale, field experiments combined with QuEChERS and HPLC-MS/MS were performed to detect picoxystrobin. Picoxystrobin had good linearity (R2 > 0.99), the average recovery rate was 75 - 102%, and the relative standard deviation was 1 - 11%. Picoxystrobin was utilized as the test agent in field experiments, and samples were evaluated and analyzed at various times after the final application utilizing random sampling. The results showed that picoxystrobin residuals in potato and citrus (orange meat) were ˂ 0.01 mg kg-1, whereas those in citrus whole fruit, D. officinale (fresh), and D. officinale (dried) were < 0.05 - 0.084, 0.16 - 3.82, and 0.34 - 9.05 mg kg-1, respectively. Based on these results, both the acute risk quotient (2.77%) and chronic risk quotient (8.7%) were ˂100%, and the dietary risk assessment indicated that the intake of picoxystrobin residues in potato, citrus fruit, and D. officinale did not pose a health risk. This study can guide the reasonable use of picoxystrobin in potato, citrus fruit, and D. officinale.


Assuntos
Citrus , Dendrobium , Solanum tuberosum , Estrobilurinas , Espectrometria de Massas em Tandem/métodos , Medição de Risco
3.
Plant Dis ; 107(9): 2825-2829, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36825317

RESUMO

Cercospora leaf spot (CLS) is a destructive disease limiting sugar beet production and is managed using resistant cultivars, crop rotation, and timely applications of effective fungicides. Since 2016, its causal agent, Cercospora beticola, has been reported to be resistant to quinone outside inhibitors (QoIs) and to have reduced sensitive to demethylation inhibitors (DMIs) in sugar beet growing areas in North Dakota and Minnesota. Isolates of C. beticola resistant to QoIs, DMIs, and both QoIs and DMIs were collected from fields in Foxhome, Minnesota, in 2017. Fitness of these resistant isolates was compared with that of QoI- and DMI-sensitive isolates in laboratory and greenhouse studies. In the lab, mycelial growth, spore production, and spore germination were measured. The results showed that resistant isolates had significantly less mycelial growth and spore production than sensitive isolates, while no significant difference in spore germination was detected. In the greenhouse, six leaf-stage sugar beets were inoculated with a spore suspension made from each resistant group and incubated in separate humidity chambers. CLS disease severity was evaluated visually at 7, 14, and 21 days after inoculation (DAI), and the areas under disease progress curve (AUDPC) were calculated. Resistant isolates had significantly smaller AUDPC but still caused as high disease severity as the sensitive ones at 21 DAI. Although QoI- and/or DMI-resistant isolates had a relatively slower disease development, they still caused high disease severity and need to be factored in disease management practices.


Assuntos
Beta vulgaris , Fungicidas Industriais , Fungicidas Industriais/farmacologia , Virulência , Estrobilurinas/farmacologia , Minnesota , Açúcares
4.
Int J Mol Sci ; 23(19)2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36233184

RESUMO

Holm oak (Quercus ilex subsp. ballota (Desf.) Samp.) bark is a commonly used remedy to treat gastrointestinal disorders, throat and skin infections, hemorrhages, and dysentery. It has also been previously reported that its methanol extracts possess antibacterial activity, which can be related to the richness of Quercus spp. extracts in phenolic compounds, such as flavonoids and tannins. However, there is no information on the antifungal (including oomycete) properties of the bark from Q. ilex or its subspecies (ilex and ballota). In this work, we report the characterization of the aqueous ammonia extract of its bark by FTIR and GC-MS and the results of in vitro and ex situ inhibition tests against three phytopathogens. The main phytochemical components identified were inositols (19.5%), trans-squalene (13%), 4-butoxy-1-butanol (11.4%), gulopyranose (9.6%), lyxose (6.5%), 2,4-dimethyl-benzo[H]quinoline (5.1%), catechol (4.5%), and methoxyphenols (4.2%). The efficacy of the extract in controlling forest phytopathogens was tested in vitro against Fusarium circinatum (responsible for pitch canker of Pinus spp.), Cryphonectria parasitica (which causes chestnut blight), and Phytophthora cinnamomi (which causes 'root and crown rot' in a variety of hosts, including Castanea, conifers, Eucalyptus, Fagus, Juglans, Quercus, etc.), obtaining EC90 values of 322, 295, and 75 µg·mL-1, respectively, much lower than those attained for a commercial strobilurin fungicide (azoxystrobin). The extract was further tested ex situ against P. cinnamomi on artificially inoculated, excised stems of 'Garnem' almond rootstock, attaining complete protection at a dose of 782 µg·mL-1. The results suggest that holm oak bark extract may be a promising source of bioactive compounds against invasive forest pathogens, including the oomycete that is causing its decline, the so-called 'seca' in Spain.


Assuntos
Ballota , Fungicidas Industriais , Phytophthora , Quercus , Quinolinas , 1-Butanol , Amônia , Antibacterianos , Antifúngicos/farmacologia , Catecóis , Flavonoides , Florestas , Metanol , Phytophthora/fisiologia , Casca de Planta , Extratos Vegetais/farmacologia , Quercus/fisiologia , Esqualeno , Estrobilurinas , Taninos
5.
Pest Manag Sci ; 78(12): 5444-5455, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36057853

RESUMO

BACKGROUND: For the first time, the biological activity of slow-release fungicide formulations for suppressing potato pathogens deposited in a degradable poly-3-hydroxybutyrate/sawdust base has been obtained and investigated. RESULTS: The slow-release fungicide formulations (azoxystrobin, azoxystrobin + mefenoxam, and difenoconazole) were studied in vitro and in vivo in comparison with commercial analogues. In in vitro cultures of phytopathogens, the deposited fungicides showed an inhibitory effect comparable to commercial analogues, limiting the growth of colonies of Phytophthora infestans, Alternaria longipes, Rhizoctonia solani and Fusarium solan (2.0-2.3 times relative to the negative control). In laboratory experiments, the use of deposited fungicides was accompanied by earlier germination and more active growth of potatoes against the background of a decrease in the area of plant damage and an increase in yield. In the field experiment, the deposited fungicides suppressed the development of Phytophthora and Alternariosis in the rhizosphere during the entire growing season and reduced the area of plant damage by pathogens by 10-15%, which is two times less than in the groups of plants treated with commercial preparations. The higher biological activity of the embedded fungicides ensured the maximum number of tubers undamaged by pathogens and the total yield of 22-23 t ha-1 , which exceeded the yields in the groups with commercial fungicides (18.4-20.8 t ha-1 ). CONCLUSION: The slow-release fungicide formulations deposited in a degradable P(3HB)/sawdust base are effective in protecting potatoes from pathogens and increasing yields and have an advantage over commercial counterparts. © 2022 Society of Chemical Industry.


Assuntos
Fungicidas Industriais , Phytophthora infestans , Solanum tuberosum , Fungicidas Industriais/farmacologia , Estrobilurinas/farmacologia , Preparações de Ação Retardada
6.
Sci Rep ; 12(1): 15216, 2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-36076029

RESUMO

Trifloxystrobin (TFS) is a strobilurin-type fungicide that should be investigated due to its risks to non-targeted organisms. The goal of this study was to assess the susceptibility of Allium cepa L. to TFS in a multi-pronged approach. For 72 h, 0.2 g/L, 0.4 g/L and 0.8 g/L doses of TFS were administered to A. cepa bulbs and the control group was treated with tap water. The toxic effects of TFS were tested, considering physiological, cytogenetic, biochemical and anatomical analyses. TFS delayed growth by reducing the rooting ratio, root elongation and weight increase. Following TFS treatments, mitotic index (MI) scores decreased, while the formation of micronucleus (MN) and chromosomal aberrations (CAs) ascended. CAs types induced by TFS were listed according to their frequency as fragment, vagrant chromosome, sticky chromosome, uneven distribution of chromatin, bridge, nucleus with vacuoles, reverse polarization and irregular mitosis. TFS provoked an increment in superoxide dismutase (SOD) and catalase (CAT) enzyme activities as well as an accumulation of malondialdehyde (MDA). Meristematic cells of A. cepa roots treated with TFS had various anatomical damages, including damaged epidermis, flattened cell nucleus, damaged cortex and thickness in the cortex cell wall. All damages arising from TFS treatments exhibited dose-dependency. The findings of the present study revealed the serious toxicity of TFS in a non-targeted plant. It should not be neglected to evaluate the potential hazards of TFS with different toxicity tests.


Assuntos
Allium , Fungicidas Industriais , Acetatos , Antioxidantes/farmacologia , Aberrações Cromossômicas/induzido quimicamente , Fungicidas Industriais/toxicidade , Iminas , Malondialdeído , Meristema , Índice Mitótico , Cebolas , Raízes de Plantas , Estrobilurinas/toxicidade
7.
Biomolecules ; 12(9)2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36139143

RESUMO

Powdery mildew is the most serious fungal disease of Rosa roxburghii in Guizhou Province, China. In this study, the control role of chitosan-assisted pyraclostrobin against powdery mildew of R. roxburghii and its influences on the resistance, photosynthesis, yield, quality and amino acids of R. roxburghii were evaluated. The results indicate that the foliar application of 30% pyraclostrobin suspension concentrate (SC) 100 mg L−1 + chitosan 500 mg L−1 displayed a superior control potential against powdery mildew, with a control efficacy of 89.30% and 94.58% after 7 d and 14 d of spraying, respectively, which significantly (p < 0.01) exceeded those of 30% pyraclostrobin SC 150 mg L−1, 30% pyraclostrobin SC 100 mg L−1, and chitosan 500 mg L−1. Simultaneously, their co-application could effectively enhance their effect on the resistance and photosynthesis of R. roxburghii leaves compared to their application alone. Meanwhile, their co-application could also more effectively enhance the yield, quality, and amino acids of R. roxburghii fruits compared to their application alone. This work highlights that chitosan can be applied as an effective adjuvant to promote the efficacy of low-dosage pyraclostrobin against powdery mildew in R. roxburghii and improve its resistance, photosynthesis, yield, quality, and amino acids.


Assuntos
Ascomicetos , Quitosana , Rosa , Aminoácidos , Quitosana/farmacologia , Fotossíntese , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Rosa/química , Estrobilurinas
8.
Ecotoxicol Environ Saf ; 232: 113246, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35091296

RESUMO

Soil chloropicrin (CP) fumigation helps to increase crop yields by eliminating soil-borne diseases which inhibit plant growth. However, little is known about the effect of the CP fumigation combined with fungicide application on plant growth and nutrient uptake. In this study, we conducted a mesocosm experiment with six treatments: CK (untreated soil), AZO1 (a single application of azoxystrobin (AZO)), AZO2 (double applications of AZO), CP (CP fumigation with no AZO), CP+AZO1 (CP combined with AZO1) and CP+AZO2 (CP combined with AZO2) to investigate the effects of CP fumigation and AZO application on ginger growth and phosphorus (P) uptake. Results showed that a single application of AZO had no significant effect on ginger height, biomass and P uptake whether treated with or without CP fumigation, whereas double applications of AZO combined with CP fumigation significantly improved ginger height and the total amount of P in root (P < 0.05). Meanwhile, AZO residues were similar in all treatments with the same number of applications, with less than 50% remaining in the soil after 7 days applied, indicating that CP fumigation treatment did not influence AZO degradation in ginger cultivation. In addition, although the differences in P use efficiency observed across the different treatments were not significant, they nevertheless suggest that the P budget and soil microbial activity may contribute to those differences. Therefore, further studies should be done to link P cycling with microbial communities, and how these related to fumigation and fungicide application.


Assuntos
Hidrocarbonetos Clorados , Zingiber officinale , Fumigação/métodos , Hidrocarbonetos Clorados/análise , Fósforo , Pirimidinas , Solo/química , Microbiologia do Solo , Estrobilurinas
9.
Ecotoxicol Environ Saf ; 217: 112251, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33905983

RESUMO

Pollinators and other insects are experiencing an ongoing worldwide decline. While various environmental stressors have been implicated, including pesticide exposure, the causes of these declines are complex and highly debated. Fungicides may constitute a particularly prevalent threat to pollinator health due to their application on many crops during bloom, and because pollinators such as bees may consume fungicide-tainted pollen or nectar. In a previous study, consumption of pollen containing the fungicide Pristine® at field-relevant concentrations by honey bee colonies increased pollen foraging, caused earlier foraging, lowered worker survival, and reduced colony population size. Because most pollen is consumed by young adults, we hypothesized that Pristine® (25.2% boscalid, 12.8% pyraclostrobin) in pollen exerts its negative effects on honey bee colonies primarily on the adult stage. To rigorously test this hypothesis, we used a cross-fostering experimental design, with bees reared in colonies provided Pristine® incorporated into pollen patties at a supra-field concentration (230 mg/kg), only in the larvae, only in the adult, or both stages. In contrast to our predictions, exposure to Pristine® in either the larval or adult stage reduced survival relative to control bees not exposed to Pristine®, and exposure to the fungicide at both larval and adult stages further reduced survival. Adult exposure caused precocious foraging, while larval exposure increased the tendency to forage for pollen. These results demonstrate that pollen containing Pristine® can induce significant negative effects on both larvae and adults in a hive, though the magnitude of such effects may be smaller at field-realistic doses. To further test the potential negative effects of direct consumption of Pristine® on larvae, we reared them in vitro on food containing Pristine® at a range of concentrations. Consumption of Pristine® reduced survival rates of larvae at all concentrations tested. Larval and adult weights were only reduced at a supra-field concentration. We conclude that consumption of pollen containing Pristine® by field honey bee colonies likely exerts impacts on colony population size and foraging behavior by affecting both larvae and adults.


Assuntos
Abelhas/fisiologia , Compostos de Bifenilo/toxicidade , Fungicidas Industriais/toxicidade , Niacinamida/análogos & derivados , Estrobilurinas/toxicidade , Animais , Fungicidas Industriais/farmacologia , Insetos , Larva/efeitos dos fármacos , Niacinamida/toxicidade , Praguicidas/toxicidade , Néctar de Plantas , Pólen/efeitos dos fármacos , Polinização
10.
Pest Manag Sci ; 77(7): 3349-3357, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33773022

RESUMO

BACKGROUND: Determining the environmental behavior and fate of chemical compounds during technological processing of plants is a task of great significance nowadays. However, the current knowledge is still incomplete for unique herbal matrices belonging to minor crops. The research in this article presents, for the first time, the dissipation kinetics and processing behavior of carboxamide boscalid (BOS) and stobilurin pyraclostrobin (PYR) fungicides during glasshouse dill (Anethum graveolens L.) cultivation. RESULTS: The half-lives (t1/2 ) of BOS and PYR after application at the recommended and double dosage were in the range: 1.62-2.01 days in plant and 2.08-4.85 days in soil, respectively. The processing behavior in dill was estimated after washing, hot air drying and drying in sunlight without/with pretreatment. Processing factors (PFs) were above 1 after drying (PF = 1.24-1.39 hot air; PF = 1.15-1.28 sunlight) and below this value when the washing step was applied (PF = 0.31-0.42 hot air; PF = 0.21-0.34 sunlight), indicating the highest effectiveness of reduction, up to 73% BOS and 79% PYR. CONCLUSION: BOS/PYR residues at pre-harvest intervals after both doses were below European Union (EU) maximum residue limits (MRLs). The highest effectiveness was noted for drying carried out with the washing step, which has a great influence on the concentration of residues in the final product. The findings can supplement PF databases not set for minor crops and can be used to establish MRLs and determine human exposures more accurately in risk assessment studies. © 2021 Society of Chemical Industry.


Assuntos
Anethum graveolens , Fungicidas Industriais , Resíduos de Praguicidas , Compostos de Bifenilo , Fungicidas Industriais/análise , Humanos , Cinética , Niacinamida/análogos & derivados , Resíduos de Praguicidas/análise , Solo , Estrobilurinas
11.
J Sci Food Agric ; 101(12): 4900-4906, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33543480

RESUMO

BACKGROUND: Wheat is one of the most important cereal crops worldwide, and use of fungicides is an essential part of wheat production. Both prothioconazole and fluoxastrobin give excellent control of important seed and soilborne pathogens. The combination of these two fungicides shows a complementary mode of action and has a wide usage around the world. But the residue levels of these fungicides in the wheat matrix are still unknown. RESULTS: In the current study, a simple, low-cost and highly sensitive method using modified QuECHERS procedure combined with high-performance liquid chromatography-tandem mass spectrometry was developed to simultaneously quantify E- and Z-fluoxastrobin and the main metabolite prothioconazole-desthio of prothioconazole in the wheat matrix. The recoveries of prothioconazole-desthio, E-fluoxastrobin and Z-fluoxastrobin ranged from 84% to 101%, with relative standard deviation of less than 13.2%. The terminal residues of prothioconazole-desthio and E- and Z-fluoxastrobin were studied in wheat grain and straw under field conditions. The results showed that the terminal residue of the target compounds ranged from <0.01 to 0.029 mg kg-1 and <0.05 to 7.6 mg kg-1 in wheat grain and straw (expressed as dry weight), respectively. The risk quotients of prothioconazole-desthio and fluoxastrobin were 0.2% and 3.2%. CONCLUSIONS: The residue levels of the target analytes in wheat grain were lower than the maximum residue limits recommended by the Chinese Ministry of Agriculture. And the calculated risk quotient values were far below 100%, indicating a low dietary intake health risk to consumers. © 2021 Society of Chemical Industry.


Assuntos
Resíduos de Drogas/análise , Fungicidas Industriais/análise , Estrobilurinas/metabolismo , Triazóis/análise , Triticum/química , Triticum/metabolismo , Cromatografia Líquida de Alta Pressão , Exposição Dietética/efeitos adversos , Resíduos de Drogas/efeitos adversos , Resíduos de Drogas/metabolismo , Ingestão de Alimentos , Ecossistema , Contaminação de Alimentos/análise , Fungicidas Industriais/efeitos adversos , Fungicidas Industriais/metabolismo , Humanos , Medição de Risco , Estrobilurinas/análise , Espectrometria de Massas em Tandem , Triazóis/efeitos adversos , Triazóis/metabolismo
12.
J Sci Food Agric ; 101(1): 194-204, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-32623719

RESUMO

BACKGROUND: Picoxystrobin is a new osmotic and systemic broad-spectrum methoxyacrylate fungicide with a good control effect on tea anthracnose, so it has been proposed to spray picoxystrobin before the occurrence and onset of tea anthracnose during tea bud growth in order to protect them. However, there are few reports about the residue analysis method, field dissipation, terminal residue and risk assessment of picoxystrobin in tea. And there is no scientific and reasonable maximum residue limit of picoxystrobin in green tea. RESULTS: A rapid and sensitive analysis method for picoxystrobin residue in fresh tea leaf, green tea, tea infusion and soil was established by UPLC-MS/MS. The spiked recoveries of picoxystrobin ranged from 73.1% to 111.0%, with relative standard deviations from 1.8% to 9.2%. The limits of quantitation were 20 µg kg-1 in green tea, 8 µg kg-1 in fresh tea leaves and soil and 0.16 µg kg-1 in tea infusion. The dissipation half-lives of picoxystrobin in fresh tea leaf and soil were 2.7-6.8 and 2.5-14.4 days, respectively. And the maximum residue of picoxystrobin in green tea was 15.28 mg kg-1 with PHI at 10 days for terminal test. The total leaching rate of picoxystrobin during green tea brewing was lower than 35.8%. CONCLUSIONS: According to safety evaluation, the RQc and RQa values of picoxystrobin in tea after 5 to 14 days for the last application were significantly lower than 1. Therefore, the maximum residue limit value of picoxystrobin in tea that we suggest to set at 20 mg kg-1 can ensure the safety of tea for human drinking. © 2020 Society of Chemical Industry.


Assuntos
Camellia sinensis/crescimento & desenvolvimento , Fungicidas Industriais/análise , Resíduos de Praguicidas/química , Estrobilurinas/química , Camellia sinensis/química , Cromatografia Líquida de Alta Pressão , Qualidade de Produtos para o Consumidor , Culinária , Contaminação de Alimentos/análise , Meia-Vida , Humanos , Espectrometria de Massas , Folhas de Planta/química , Folhas de Planta/crescimento & desenvolvimento
13.
J Sci Food Agric ; 101(8): 3472-3480, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33270234

RESUMO

BACKGROUND: Bananas are vulnerable to disease and insect pests after producing fruit. In order to increase the yield and produce high-quality fruit, the insecticides and fungicides are mixed and applied 2-3 times on banana, then the fruit is bagged. Buprofezin, imidacloprid, difenoconazole, and pyraclostrobin are widely used on banana. However, there is a lack of research on the effect of fruit bagging on pesticide dissipation and residues on bananas. RESULTS: A versatile liquid chromatography-tandem mass spectrometry method with modified QuEChERS sample preparation has been developed for the determination of buprofezin, imidacloprid, difenoconazole, and pyraclostrobin in bananas. The recovery of four pesticides was satisfactory (74.96-98.63%) with reasonable relative standard deviation (≤ 8.78%). In Hainan and Guangzhou, the half-lives of the four pesticides were 4.68-13.9 and 5.63-20.4 days in non-bagged and bagged bananas, respectively. The significance analysis of the half-lives in the two sites showed that the dissipation rates of the three pesticides (imidacloprid, difenoconazole, pyraclostrobin) on whole bananas were significantly decreased by the effect of bagging (P < 0.05). However, there was no significant difference in the degradation of half-life of buprofezin under bagging and without bagging (P > 0.05). CONCLUSION: The high vapor pressure and the non-systemic property cause buprofezin to evaporate and dissipate the fastest among the four studied pesticides. The ultimate residues of four pesticides in bananas are lower than the maximum residue limits in China after three times of mixed applications under bagging or non-bagging. The results provide scientific data for evaluating the safety of four pesticides in banana bagging. © 2020 Society of Chemical Industry.


Assuntos
Embalagem de Alimentos/instrumentação , Frutas/química , Musa/química , Resíduos de Praguicidas/química , China , Cromatografia Líquida , Contaminação de Alimentos/análise , Embalagem de Alimentos/métodos , Meia-Vida , Inseticidas/química , Praguicidas/química , Estrobilurinas/química , Espectrometria de Massas em Tandem
14.
Environ Res ; 190: 109989, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32758720

RESUMO

The purpose of these laboratory tests was to assess the impact of 50 Hz EMF (electromagnetic field) on the disappearance of azoxystrobin (active ingredient (AI) of Amistar 250 SC) and λ-cyhalothrin (AI of Karate Zeon 050 CS) in the body of honey bees (Apis mellifera) and the structure of some functional groups of the probabilistic molecules in their organisms. Amistar 250 SC (an azoxystrobin-based fungicide; ABF) and Karate Zeon 050 CS (a λ-cyhalothrin-based insecticide; CBI) are plant protection products (PPPs) applied to bee-pollinated-crops. Chromatographic methods were used to assess the rate of AI disappearance. EMF affected the rate of disappearance of azoxystrobin and λ-cyhalothrin in bees within 6 h of intoxication. When these substances were used separately their disappearance in the presence of EMF slowed from 12.6% to 10.5% h-1 and from 9.2% to 4.8% h-1, respectively, and accelerated when used in a mixture, from 14.1% to 14.7% h-1 and from 9.3% to 11.5% h-1 respectively. Fourier Transform Infrared (FTIR) spectroscopy was used to analyze changes in the functional groups of the probabilistic molecules of the tested bees. To obtain the information about the spectra variations we used the Principal Component Analysis. It has been shown, that EMF statistically significantly interferes with amide I and II, symmetric PO32- group from DNA, RNA and phospholipids vibrations. It also increased the number of changes of functional groups of the probabilistic molecules caused by ABF, but at the same time limited the changes in the functional groups studied in bees treated with CBI and a mixture containing both of them. In addition, exposure to EMF in bees treated with fungicide or insecticide, separately, and with both preparations caused differences (p < 0.05) in the secondary structure of proteins compared to controls. The obtained results indicate that EMF may affect the rate of metabolism and the detoxification process of pesticides in bees, depending on the AI of PPPs, applied individually or together. However, further detailed research is required to explain the mechanism of EMF as a detoxification modulator.


Assuntos
Inseticidas , Praguicidas , Piretrinas , Animais , Abelhas , Campos Eletromagnéticos/efeitos adversos , Nitrilas , Pirimidinas , Estrobilurinas
15.
J Sci Food Agric ; 100(5): 1980-1989, 2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-31849062

RESUMO

BACKGROUND: In this study, an infrared-based prediction method was developed for easy, fast and non-destructive detection of pesticide residue levels measured by reference analysis in strawberry (Fragaria × ananassa Duch, cv. Albion) samples using near-infrared spectroscopy and demonstrating its potential alternative or complementary use instead of traditional pesticide determination methods. Strawberries of Albion variety, which were supplied directly from greenhouses, were used as the study material. A total of 60 batch sample groups, each consisting of eight strawberries, was formed, and each group was treated with a commercial pesticide at different concentrations (26.7% boscalid + 6.7% pyraclostrobin) and varying residual levels were obtained in strawberry batches. The strawberry samples with pesticide residuals were used both to collect near-infrared spectra and to determine reference pesticide levels, applying QuEChERS (quick, easy, cheap, rugged, safe) extraction, followed by liquid chromatographic-mass spectrometric analysis. RESULTS AND CONCLUSION: Partial least squares regression (PLSR) models were developed for boscalid and pyraclostrobin active substances. During model development, the samples were randomly divided into two groups as calibration (n = 48) and validation (n = 12) sets. A calibration model was developed for each active substance, and then the models were validated using cross-validation and external sets. Performance evaluation of the PLSR models was evaluated based on the residual predictive deviation (RPD) of each model. An RPD of 2.28 was obtained for boscalid, while it was 2.31 for pyraclostrobin. These results indicate that the developed models have reasonable predictive power. © 2019 Society of Chemical Industry.


Assuntos
Contaminação de Alimentos/análise , Fragaria/química , Resíduos de Praguicidas/análise , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Compostos de Bifenilo/análise , Frutas/química , Fungicidas Industriais/análise , Análise dos Mínimos Quadrados , Niacinamida/análogos & derivados , Niacinamida/análise , Estrobilurinas/análise
16.
J Agric Food Chem ; 67(8): 2307-2312, 2019 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-30735378

RESUMO

The residue distribution and dissipation of pyrimethanil, fludioxonil, cyprodinil, and kresoxim-methyl, which were introduced during postharvest waxing treatments of apples, were investigated. In addition, different residue removal methods were tested for the four fungicides in apples, and the removal efficiencies were compared. A multiresidue analytical method was developed based on quick, easy, cheap, effective, rugged, and safe method (QuEChERS) for the determination of the fungicide residues in apples. The dissipation study demonstrated that there was no significant change of fungicide residue magnitude during a 40-day storage process under ambient temperature. The fungicide residues in apples by wax treatment were shown to be very much stable. The results of residue distribution study demonstrated that waxing treatment may help to reduce the risk of pesticide when only the pulp was consumed. In the residue removal study, results suggested that higher temperature and the addition of acetic acid can improve the residue removal efficiency.


Assuntos
Frutas/química , Fungicidas Industriais/química , Malus/química , Resíduos de Praguicidas/química , Dioxóis/química , Contaminação de Alimentos/análise , Manipulação de Alimentos , Pirimidinas/química , Pirróis/química , Estrobilurinas/química
17.
Chemosphere ; 218: 501-506, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30497033

RESUMO

Pyraclostrobin is a strobilurin fungicide that inhibits mitochondrial complex III of fungal and mammalian cells. In toxicity studies that were used to estimate the safety factor, pyraclostrobin was added to animal feed or to aqueous vehicles. However, foods containing residues of pyraclostrobin and other strobilurin fungicides (azoxystrobin, trifloxystrobin, fluoxastrobin) are frequently prepared in vegetable oil prior to human consumption. The primary objective of this study was to determine if pyraclostrobin dissolved in an oil-based vehicle had adverse health outcomes in mice when compared to aqueous-based vehicles. We found that pyraclostrobin does not fully dissolve in aqueous methyl cellulose (MC) or carboxymethyl cellulose (CMC), two vehicles used in industry-sponsored toxicity studies, but does fully dissolve in corn oil. Moreover, C57BL/6 mice receiving pyraclostrobin in corn oil displayed adverse health outcomes, including loss of body weight, hypothermia and diarrhea at lower doses than when added to feed or to aqueous vehicles. Our data suggest that previous studies underestimated the true toxicity of pyraclostrobin in mammals. Additional toxicity tests using oil-based vehicles are recommended to verify current safety recommendations for strobilurin fungicides.


Assuntos
Fungicidas Industriais/administração & dosagem , Fungicidas Industriais/toxicidade , Estrobilurinas/administração & dosagem , Estrobilurinas/toxicidade , Administração Oral , Animais , Carboximetilcelulose Sódica/química , Óleo de Milho , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Masculino , Metilcelulose/química , Camundongos Endogâmicos C57BL , Estrobilurinas/química , Testes de Toxicidade , Água/química
18.
Environ Monit Assess ; 190(6): 335, 2018 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-29744742

RESUMO

A liquid chromatography with tandem mass spectrometry method was developed and validated to simultaneously determine metalaxyl and azoxystrobin in soil, potato, and potato foliage samples. The samples were extracted by 20 mL of acetonitrile and purified with dispersive solid-phase extraction using octadecyl silane as sorbent. The method showed good linearity (determination coefficients ≥ 0.9926) for metalaxyl (2.5-500 ng/mL) and azoxystrobin (5-1000 ng/mL). The limits of detection and quantification for both fungicides were 1.5-20 µg/kg. The average recoveries in soil, potato, and potato foliage were 83.07-92.87% for metalaxyl and 82.71-98.53% for azoxystrobin. The intra- and inter-day relative standard deviations were all less than 9%. The method was successfully applied on the residual analysis of metalaxyl and azoxystrobin in field trial samples. The results showed that the concentrations of metalaxyl and azoxystrobin in potato samples collected from Guizhou and Hunan were below 50 and 100 µg/kg (maximum residue limit set by China), respectively, at 5 days after the last application. When following the recommended application manual, metalaxyl and azoxystrobin do not present health concerns to the population because the risk quotients are far below 100%. All the above data could help and promote the safe and proper use of metalaxyl and azoxystrobin in potato.


Assuntos
Alanina/análogos & derivados , Monitoramento Ambiental/métodos , Fungicidas Industriais/análise , Pirimidinas/análise , Solo/química , Solanum tuberosum/química , Estrobilurinas/análise , Acetonitrilas/análise , Alanina/análise , Alanina/toxicidade , China , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida/métodos , Fungicidas Industriais/toxicidade , Limite de Detecção , Pirimidinas/toxicidade , Medição de Risco , Extração em Fase Sólida/métodos , Estrobilurinas/toxicidade , Espectrometria de Massas em Tandem/métodos
19.
Plant Dis ; 102(8): 1520-1526, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30673418

RESUMO

Rhizoctonia is a major pathogen of potato causing substantial yield losses worldwide. Control of Rhizoctonia diseases is based predominantly on the application of fungicides. However, little is known about the fungicide response variability of different Rhizoctonia anastomosis groups associated with potato diseases in South Africa. A total of 131 Rhizoctonia isolates were obtained from potato growing regions of South Africa from 2012 to 2014 and evaluated for sensitivity to fungicides in vitro and in vivo. The fungicides comprised six chemical formulations and one bio-fungicide representing seven Fungicide Resistance Action Committee groups. All Rhizoctonia anastomosis groups were sensitive to tolclofos-methyl (EC50: 0.001 to 0.098 µg a.i. ml-1) and fludioxonil (EC50: 0.06 to 0.09 µg a.i. ml-1) and showed variation in sensitivity to pencycuron, iprodione, benomyl, and Bacillus subtilis QST 713. However, for azoxystrobin, Rhizoctonia isolates exhibited variable sensitivity ranging from sensitivity (EC50: <0.09 µg a.i. ml-1) to insensitivity with EC50 values exceeding 5 µg a.i. ml-1. In greenhouse and field trials, tolclofos-methyl and fludioxonil exhibited significantly greater control of stem and black scurf whereas azoxystrobin was the least effective. This work demonstrated variable sensitivity within and among anastomosis groups of R. solani and binucleate Rhizoctonia to different fungicides. Information on fungicide sensitivity of Rhizoctonia isolates is crucial in the development of effective Rhizoctonia control strategies and facilitates monitoring of fungicide insensitive isolates in the pathogen population.


Assuntos
Fungicidas Industriais/farmacologia , Rhizoctonia/efeitos dos fármacos , Rhizoctonia/fisiologia , Solanum tuberosum/microbiologia , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Dioxóis/farmacologia , Hidantoínas/farmacologia , Testes de Sensibilidade Microbiana , Compostos de Fenilureia/farmacologia , Doenças das Plantas/microbiologia , Pirimidinas/farmacologia , Pirróis/farmacologia , Rhizoctonia/classificação , África do Sul , Especificidade da Espécie , Estrobilurinas/farmacologia
20.
Plant Dis ; 102(3): 666-673, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30673487

RESUMO

Resistance to chemistries of the succinate dehydrogenase inhibiting (SDHI) and quinone outside inhibiting (QoI) fungicides has developed rapidly in populations of Alternaria solani, the cause of early blight of potato. Reduced sensitivity to the anilinopyrimidine (AP) fungicide pyrimethanil has also been identified recently, determining that resistance to three chemical classes of fungicides is present within the A. solani population. Although no mutations have been characterized to confer resistance to APs, in A. solani five point mutations on three AsSdh genes have been determined to convey resistance to SDHIs, and the substitution of phenylalanine with leucine at position 129 (F129L) in the cytb gene confers resistance to QoIs. The objective of this study was to investigate the parasitic fitness of A. solani isolates with resistance to one or more of these chemical classes. A total of 120 A. solani isolates collected from various geographical locations around the United States were chosen for in vitro assessment, and 60 of these isolates were further evaluated in vivo. Fitness parameters measured were (i) spore germination in vitro, (ii) mycelial expansion in vitro, and (iii) aggressiveness in vivo. No significant differences in spore germination or mycelial expansion (P = 0.44 and 0.51, respectively) were observed among wild-type and fungicide-resistant isolates in vitro. Only A. solani isolates possessing the D123E mutation were shown to be significantly more aggressive in vivo (P < 0.0001) compared with wild-type isolates. These results indicate that fungicide-resistant A. solani isolates have no significant fitness penalties compared with sensitive isolates under the parameters evaluated regardless of the presence or absence of reduced sensitivity to multiple chemical classes. Results of these studies suggest that A. solani isolates with multiple fungicide resistances may compete successfully with wild-type isolates under field conditions.


Assuntos
Farmacorresistência Fúngica/genética , Fungicidas Industriais/farmacologia , Estrobilurinas/farmacologia , Succinato Desidrogenase/antagonistas & inibidores , Alternaria/efeitos dos fármacos , Proteínas Fúngicas/genética , Doenças das Plantas , Mutação Puntual , Pirimidinas/farmacologia , Solanum tuberosum , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA