Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nutrients ; 14(14)2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35889800

RESUMO

Electronic-cigarette smoke (eCS) has been shown to cause a degree of oxidative stress and inflammatory damage in lung tissue. The aim of this study was to evaluate the repair mechanism of Eurotium cristatum fermented loose dark tea (ECT) and Eurotium cristatum particle metabolites (ECP) sifted from ECT after eCS-induced injury in mice. Sixty C57BL/6 mice were randomly divided into a blank control group, an eCS model group, an eCS + 600 mg/kg ECP treatment group, an eCS + 600 mg/kg ECT treatment group, an eCS + 600 mg/kg ECP prevention group, and an eCS + 600 mg/kg ECT prevention group. The results show that ECP and ECT significantly reduced the eCS-induced oxidative stress and inflammation and improved histopathological changes in the lungs in mice with eCS-induced liver injury. Western blot analysis further revealed that ECP and ECT significantly inhibited the eCS-induced upregulation of the phosphorylation levels of the extracellular Regulated protein Kinases (ERK), c-Jun N-terminal kinase (JNK) and p38mitogen-activated protein kinases (p38MAPK) proteins, and significantly increased the eCS-induced downregulation of the expression levels of the pregnane X receptor (PXR) and aryl hydrocarbon receptor (AhR) proteins. Conclusively, these findings show that ECP and ECT have a significant repairing effect on the damage caused by eCS exposure through the MAPK and PXR/AhR signaling pathways; ECT has a better effect on preventing eCS-induced injury and is suitable as a daily healthcare drink; ECP has a better therapeutic effect after eCS-induced injury, and might be a potential therapeutic candidate for the treatment of eCS-induced injury.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Eurotium , Animais , Aspergillus , Eurotium/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Receptor de Pregnano X , Proteínas Quinases/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Transdução de Sinais , Chá/metabolismo
2.
Food Chem ; 350: 129234, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33588283

RESUMO

The three instant dark teas were produced from instant green tea (IGT) by liquid-state fermentations using the microorganisms Eurotium cristatum (EFT), Aspergillus niger (AFT), and sequential inoculation of E. cristatum/A. niger (EAFT), respectively. The volatile compounds of four tea samples were extracted by headspace-solid phase microextraction (HS-SPME) and analyzed using gas chromatography-mass spectrometry (GC-MS) coupled with chemometrics. A total of 97 volatile compounds were tentatively identified to distinguish three fermented instant dark from IGT. Alcohols, acids, esters, ketones, aldehydes, and heterocyclics could be clearly distinguished by principal component analysis (PCA), venn diagram, heatmap analysis and hierarchical cluster analysis (HCA). Descriptive sensory analysis revealed that AFT had a moldy, woody and herbal aroma; EFT showed woody and herbal aroma; and EAFT smelled an herbal, sweet, minty and floral aroma. This study indicates that fermentation using different microorganisms is critical in forming unique aroma characteristics of instant dark teas.


Assuntos
Aspergillus niger/metabolismo , Eurotium/metabolismo , Fermentação , Chá/química , Álcoois/análise , Aldeídos/análise , Aspergillus , Ésteres/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Cetonas/análise , Odorantes/análise , Análise de Componente Principal , Microextração em Fase Sólida/métodos , Compostos Orgânicos Voláteis/análise
3.
Food Chem ; 331: 127281, 2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-32559596

RESUMO

Curcuminoids are the major bioactive constituents of turmeric, the application of which are limited by the poor bioavailability. In this study, turmeric was fermented by the Monascus purpureus and Eurotium cristatum fungi to enhance its bioavailability. To explore the variations in the curcuminoids contents in fermented turmeric, a targeted predict-verify strategy was established. For targeted analysis of curcuminoids, a compound library containing all possible curcuminoids based on their structural skeleton was predicted and built for targeted scanning. Then, the MS data were automatically matched with the predicted library to verify the corresponding curcuminoids. As a result, 115 curcuminoids (48 novel compounds and 14 compounds reported in turmeric for the first time) were fully characterized in crude and fermented turmeric. Among these curcuminoids, 31 were newly generated in fermented turmeric. The established predict-verify strategy allows for an efficient and automatic metabolomic analysis to screen for curcuminoids with potentially better bioavailability.


Assuntos
Curcuma/química , Diarileptanoides/metabolismo , Alimentos Fermentados/análise , Metabolômica/métodos , Disponibilidade Biológica , Curcuma/metabolismo , Curcuma/microbiologia , Curcumina/química , Curcumina/farmacocinética , Diarileptanoides/farmacocinética , Eurotium/metabolismo , Fermentação , Espectrometria de Massas , Monascus/metabolismo , Extratos Vegetais/química , Software
4.
J Sci Food Agric ; 100(9): 3598-3607, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32100298

RESUMO

BACKGROUND: Pingwu Fuzhuan brick tea is a type of post-fermented tea manufactured from leaves of the tea plant, Camellia sinensis var. sinensis, the quality of which is influenced by numerous factors, especially microorganisms. Currently, there is little research on the effect of microorganisms on the fermentation and quality characteristics of Pingwu Fuzhuan brick tea. Investigation of the main fungus in this tea and its effect on the fermentation process and tea quality can provide insights into the manufacturing of 'western road' border-selling tea and could lay the foundation for the popularization of Pingwu Fuzhuan brick tea. RESULTS: The main 'golden flower fungus' in Pingwu Fuzhuan brick tea was isolated and identified as Eurotium cristatum (GenBank accession number: MF800948.1; strain PW-1). Compared with natural fermentation, PW-1 inoculated fermentation accelerated biotransformation of phenolic compounds, which provided tea samples with better taste and tea infusion color. The proportions of velvety and sweet-tasting amino acids increased after 16-day fermentation with PW-1. Alcohols were the most abundant volatiles, with 40.13% and 39.43% content in NF16d and IF16d tea samples, respectively. Orthogonal partial least-squares discriminant analysis (OPLS-DA) and hierarchical clustering analysis (HCA) further revealed that naturally fermented and PW-1 fermented teas were significantly different. CONCLUSION: Strain PW-1 plays an important role in the fermentation process of Fuzhuan brick tea. Considering fermentation efficiency and tea quality, fermentation inoculated with E. cristatum PW-1 can be applied in the manufacturing of 'western road' border-selling tea. © 2020 Society of Chemical Industry.


Assuntos
Camellia sinensis/química , Eurotium/metabolismo , Folhas de Planta/microbiologia , Camellia sinensis/microbiologia , Eurotium/classificação , Eurotium/genética , Eurotium/isolamento & purificação , Fermentação , Folhas de Planta/química , Chá/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA