Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Acta Biomater ; 174: 372-385, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38072226

RESUMO

Targeted delivery of therapeutic drugs to fibrosis-promoting macrophages (FPMs) holds promise as a challenging yet effective approach for the treatment of idiopathic pulmonary fibrosis (IPF). Here, nanocarriers composed of Mn-curcumin metal-organic frameworks (MOFs) were utilized to deliver the immune inhibitor BLZ-945 to the lungs, with the goal of depleting fibrosis-promoting macrophages (FPMs) from fibrotic lung tissues. FPM targeting was achieved by functionalizing the nanocarrier surface with an M2-like FPM binding peptide (M2pep). As a result, significant therapeutic benefits were observed through the successful depletion of approximately 80 % of the M2-like macrophages (FPMs) in a bleomycin-induced fibrosis mouse model treated with the designed M2-like FPM-targeting nanoparticle (referred to as M2NP-BLZ@Mn-Cur). Importantly, the released Mn2+ and curcumin after the degradation of M2NP-BLZ@Mn-Cur accumulated in the fibrotic lung tissue, which can alleviate inflammation and oxidative stress reactions, thereby further improving IPF therapy. This study presents a novel strategy with promising prospects for molecular-targeted fibrosis therapy. STATEMENT OF SIGNIFICANCE: Metal-organic frameworks (MOFs)- based nanocarriers equipped with both fibrosis-promoting macrophage (FPM)-specific targeting ability and therapeutic drugs are appealing for pulmonary fibrosis treatment. Here, we prepared M2pep (an M2-like FPM binding peptide)-modified and BLZ945 (a small molecule inhibitor of CSF1/CSF-1R axis)-loaded Mn-curcumin MOF nanoparticles (M2NP-BLZ@Mn-Cur) for pulmonary fibrosis therapy. The functionalized M2NP-BLZ@Mn-Cur nanoparticles can be preferentially taken up by FPMs, resulting in their depletion from fibrotic lung tissues. In addition, Mn2+and curcumin released from the nanocarriers have anti-inflammation and immune regulation effects, which further enhance the antifibrotic effect of the nanoparticles.


Assuntos
Curcumina , Fibrose Pulmonar Idiopática , Estruturas Metalorgânicas , Camundongos , Animais , Estruturas Metalorgânicas/farmacologia , Curcumina/farmacologia , Curcumina/uso terapêutico , Curcumina/química , Macrófagos/metabolismo , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/metabolismo , Peptídeos/farmacologia
2.
Inorg Chem ; 63(1): 677-688, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38109074

RESUMO

The abuse of antibiotics leads to an increasing emergence of drug-resistant bacteria, which not only causes a waste of medical resources but also seriously endangers people's health and life safety. Therefore, it is highly desirable to develop an efficient antibacterial strategy to reduce the reliance on traditional antibiotics. Antibacterial photodynamic therapy (aPDT) is regarded as an intriguing antimicrobial method that is less likely to generate drug resistance, but its efficiency still needs to be further improved. Herein, a robust titanium-based metal-organic framework ACM-1 was adopted to support Ag nanoparticles (NPs) to obtain Ag NPs@ACM-1 for boosting antibacterial efficiency via synergistic chemical-photodynamic therapy. Apart from the intrinsic antibacterial nature, Ag NPs largely boost ROS production and thus improve aPDT efficacy. As a consequence, Ag NPs@ACM-1 shows excellent antibacterial activity under visible light illumination, and its minimum bactericidal concentrations (MBCs) against E. coli, S. aureus, and MRSA are as low as 39.1, 39.1, and 62.5 µg mL-1, respectively. Moreover, to expand the practicability of Ag NPs@ACM-1, two (a dense and a loose) Ag NPs@ACM-1 films were readily fabricated by simply dispersing Ag NPs@ACM-1 into heated aqueous solutions of edible agar and sequentially cooling through heating or freeze-drying, respectively. Notably, these two films are mechanically flexible and exhibit excellent antibacterial activities, and their antimicrobial performances can be well retained in their recyclable and remade films. As agar is nontoxic, degradable, inexpensive, and ecosustainable, the dense and loose Ag NPs@ACM-1 films are potent to serve as recyclable and degradable antibacterial plastics and antibacterial dressings, respectively.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Estruturas Metalorgânicas , Fotoquimioterapia , Humanos , Prata/farmacologia , Titânio/farmacologia , Estruturas Metalorgânicas/farmacologia , Staphylococcus aureus , Escherichia coli , Ágar , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana
3.
J Mater Chem B ; 11(46): 11094-11102, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-37987617

RESUMO

Covalent organic frameworks (COFs) have promising applications in enhanced phototherapy. However, COFs that can sustainably play a role in phototherapy without continuous irradiation are extremely scarce. Herein, we report the fabrication of porphyrin-anthracene multifunctional COFs (Por-DPA) for sustainable photosterilization and bacterial-infected wound healing. A porphyrin photosensitizer, as one of the monomers, was used to provide photothermal and photodynamic activities under irradiation. An anthracene derivative, a good chemical source of singlet oxygen (1O2), was selected as another monomer to capture 1O2 and release it continuously via cycloreversion in the dark. The prepared Por-DPA COF prevents the self-aggregation quenching of the photosensitizer and thermal damage caused by continuous exposure to external light sources. Besides, Por-DPA exhibits good photothermal conversion performance and efficient 1O2 production capacity through dual pathways of photosensitization and cycloreversion. The developed sustainable photosterilization platform not only has good bactericidal effects on Escherichia coli and Staphylococcus aureus, but also promotes wound healing without obvious side effects, and is expected to be a novel efficient bactericide.


Assuntos
Estruturas Metalorgânicas , Porfirinas , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Estruturas Metalorgânicas/farmacologia , Estruturas Metalorgânicas/química , Porfirinas/farmacologia , Porfirinas/química , Fototerapia , Oxigênio Singlete/metabolismo
4.
J Am Chem Soc ; 145(48): 26169-26178, 2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-37988478

RESUMO

Imaging-guided chemodynamic therapy is widely considered a promising modality for personalized and precision cancer treatment. Combining both imaging and chemodynamic functions in one system conventionally relies on the hybrid materials approach. However, the heterogeneous, ill-defined, and dissociative/disintegrative nature of the composites tends to complicate their action proceedings in biological environments and thus makes the treatment imprecise and ineffective. Herein, a strategy to employ two kinds of inorganic units with different functions─reactive oxygen species generation and characteristic emission─has achieved two single-crystalline metal-organic frameworks (MOFs), demonstrating the competency of reticular chemistry in creating multifunctional materials with atomic precision. The multinary MOFs could not only catalyze the transformation from H2O2 to hydroxyl radicals by utilizing the redox-active Cu-based units but also emit characteristic tissue-penetrating near-infrared luminescence brought by the Yb4 clusters in the scaffolds. Dual functions of MOF nanoparticles are further evidenced by pronounced cell imaging signals, elevated intracellular reactive oxygen species levels, significant cell apoptosis, and reduced cell viabilities when they are taken up by the HeLa cells. In vivo NIR imaging is demonstrated after the MOF nanoparticles are further functionalized. The independent yet interconnected modules in the intact MOFs could operate concurrently at the same cellular site, achieving a high spatiotemporal consistency. Overall, our work suggests a new method to effectively accommodate both imaging and therapy functions in one well-defined material for precise treatment.


Assuntos
Estruturas Metalorgânicas , Nanopartículas , Neoplasias , Humanos , Estruturas Metalorgânicas/farmacologia , Estruturas Metalorgânicas/química , Células HeLa , Espécies Reativas de Oxigênio , Peróxido de Hidrogênio , Fototerapia , Nanopartículas/química , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Linhagem Celular Tumoral
5.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 37(10): 1300-1313, 2023 Oct 15.
Artigo em Chinês | MEDLINE | ID: mdl-37848328

RESUMO

Objective: To review antibacterial/osteogenesis dual-functional surface modification strategy of titanium-based implants, so as to provide reference for subsequent research. Methods: The related research literature on antibacterial/osteogenesis dual-functional surface modification strategy of titanium-based implants in recent years was reviewed, and the research progress was summarized based on different kinds of antibacterial substances and osteogenic active substances. Results: At present, the antibacterial/osteogenesis dual-functional surface modification strategy of titanium-based implants includes: ① Combined coating strategy of antibiotics and osteogenic active substances. It is characterized in that antibiotics can be directly released around titanium-based implants, which can improve the bioavailability of drugs and reduce systemic toxicity. ② Combined coating strategy of antimicrobial peptides and osteogenic active substances. The antibacterial peptides have a wide antibacterial spectrum, and bacteria are not easy to produce drug resistance to them. ③ Combined coating strategy of inorganic antibacterial agent and osteogenic active substances. Metal ions or metal nanoparticles antibacterial agents have broad-spectrum antibacterial properties and various antibacterial mechanisms, but their high-dose application usually has cytotoxicity, so they are often combined with substances that osteogenic activity to reduce or eliminate cytotoxicity. In addition, inorganic coatings such as silicon nitride, calcium silicate, and graphene also have good antibacterial and osteogenic properties. ④ Combined coating strategy of metal organic frameworks/osteogenic active substances. The high specific surface area and porosity of metal organic frameworks can effectively package and transport antibacterial substances and bioactive molecules. ⑤ Combined coating strategy of organic substances/osteogenic active substancecs. Quaternary ammonium compounds, polyethylene glycol, N-haloamine, and other organic compounds have good antibacterial properties, and are often combined with hydroxyapatite and other substances that osteogenic activity. Conclusion: The factors that affect the antibacterial and osteogenesis properties of titanium-based implants mainly include the structure and types of antibacterial substances, the structure and types of osteogenesis substances, and the coating process. At present, there is a lack of clinical verification of various strategies for antibacterial/osteogenesis dual-functional surface modification of titanium-based implants. The optimal combination, ratio, dose-effect mechanism, and corresponding coating preparation process of antibacterial substances and bone-active substances are needed to be constantly studied and improved.


Assuntos
Antibacterianos , Estruturas Metalorgânicas , Titânio , Antibacterianos/farmacologia , Materiais Revestidos Biocompatíveis/química , Estruturas Metalorgânicas/farmacologia , Osteogênese , Propriedades de Superfície , Titânio/química , Titânio/farmacologia , Próteses e Implantes
6.
ACS Nano ; 17(13): 12471-12482, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37364286

RESUMO

Calcium ion therapy is a potential anticancer treatment. However, the cellular calcium-buffering mechanism limited the effectiveness of calcium ion therapy. Here, we constructed a mineralized porphyrin metal-organic framework (PCa) to produce calcium ions and reactive oxygen species (ROS), which destroyed cell calcium buffering capacity and amplified the cell damage caused by calcium overload. In addition, PCa could induce cell immunogenic death to release tumor-associated antigen (TAA) and be used as an adjuvant. Thus, PCa could increase DC maturation and promote the antitumor activity of CD8+ T cells. For mice experiment, PCa not only showed excellent tumor elimination on the subcutaneous breast tumor but also achieved obvious antimetastasis effect in the metastatic tumor model. This nanosystem could eliminate the primary tumor and boost effective antitumor immunotherapy for comprehensive anticancer treatment.


Assuntos
Neoplasias Mamárias Animais , Estruturas Metalorgânicas , Neoplasias , Animais , Camundongos , Estruturas Metalorgânicas/farmacologia , Linfócitos T CD8-Positivos , Cálcio , Neoplasias/terapia , Imunoterapia , Linhagem Celular Tumoral
7.
ACS Appl Mater Interfaces ; 15(21): 25369-25381, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37199535

RESUMO

Photodynamic therapy (PDT) is a promising strategy for cancer treatment. However, its efficiency is hindered by three key parameters, namely, limited penetration depth of external light, tumor hypoxia, and self-aggregation of photosensitizers. Herein, we fabricated a novel "all-in-one" chemiluminescence-PDT nanosystem through the integration of an oxygen-supplying protein (hemoglobin, Hb) and a luminescent donor (luminol, Lum) in hierarchically engineered mesoporous porphyrinic metal-organic framework (MOF) nanoparticles. Mechanistically, the in situ chemiluminescence of Lum is activated by the high concentration of H2O2 in 4T1 cancer cells and further catalyzed by Hb and then absorbed by the porphyrin ligands in MOF nanoparticles through chemiluminescence resonance energy transfer. The excited porphyrins then sensitize oxygen supplied by Hb to produce sufficient reactive oxygen species that kill cancer cells. The MOF-based nanocomposite demonstrates excellent anticancer activity both in vitro and in vivo, with eventually a 68.1% tumor inhibition rate after intravenous injections without external light irradiation. This self-illuminating, oxygen-self-supplying nanosystem integrates all essential components of PDT into one simple nanoplatform, demonstrating great potential for the selective phototherapy of deep-seated cancer.


Assuntos
Estruturas Metalorgânicas , Nanocompostos , Neoplasias , Fotoquimioterapia , Porfirinas , Humanos , Estruturas Metalorgânicas/farmacologia , Luminescência , Peróxido de Hidrogênio , Microambiente Tumoral , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Oxigênio , Neoplasias/tratamento farmacológico , Nanocompostos/uso terapêutico , Porfirinas/farmacologia , Linhagem Celular Tumoral
8.
Biomater Sci ; 11(5): 1776-1784, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36648453

RESUMO

Porphyrinic covalent organic frameworks (COFs) have emerged as prospective materials in photodynamic and photothermal sterilization. However, it is still a great challenge to construct an efficient COF-based sterilizing agent with good photothermal and photodynamic properties and bacterial targeting ability. Herein, we report a multifunctional porphyrin-COF for bacterial-targeted and reaction-enhanced synergistic phototherapy/chemotherapy for sterilization and wound healing. The ordered crystal structure of the porphyrin-COF not only effectively avoids the self-aggregation-induced quenching of the porphyrin monomer, but also facilitates the storage and transport of singlet oxygen. The acrylate substituent in the other monomer serves as a bacterial targeting moiety and the in situ reaction site with the sulfhydryl group of the bacterial surface protein via a Michael addition reaction, thus fixing the bacteria on the surface of COF and making them lose the colonization ability. Furthermore, the bonding of COF and bacteria further amplifies the therapeutic efficiency of phototherapy. Therefore, the developed multifunctional sterilization platform not only provides a new strategy for the design of novel bactericidal materials but also broadens the biological applications of COF-based materials.


Assuntos
Estruturas Metalorgânicas , Porfirinas , Estruturas Metalorgânicas/farmacologia , Estruturas Metalorgânicas/química , Porfirinas/farmacologia , Porfirinas/química , Fototerapia , Bactérias , Cicatrização
9.
ACS Appl Mater Interfaces ; 15(3): 3781-3790, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36631295

RESUMO

The activation of nanoparticles (NPs) in the tumor microenvironment exerts synergistic therapeutic effects with chemotherapy against multiple cancers. In this study, an NP system prepared using biocompatible MIL-100 NPs was studied as an effective vehicle to deliver oxaliplatin for hepatocellular carcinoma treatment. The NPs were coated with polydopamine (PDA) and NH2-PEGTK-COOH and then loaded with oxaliplatin to create the multi-functional NP Oxa@MIL-PDA-PEGTK. Oxa@MIL-PDA-PEGTK is activated in the tumor microenvironment, causing the generation of cytotoxic reactive oxygen species (ROS) via the Fenton reaction and the release of the loaded oxaliplatin. In addition, under near-infrared (NIR) irradiation, Oxa@MIL-PDA-PEGTK can generate hyperthermia at tumor sites. Moreover, owing to the light-induced activation of the Oxa@MIL-PDA-PEGTK NPs, higher drug delivery efficiency, more precise targeted activation, and reduced off-target toxicity were observed in in vitro and in vivo experiments. Taken together, owing to its improved drug delivery efficiency and multi-functional activities, including the ability for targeted chemotherapy coupled with photothermal and chemodynamic therapy, Oxa@MIL-PDA-PEGTK may serve as a new approach for treating hepatocellular carcinoma.


Assuntos
Carcinoma Hepatocelular , Hipertermia Induzida , Neoplasias Hepáticas , Estruturas Metalorgânicas , Nanopartículas , Humanos , Carcinoma Hepatocelular/terapia , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Lasers , Neoplasias Hepáticas/terapia , Estruturas Metalorgânicas/farmacologia , Oxaliplatina/farmacologia , Fototerapia , Terapia Fototérmica , Microambiente Tumoral
10.
Biomater Adv ; 146: 213269, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36696782

RESUMO

Tuberculosis (TB) is a disease caused by the M. tuberculosis bacteria infection and is listed as one of the deadliest diseases to date. Despite the development of antituberculosis drugs, the need for long-term drug consumption and low patient commitment are obstacles to the success of TB treatment. A continuous drug delivery system that has a long-term effect is needed to reduce routine drug consumption intervals, suppress infection, and prevent the emergence of drug-resistant strains of M. tuberculosis. For this reason, biomolecule metal-organic framework (BioMOF) with good biocompatibility, nontoxicity, bioactivity, and high stability are becoming potential drug carriers. This study used a bioactive protocatechuic acid (PCA) as organic linker to prepare copper-based BioMOF Cu-PCA under base-modulated conditions. Detailed crystal analysis by the powder X-ray diffraction demonstrated that the Cu-PCA, with a chemical formula of C14H16O13Cu3, crystalizes as triclinic in space group P1. Comprehensive physicochemical characterizations were provided using FTIR, SEM, XPS, TGA, EA, and N2 sorption. As a drug carrier, Cu-PCA showed a high maximum rifampicin (RIF) drug loading of 443.01 mg/g. Upon resuspension in PBS, the RIF and linkers release profile exhibited two-stage release kinetic profiles, which are well described by the Biphasic Dose Response (BiDoseResp) model. A complete release of these compounds (RIF and PCA) was achieved after ~9 h of mixing in PBS. Cu-PCA and RIF@Cu-PCA possessed antibacterial activity against Escherichia coli, and good biocompatibility is evidenced by the high viability of MH-S mice alveolar macrophage cells upon supplementations.


Assuntos
Estruturas Metalorgânicas , Mycobacterium tuberculosis , Tuberculose , Camundongos , Animais , Rifampina/farmacologia , Rifampina/uso terapêutico , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Estruturas Metalorgânicas/uso terapêutico , Cobre/farmacologia , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Tuberculose/tratamento farmacológico , Portadores de Fármacos/química
11.
Molecules ; 27(23)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36500444

RESUMO

Photothermal therapy (PTT), as a noninvasive and local treatment, has emerged as a promising anti-tumor strategy with minimal damage to normal tissue under spatiotemporally controllable irradiation. However, the necrosis of cancer cells during PTT will induce an inflammatory reaction, which may motivate tumor regeneration and resistance to therapy. In this study, polyoxometalates and a chloroquine diphosphate (CQ) co-loaded metal-organic framework nanoplatform with hyaluronic acid coating was constructed for efficient ovarian cancer therapy and anti-inflammation. Our results demonstrated that this nanoplatform not only displayed considerable photothermal therapeutic capacity under 808 nm near-infrared laser, but also had an impressive anti-inflammatory capacity by scavenging reactive oxygen species in the tumor microenvironment. CQ with pH dependence was used for the deacidification of lysosomes and the inhibition of autophagy, cutting off a self-protection pathway induced by cell necrosis-autophagy, and achieving the synergistic treatment of tumors. Therefore, we combined the excellent properties of these materials to synthesize a nanoplatform and explored its therapeutic effects in various aspects. This work provides a promising novel prospect for PTT/anti-inflammation/anti-autophagy combinations for efficient ovarian cancer treatment through the fine tuning of material design.


Assuntos
Hipertermia Induzida , Estruturas Metalorgânicas , Nanopartículas , Neoplasias Ovarianas , Humanos , Feminino , Fototerapia/métodos , Estruturas Metalorgânicas/farmacologia , Nanopartículas/química , Neoplasias Ovarianas/terapia , Anti-Inflamatórios , Necrose , Linhagem Celular Tumoral , Microambiente Tumoral
12.
Colloids Surf B Biointerfaces ; 219: 112796, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36063717

RESUMO

Encapsulation of active ingredients into intelligent response controlled release carriers has been recognized as a promising approach to enhance the utilization efficiency and reduce the environmental risks of pesticides. In this work, an intelligent redox and pectinase dual stimuli-responsive pesticide delivery system was constructed by bonding pectin with metal-organic frameworks (FeMOF nanoparticles) which were loaded with pyraclostrobin (PYR@FeMOF-pectin nanoparticles). The successful fabrication of PYR@FeMOF-pectin nanoparticles was proved by a series of physicochemical characterizations. The results indicated that the loading capacity of PYR@FeMOF-pectin nanoparticles for pyraclostrobin was approximately 20.6%. The pectin covered on the surface of PYR@FeMOF nanoparticles could protect pyraclostrobin from photolysis and improve their spreadability on rice blades effectively. Different biological stimuli associated with Magnaporthe oryzae could trigger the release of pyraclostrobin from the pesticide-loaded core-shell nanoparticles, resulting in the death of pathogens. The bioactivity survey determined that PYR@FeMOF-pectin nanoparticles had a superior fungicidal activity and a longer duration against Magnaporthe oryzae than pyraclostrobin suspension concentrate. In addition, the FeMOF-pectin nanocarriers showed no obvious phytotoxicity and could enhance the shoot length and root length of rice plants. More importantly, PYR@FeMOF-pectin nanoparticles had an 8-fold reduction in acute toxicity to zebrafish than that of pyraclostrobin suspension concentrate. Therefore, the dual-responsive FeMOF-pectin nanocarriers have great potential for realizing site-specific pesticide delivery and promoting plant growth.


Assuntos
Estruturas Metalorgânicas , Nanopartículas , Praguicidas , Animais , Praguicidas/farmacologia , Praguicidas/química , Estruturas Metalorgânicas/farmacologia , Estruturas Metalorgânicas/química , Pectinas/química , Peixe-Zebra , Nanopartículas/química
13.
Chem Commun (Camb) ; 58(79): 11095-11098, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36098177

RESUMO

This work demonstrates for the first time that a photochromic metal organic framework (pMOF) can be employed as a promising class of NIR-II photothermal material based on the photoinduced donor-acceptor intermolecular charge transfer process. After further surface-modification, such UV-activated pMOF-a nanoparticles allow the strong inhibition of 4T1 cancer cells under 1064 nm laser irradiation.


Assuntos
Hipertermia Induzida , Estruturas Metalorgânicas , Nanopartículas , Neoplasias , Humanos , Estruturas Metalorgânicas/farmacologia , Neoplasias/terapia , Fototerapia , Nanomedicina Teranóstica
14.
Acta Biomater ; 151: 588-599, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36002126

RESUMO

Hepatocellular carcinoma (HCC) is a common high-mortality malignancy which still needs efficient treatments. HCC patients undergoing extrahepatic metastases are mostly with unsatisfactory prognosis. Therefore, specific attention has been paid to extrahepatic HCC metastasis. We integrated Sorafenib (Sor) and glucose oxidase (GOx) into a N-acetyl-galactosamine (GalNAc) modified zeolitic imidazolate framework (ZIF-8), designated as SG@GR-ZIF-8, for targeted bimodal therapies of chemotherapy and starvation therapy against HCC. The hepatic delivery of SG@GR-ZIF was mediated by the specific recognition of GalNAc residues with asialoglycoprotein (ASGPR) on the liver cell surface. Sor is a clinically approved anti-proliferation and anti-angiogenesis drug for advanced HCC treatment. GOx can efficiently induce cell death and disturb malignant progression by suppressing glucose supply of cancer cells, which is highly associated with metabolic rewiring in metastasis. The nano-formulation exhibit significant anti-metastatic HCC activity against C5WN1 cells, a liver cancer stem cell-like cell line with tumorigenicity and pulmonary metastasis activity. In a subcutaneous C5WN1-tumor carrying mouse model, SG@GR-ZIF exhibits potent synergistic anti-tumor activity with a tumor inhibition rate of 89% and a prolonged survival status. The growth and pulmonary metastasis of HCC in an orthotopic mouse model of HCC was remarkably suppressed in SG@GR-ZIF treated group. The therapeutic strategy targeting energy supply combined with first-line treatment holds great promise for the future treatment of metastatic HCC. STATEMENT OF SIGNIFICANCE: SG@GR-ZIF, a N-acetyl-galactosamine modified metal-organic framework carrying Sorafenib and glucose oxidase, was fabricated for treating metastatic hepatocellular carcinoma (HCC). Sorafenib is an anti-proliferation and anti-angiogenesis drug for advanced HCC treatment. Glucose oxidase blocks energy demand in HCC metastasis by depleting glucose. C5WN1 was used for therapeutic evaluations as a liver cancer stem cell-like cell line with tumorigenicity and pulmonary metastasis activity. In subcutaneous C5WN1-tumor bearing mice, SG@GR-ZIF exhibited a tumor inhibition rate of 89% and prolonged survival period. In orthotopic C5WN1-tumor carrying mice, the growth and pulmonary metastasis of hepatocarcinoma was remarkably suppressed by SG@GR-ZIF. Together, this study suggests the great potential of synergistic chemo/starvation therapy mediated by SG@GR-ZIF for treating metastatic HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Neoplasias Pulmonares , Estruturas Metalorgânicas , Animais , Assialoglicoproteínas/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Galactosamina/uso terapêutico , Glucose , Glucose Oxidase/química , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Neoplasias Pulmonares/secundário , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Camundongos , Células-Tronco Neoplásicas/patologia , Sorafenibe
15.
ACS Appl Mater Interfaces ; 14(34): 38604-38616, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-35979620

RESUMO

Chemodynamic therapy (CDT) is a highly tumor-specific and minimally invasive treatment that is widely used in cancer therapy. However, its therapeutic effect is limited by the poor efficiency of hydroxyl radical generation. In colon cancer in particular, the high expression of hydrogen sulfide (H2S), which has strong reducibility, results in the consumption of generated hydroxyl radicals, further weakening the efficacy of CDT. To overcome this problem, we developed a novel two-dimensional (2D) Cu-bipyridine metal-organic framework (MOF) nanosheet [Cu(bpy)2(OTf)2] for colon cancer CDT. The therapeutic effect of Cu(bpy)2(OTf)2 is enhanced based on three factors. First, the developed 2D Cu-MOF rapidly consumes H2S to inhibit the consumption of generated hydroxyl radicals. Second, the ultrasmall CuS generated after H2S depletion facilitates Fenton-like reactions. Third, the generated CuS exhibits good photothermal performance in the second near-infrared window, allowing for photothermal-enhanced CDT. The ability of Cu(bpy)2(OTf)2 to improve the CDT effect was demonstrated through both in vitro and in vivo experiments. This work demonstrates the applicability of 2D Cu-MOF in the CDT of colon cancer and provides a novel strategy for constructing CDT agents for colon cancer.


Assuntos
Neoplasias do Colo , Hipertermia Induzida , Estruturas Metalorgânicas , Nanopartículas , Neoplasias , Linhagem Celular Tumoral , Neoplasias do Colo/tratamento farmacológico , Humanos , Peróxido de Hidrogênio/metabolismo , Radical Hidroxila/metabolismo , Hipertermia Induzida/métodos , Estruturas Metalorgânicas/farmacologia , Estruturas Metalorgânicas/uso terapêutico , Nanopartículas/uso terapêutico , Neoplasias/tratamento farmacológico , Fototerapia/métodos
16.
Int J Biol Macromol ; 218: 488-505, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35878666

RESUMO

A new kind of Camellia sinensis-loaded nanocomposite hydrogel based on modified gelatin/iron-metal-organic framework was developed as an antibacterial wound dressing. Gelatin as a biocompatible natural polymer was modified with methacrylate anhydride to produce gelatin methacrylate. Thereafter, acrylic acid and acrylamide were grafted on gelatin methacrylate during an aqueous polymerization process. To enhance the porosity, mechanical strength, and drug loading capability of the hydrogel and reduce its toxicity, iron- based metal-organic framework was incorporated within the hydrogel. To add more functionality to the final wound dressing, Camellia sinensis, an antibacterial herbal drug was loaded on the hydrogel. The structural and chemical properties of prepared nanocomposite hydrogel were investigated by FTIR, XRD, SEM, and TGA techniques. The incorporation of iron-based metal-organic framework within the hydrogel matrix led to an increase in its water absorption value from 400.10 to 547.96 (g/g). The release study of Camellia sinensis (CS) extract from the prepared nanocomposite hydrogel exhibited a sustained release manner. The antibacterial test revealed the nanocomposite hydrogel contain extract has an effective antibacterial function against "Bacillus serous", "Staphylococcus aureus", "Streptococcus mutans"," Escherichia coli", "Klebsiella pneumoniae", and "Pseudomonas aeruginosa" bacteria. Therefore, the synthesized nanocomposite is a good candidate as an antibacterial hydrogel wound dressing. .


Assuntos
Camellia sinensis , Estruturas Metalorgânicas , Antibacterianos/química , Antibacterianos/farmacologia , Bandagens , Escherichia coli , Gelatina/química , Hidrogéis/química , Hidrogéis/farmacologia , Ferro/farmacologia , Estruturas Metalorgânicas/farmacologia , Metacrilatos/farmacologia , Nanogéis
17.
J Mater Chem B ; 10(39): 7955-7966, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-35792081

RESUMO

Here, a novel joint chemo/photothermal/chemodynamic therapy was developed using a pH/GSH/photo triple-responsive 2D-covalent organic framework (COF) drug carriers for passive target treatment of tumors with extraordinarily high efficiency. The well-designed COF (DiSe-Por) with simultaneous dynamic diselenium and imine bonds, synthesized by the copolymerization of 4,4'-diselanediyldibenzaldehyde (DiSe) with 5,10,15,20-(tetra-4-aminophenyl)-porphyrin (Por) via Schiff base chemistry, which was applied as the host for effective encapsulation and highly controlled release of anticancer drug (DOX), was stable under normal physiological settings and can effectively accumulate in tumor sites. After being internalized into the tumor cells, the unique microenvironment i.e., acidic pH and overexpressed GSH, triggered substantial degradation of DiSe-Por-DOX, promoting DOX release to kill the cancer cells. Meanwhile, the breaking of Se-Se bonds boosted the generation of intracellular ROS, disturbing the redox balance of tumor cells. The highly extended 2D structure endowed the drug delivery system with significant photothermal performance. The rise of temperature with external laser irradiation (808 nm) further promoted drug release. Additionally, the phototherapy effect was further augmented after the loading of DOX, guaranteeing an almost complete drug release to tumor tissue. As a result, the triple-responsive drug delivery system achieved a synergistic amplified therapeutic efficacy with a growth inhibitory rate of approximately 93.5% for the tumor xenografted in nude mice. Moreover, the body metabolizable and clearable DiSe-Por-DOX presented negligible toxicities toward major organs in vivo. All these characteristics verified the great potential of DiSe-Por-DOX nanosheets for multi-modality tumor treatment, accelerating the application range of COFs in biomedical fields.


Assuntos
Antineoplásicos , Hipertermia Induzida , Estruturas Metalorgânicas , Neoplasias , Porfirinas , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacologia , Doxorrubicina/química , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Concentração de Íons de Hidrogênio , Estruturas Metalorgânicas/metabolismo , Estruturas Metalorgânicas/farmacologia , Camundongos , Camundongos Nus , Neoplasias/tratamento farmacológico , Fototerapia , Porfirinas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Bases de Schiff
18.
Biomater Sci ; 10(14): 4008-4022, 2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35726640

RESUMO

Although tumor starvation therapy has been proven to be an excellent method for tumor therapy, its efficiency may be weakened by autophagy, a self-protection mechanism exerted by tumors under starvation stress. Interestingly, over-activated autophagy not only improves the efficacy of starvation therapy, but also induces autophagic death. Herein, we report cascade nanozymes for enhanced starvation therapy by inducing over-activated autophagy. First, glucose oxidase (GOx) modified metal-organic frameworks (NH2-MIL88, MOF) were constructed (MOF-GOx). After loading with curcumin (Cur), Cur@MOF-GOx was further decorated with tumor-targeting hyaluronic acid (HA) to obtain Cur@MOF-GOx/HA nanozymes. GOx can catalyze glucose into H2O2 and gluconic acid, which not only leads to tumor starvation, but also provides reactants for the Fenton reaction mediated by the MOF to generate hydroxyl radicals (˙OH) for chemo-dynamic therapy. Most importantly, protective autophagy caused by tumor starvation can be over-activated by Cur to convert autophagy from pro-survival to pro-death, realizing augmented anticancer therapy efficacy. With these cascade reactions, the synergistic action of starvation, autophagy and chemo-dynamic therapy was realized. Generally, the introduction of Cur@MOF-GOx/HA into tumor cells leads to a "butterfly effect", which induces enhanced starvation therapy through subsequent autophagic cell death to completely break the self-protective mechanism of cancer cells, and generate ˙OH for chemo-dynamic therapy. Precise design allows for the use of cascade nanozymes to realize efficient cancer treatment and restrain metastasis.


Assuntos
Estruturas Metalorgânicas , Neoplasias , Autofagia , Linhagem Celular Tumoral , Glucose Oxidase/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Estruturas Metalorgânicas/metabolismo , Estruturas Metalorgânicas/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/patologia
19.
J Mater Chem B ; 10(25): 4695-4713, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35687028

RESUMO

Wound healing is a complex process that greatly affects the normal physiological activities of genes, proteins, signaling pathways, tissues, and organs. Bacterial infection could easily lead to serious tissue damage during wound healing, thus countering wound infections becomes a major challenge for clinicians and nursing professionals. At present, the exploration of highly effective, low toxicity and environment friendly methods for wound healing is attracting considerable interest all over the world. Recently, metal-organic frameworks (MOFs) have presented great potential for treating wound infections due to their unique characteristics of diversified functionality, large specific surface area, and high biocompatibility. These properties endow MOFs/MOF-based composites with an outstanding anti-wound infection effect, which is mainly attributed to the continuously released active components and the exerted catalytic activity with the assistance of phototherapy. In this review, the current progress of MOFs/MOF-based composites for the phototherapy of skin wounds is presented. Firstly, we illustrate the pathophysiological mechanisms, principles of phototherapy and the conventional methods for wound healing. Then, the structures and characteristics of MOFs are systematically summarized. Moreover, the review highlights the recent advances in the application of phototherapy for wound healing (including photodynamic therapy, photothermal therapy, and synergistic therapy) based on various MOFs/MOF-based composites. Finally, the challenges and perspectives are provided for the further development of MOF-based materials for medical application.


Assuntos
Estruturas Metalorgânicas , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Fototerapia/métodos
20.
Acta Biomater ; 148: 206-217, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35697198

RESUMO

Very limited treatment options are available to fight hepatocellular carcinoma (HCC), a serious global health concern with high morbidity and mortality. The integration of multiple therapies into one nanoplatform to exert synergistic therapeutic effects offers advantages over monotherapies. Here, we describe the construction of the nanoplatform Sor@GR-COF-366 for synergistic chemotherapy and photodynamic therapy (PDT) for HCC using a porphyrin-based covalent organic framework (COF-366) coated with N-acetyl-galactosamine (GalNAc) and rhodamine B (RhB), and loaded with the first-line agent, Sorafenib (Sor). The nanoplatform is targeted towards ASGPR-overexpressed HCC cells and liver tissues by GalNAc and observed by real-time imaging of RhB in vitro and in vivo. The nanoplatform Sor@GR-COF-366 exerts an enhanced synergistic tumor suppression effect in a subcutaneous HCC mouse model with a tumor inhibition rate (TGI) of 97% while significantly prolonging survival at very low toxicity. The potent synergistic therapeutic outcome is confirmed in an orthotopic mouse model of HCC with the TGI of 98% with a minimally invasive interventional PDT (IPDT). Sor@GR-COF-366 is a promising candidate to be combined with chemo-IPDT for the treatment of HCC. STATEMENT OF SIGNIFICANCE: This work describes the construction of covalent-organic frameworks (COFs) modified with glyco-moieties to serve as hepato-targeted multitherapy delivery systems. They combine minimally invasive interventional photodynamic therapy (IPDT) triggered synergism with chemotherapy treatment for hepatocellular carcinoma (HCC). With the aid of minimally invasive intervention, PDT can elicit potent anti-cancer activity for deep solid tumors. This platform shows strong therapeutic outcomes in both subcutaneous and orthotopic mouse models, which can significantly prolong survival. This work showed an effective combination of a biomedical nano-formulation with the clinical operational means in cancer treatment, which is greatly promising in clinical translation.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Estruturas Metalorgânicas , Fotoquimioterapia , Porfirinas , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Estruturas Metalorgânicas/farmacologia , Camundongos , Fotoquimioterapia/métodos , Porfirinas/farmacologia , Sorafenibe
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA