RESUMO
In this work, a new method for the determination of ethylenethiourea (ETU) and propylenethiourea (PTU) in fruits and vegetables is presented. Different extraction and purification techniques, including matrix solid phase dispersion (MSPD) and solid-liquid extraction (SLE), followed by a clean-up step by solid phase extraction (SPE), were compared. The determination of ETU and PTU was performed by high performance liquid chromatography with diode array detection (HPLC/DAD) or by gas chromatography with mass spectrometry detection (GC/MS). The effect of several parameters on the extraction, separation and detection was studied. The proposed method based on solid-liquid extraction with acetonitrile, clean-up with Envicarb II/PSA cartridges and subsequent analysis by HPLC/DAD was characterised and applied to the analysis of fruits and vegetables from different countries. Analytes recoveries were between 71% and 94% with relative standard deviations (RSDs) ranging from 8% to 9.5%. Quantification limits obtained for ETU and PTU with the HPLC/DAD method were 7 and 16 µg kg⻹ in strawberries (fresh weight), respectively. For apples, they were 11 and 25 µg kg⻹, respectively.
Assuntos
Produtos Agrícolas/química , Etilenotioureia/análise , Contaminação de Alimentos , Frutas/química , Fungicidas Industriais/análise , Resíduos de Praguicidas/análise , Tioureia/análogos & derivados , Etilenotioureia/química , Inspeção de Alimentos/métodos , Fragaria/química , Liofilização , Fungicidas Industriais/química , Lactuca/química , Limite de Detecção , Malus/química , Região do Mediterrâneo , Tamanho da Partícula , Resíduos de Praguicidas/química , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Folhas de Planta/química , Reprodutibilidade dos Testes , Espanha , Tiocarbamatos/análise , Tiocarbamatos/química , Tioureia/análise , Tioureia/química , Vitis/químicaRESUMO
Melanin-concentrating hormone (MCH) is a neuropeptide that exhibits potent orexigenic activity. In rodents, it exerts its actions by interacting with one receptor, MCH(1) receptor which is expressed in many parts of the central nervous system (CNS). To study the physiological implications of the MCH system, we need to be able to block it locally and acutely. This necessitates the use of MCH(1) receptor antagonists. While MCH(1) receptor antagonists have been previously reported, they are mainly not accessible to academic research. We apply here a strategy that leads to the isolation of a high affinity and selective MCH(1) receptor antagonist amenable to in vivo analyses without further chemical modifications. This antagonist, TPI 1361-17, was identified through the screening of multiple non-peptide positional scanning synthetic combinatorial libraries (PS-SCL) totaling more than eight hundred thousand compounds in conditions that allow for the identification of only high-affinity compounds. TPI 1361-17 exhibited an IC(50) value of 6.1 nM for inhibition of 1 nM MCH-induced Ca(2+) mobilization and completely displaced the binding of [(125)I] MCH to rat MCH(1) receptor. TPI 1361-17 was found specific, having no affinity for a variety of other G-protein coupled receptors and channels. TPI 1361-17 was found active in vivo since it blocked MCH-induced food intake by 75%. Our results indicate that TPI 1361-17 is a novel and selective MCH(1) receptor antagonist and is an effective tool to study the physiological functions of the MCH system. These results also illustrate the successful application of combinatorial library screening to identify specific surrogate antagonists in an academic setting.
Assuntos
Técnicas de Química Combinatória , Proteínas do Citoesqueleto/antagonistas & inibidores , Etilenotioureia/análogos & derivados , Guanidinas/farmacologia , Animais , Linhagem Celular , Proteínas do Citoesqueleto/metabolismo , Avaliação Pré-Clínica de Medicamentos , Ingestão de Alimentos/efeitos dos fármacos , Etilenotioureia/química , Etilenotioureia/farmacologia , Guanidinas/química , Humanos , Masculino , Atividade Motora/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Especificidade por Substrato , Paladar/efeitos dos fármacos , Tioureia/química , Tioureia/farmacologiaRESUMO
We used small molecule screening to discover compounds and mechanisms for overcoming E6 oncogene-mediated drug resistance. Using high-throughput screening in isogenic cell lines, we identified compounds that potentiate doxorubicin's lethality in E6-expressing colon cancer cells. Such compounds included quaternary ammonium salts, protein synthesis inhibitors, 11-deoxyprostaglandins, and two additional classes of compounds-analogs of 1,3-bis(4-morpholinylmethyl)-2-imidazolidinethione (a thiourea) and acylated secondary amines that we named indoxins. Indoxins upregulated topoisomerase IIalpha, the target of doxorubicin, thereby increasing doxorubicin lethality. We developed a photolabeling strategy to identify targets of indoxin and discovered a nuclear actin-related protein complex as a candidate indoxin target.