RESUMO
BACKGROUND: Bone mineral density (BMD) is a measure of skeletal health that may foretell disorders like osteoporosis.METHODS: To reduce bone losses on Earth, treatments include exercise, diet, and drugs. Each impact osteoblast and osteoclast activity dictates skeletal remodeling and subsequent BMD changes. BMD loss is a concern during spaceflight. For astronauts, low BMD undermines in-flight tasks and compromises their postflight health.RESULTS: While bisphosphonates exhibited promise as an in-flight bone loss treatment, study results are mixed, and this class of drugs has numerous side-effects. While the role antiresorptive agents play in reducing BMD loss is discussed, this review focuses on exercise-induced strains and nutrition, two in-flight treatments without bisphosphonates' side-effects.DISCUSSION: Evidence supports in-flight exercise and a healthy diet with vitamin D and Ca+2 supplementation to limit BMD loss. This review suggests how exercise and nutrition may limit BMD loss during spaceflight. Also discussed is an in-flight version of the inertial exercise trainer (IET; Impulse Technologies, Knoxville TN). By imparting high bone-strain magnitudes, rates, and frequencies with less mass, footprint, and power needs than other forms of in-flight resistance exercise hardware, the IET warrants inquiry for use aboard future long-term spaceflights.Caruso J, Patel N, Wellwood J, Bollinger L. Impact of exercise-induced strains and nutrition on bone mineral density in spaceflight and on the ground. Aerosp Med Hum Perform. 2023; 94(12):923-933.
Assuntos
Densidade Óssea , Exercício Físico , Estado Nutricional , Voo Espacial , Humanos , Astronautas , Osso e Ossos , Difosfonatos/farmacologia , Exercício Físico/efeitos adversosRESUMO
Astragalosides have been shown to enhance endurance exercise capacity in vivo and promote muscular hypertrophy in vitro. However, it remains unknown whether astragalosides supplementation can alter inflammatory response and enhance muscle recovery after damage in humans. We therefore aimed to evaluate the effect of astragalosides supplementation on muscle's intrinsic capacity to regenerate and repair itself after exercise-induced damage. Using a randomized double-blind placebo-controlled cross-over design, eleven male participants underwent 7 days of astragalosides supplementation (in total containing 4 mg of astragalosides per day) or a placebo control, following an eccentric exercise protocol. Serum blood samples and variables related to muscle function were collected prior to and immediately following the muscle damage protocol and also at 2 h, and 1, 2, 3, 5, and 7 days of the recovery period, to assess the pro-inflammatory cytokine response, the secretion of muscle regenerative factors, and muscular strength. Astragalosides supplementation reduced biomarkers of skeletal muscle damage (serum CK, LDH, and Mb), when compared to the placebo, at 1, 2, and 3 days following the muscle damage protocol. Astragalosides supplementation suppressed the secretion of IL-6 and TNF-α, whilst increasing the release of IGF-1 during the initial stages of muscle recovery. Furthermore, following astragaloside supplementation, muscular strength returned to baseline 2 days earlier than the placebo. Astragalosides supplementation shortens the duration of inflammation, enhances the regeneration process and restores muscle strength following eccentric exercise-induced injury.
Assuntos
Exercício Físico , Músculo Esquelético , Saponinas , Triterpenos , Humanos , Masculino , Biomarcadores , Citocinas , Suplementos Nutricionais , Método Duplo-Cego , Fator de Crescimento Insulin-Like I , Interleucina-6 , Músculo Esquelético/efeitos dos fármacos , Mialgia , Fator de Necrose Tumoral alfa/farmacologia , Exercício Físico/efeitos adversos , Triterpenos/farmacologia , Saponinas/farmacologia , Estudos Cross-OverRESUMO
Curcumin, a natural polyphenol extracted from turmeric, is a potent antioxidant and anti-inflammatory agent. In the past few decades, curcumin's ability to impact chronic inflammatory conditions such as metabolic syndrome, arthritis, and cancer has been widely researched, along with growing interest in understanding its role in exercise-induced muscle damage (EIMD). EIMD impacts individuals differently depending on the type (resistance exercise, high-intensity interval training, and running), intensity, and duration of the exercise. Exercise disrupts the muscles' ultrastructure, raises inflammatory cytokine levels, and can cause swelling in the affected limb, a reduction in range of motion (ROM), and a reduction in muscular force-producing capacity. This review focuses on the metabolism, pharmacokinetics of various brands of curcumin supplements, and the effect of curcumin supplementation on EIMD regarding muscle soreness, activity of creatine kinase (CK), and production of inflammatory markers. Curcumin supplementation in the dose range of 90-5000 mg/day can decrease the subjective perception of muscle pain intensity, increase antioxidant capacity, and reduce CK activity, which reduces muscle damage when consumed close to exercise. Consumption of curcumin also improves muscle performance and has an anti-inflammatory effect, downregulating the production of pro-inflammatory cytokines, including TNF-α, IL-6, and IL-8. Curcumin may also improve oxidative capacity without hampering training adaptations in untrained and recreationally active individuals. The optimal curcumin dose to ameliorate EIMD is challenging to assess as its effect depends on the curcumin concentration in the supplement and its bioavailability.
Assuntos
Curcumina , Suplementos Nutricionais , Exercício Físico , Mialgia , Humanos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Creatina Quinase/metabolismo , Curcumina/farmacologia , Curcumina/uso terapêutico , Citocinas/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Músculo Esquelético/metabolismo , Mialgia/tratamento farmacológico , Mialgia/etiologia , Polifenóis/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Exercício Físico/efeitos adversosRESUMO
BACKGROUND: Exercise-induced fatigue (EIF) is a common occurrence in sports competition and training. It may cause trouble to athletes' motor skill execution and cognition. Although traditional Chinese medicine Jianpi therapy has been commonly used for EIF management, relevant evidence on the effectiveness and safety of Jianpi therapy is still unclear. METHODS: Databases including PubMed, Embase, Web of Science, the Cochrane Library, SinoMed, China Science and Technology Journal Database (VIP), China National Knowledge Infrastructure (CNKI), and Wanfang will be searched for relevant randomized controlled trials from databases from 2000 to 2021. Randomized controlled trials related to traditional Chinese medicine Jianpi therapy in the treatment and management of EIF will be included. Systematic review and meta-analysis of the data will be performed in RevMan 5.3 according to the Preferred Reporting Items of Systematic Reviews and Meta-Analysis (PRISMA) guidelines. Two authors independently performed the literature searching, data extraction, and quality evaluation. Risk of bias was assessed using the Cochrane Risk of Bias Tool for randomized clinical trials. RESULTS: This systematic review and meta-analysis will summarize the latest evidence for traditional Chinese medicine Jianpi therapy in EIF. The results will be submitted to a peer-reviewed journal once completed. CONCLUSION: The conclusion of our research will provide evidence to support traditional Chinese medicine Jianpi therapy as an effective intervention for patients with EIF.OSF Registration DOI: 10.17605/OSF.IO/NRKX4.
Assuntos
Medicamentos de Ervas Chinesas , Exercício Físico/efeitos adversos , Fadiga , Medicina Tradicional Chinesa , Medicamentos de Ervas Chinesas/uso terapêutico , Fadiga/tratamento farmacológico , Fadiga/etiologia , Humanos , Metanálise como Assunto , Projetos de Pesquisa , Revisões Sistemáticas como AssuntoRESUMO
This systematic review and meta-analysis of randomized controlled trials examined whether dietary nitrate supplementation attenuates exercise-induced muscle damage (EIMD) and is reported according to the PRISMA guidelines. Medline and SPORTDiscus databases were searched from inception to June 2020. Inclusion criteria were studies in adult humans consuming inorganic nitrate before and after exercise and that measured markers implicated in the etiology of EIMD (muscle function, muscle soreness, inflammation, myocellular protein efflux, oxidative stress, range of motion) <168 h post. The Cochrane Collaboration risk of bias two tool was used to critically appraise the studies; forest plots were generated with random-effects models and standardized mean differences (SMD). Nine studies were included in the systematic review and six in the meta-analysis. All studies were rated to have some concerns for risk of bias. All trials in the meta-analysis provided nitrate as beetroot juice, which accelerated isometric strength recovery 72 h post-exercise (SMD: 0.54, p = 0.01) and countermovement jump performance 24-72 h post-exercise (SMD range: 0.75-1.32, p < 0.03). Pressure pain threshold was greater with beetroot juice 48 (SMD: 0.58, p = 0.03) and 72 h post-exercise (SMD: 0.61, p = 0.02). Beetroot juice had no effect on markers of oxidative stress and creatine kinase (p > 0.05), but c-reactive protein was higher vs. placebo at 48 h post-exercise (SMD: 0.55, p = 0.03). These findings suggest that nitrate-rich beetroot juice may attenuate some markers of EIMD, but more large-scale controlled trials in elite athletes are needed.
Assuntos
Proteína C-Reativa , Exercício Físico , Músculo Esquelético , Nitratos , Adulto , Humanos , Antioxidantes , Creatina Quinase , Suplementos Nutricionais , Mialgia/prevenção & controle , Mialgia/tratamento farmacológico , Nitratos/uso terapêutico , Exercício Físico/efeitos adversosRESUMO
OBJECTIVE: Excessive exercise increases the production of reactive oxygen species in skeletal muscles. Sulforaphane activates nuclear factor erythroid 2-related factor 2 (Nrf2) and induces a protective effect against oxidative stress. In a recent report, sulforaphane intake suppressed exercise-induced oxidative stress and muscle damage in mice. However, the effect of sulforaphane intake on delayed onset muscle soreness after eccentric exercise in humans is unknown. We evaluated the effect of sulforaphane supplement intake in humans regarding the delayed onset muscle soreness (DOMS) after eccentric exercise. RESEARCH METHODS & PROCEDURES: To determine the duration of sulforaphane supplementation, continuous blood sampling was performed and NQO1 mRNA expression levels were analyzed. Sixteen young men were randomly divided into sulforaphane and control groups. The sulforaphane group received sulforaphane supplements. Each group performed six set of five eccentric exercise with the nondominant arm in elbow flexion with 70% maximum voluntary contraction. We assessed muscle soreness in the biceps using the visual analog scale, range of motion (ROM), muscle damage markers, and oxidative stress marker (malondialdehyde; MDA). RESULTS: Sulforaphane supplement intake for 2 weeks increased NQO1 mRNA expression in peripheral blood mononuclear cells (PBMCs). Muscle soreness on palpation and ROM were significantly lower 2 days after exercise in the sulforaphane group compared with the control group. Serum MDA showed significantly lower levels 2 days after exercise in the sulforaphane group compared with the control group. CONCLUSION: Our findings suggest that sulforaphane intake from 2 weeks before to 4 days after the exercise increased NQO1, a target gene of Nrf2, and suppressed DOMS after 2 days of eccentric exercise.
Assuntos
Suplementos Nutricionais , Exercício Físico/efeitos adversos , Isotiocianatos/administração & dosagem , Mialgia/tratamento farmacológico , NAD(P)H Desidrogenase (Quinona)/sangue , Estresse Oxidativo/efeitos dos fármacos , Sulfóxidos/administração & dosagem , Exercício Físico/fisiologia , Humanos , Masculino , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Mialgia/sangue , Mialgia/diagnóstico , Estresse Oxidativo/fisiologia , Medição da Dor/efeitos dos fármacos , Medição da Dor/métodos , Projetos Piloto , Distribuição Aleatória , Adulto JovemRESUMO
Branched-chain amino acids (BCAA) are used as a recovery method after exercise-induced muscle damage (EIMD). Although data suggest that BCAA may alleviate the delayed-onset muscle soreness (DOMS) evoked by EIMD, there is no consensus about the most effective supplementation protocol. To investigate the effects of BCAA on DOMS after a single exercise session that caused EIMD, a systematic review and meta-analysis were conducted on the effectiveness of BCAA supplementation to reduce DOMS symptoms in healthy subjects after a single session of EIMD. Randomized clinical trials (RCT) were searched in Medline, Cochrane Library, Science Direct, SciELO, LILACS, SciVerse Scopus, Springer Link journals, Wiley Online Library, and Scholar Google, until May 2021. Ten RCTs were included in the systematic review and nine in the meta-analysis. Seven studies demonstrated that BCAA reduced DOMS after 24 to 72 h. BCAA doses of up to 255 mg/kg/day, or in trained subjects, for mild to moderate EIMD, could blunt DOMS symptoms. However, high variability between studies due to training status, different doses, time of treatment, and severity of EIMD do not allow us to conclude whether BCAA supplementation is efficient in untrained subjects, applied acutely or during a period of pre to post days of EIMD, and at higher doses (> 255 mg/kg/day). The overall effects of BCAA on DOMS after a single session of exercise were considered useful for improving muscle recovery by reducing DOMS in trained subjects, at low doses, in mild to moderate EIMD, and should not be administered only after the EIMD protocol.
Assuntos
Aminoácidos de Cadeia Ramificada/administração & dosagem , Exercício Físico/efeitos adversos , Músculo Esquelético/efeitos dos fármacos , Mialgia/tratamento farmacológico , Adulto , Suplementos Nutricionais/análise , Feminino , Humanos , Masculino , Músculo Esquelético/fisiopatologia , Mialgia/etiologia , Mialgia/fisiopatologia , Ensaios Clínicos Controlados Aleatórios como Assunto , Recuperação de Função Fisiológica/efeitos dos fármacos , Adulto JovemRESUMO
Collagen peptide supplementation (COL), in conjunction with exercise, may be beneficial for the management of degenerative bone and joint disorders. This is likely due to stimulatory effects of COL and exercise on the extracellular matrix of connective tissues, improving structure and load-bearing capabilities. This systematic review aims to evaluate the current literature available on the combined impact of COL and exercise. Following Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines, a literature search of three electronic databases-PubMed, Web of Science and CINAHL-was conducted in June 2020. Fifteen randomised controlled trials were selected after screening 856 articles. The study populations included 12 studies in recreational athletes, 2 studies in elderly participants and 1 in untrained pre-menopausal women. Study outcomes were categorised into four topics: (i) joint pain and recovery from joint injuries, (ii) body composition, (iii) muscle soreness and recovery from exercise, and (iv) muscle protein synthesis (MPS) and collagen synthesis. The results indicated that COL is most beneficial in improving joint functionality and reducing joint pain. Certain improvements in body composition, strength and muscle recovery were present. Collagen synthesis rates were elevated with 15 g/day COL but did not have a significant impact on MPS when compared to isonitrogenous higher quality protein sources. Exact mechanisms for these adaptations are unclear, with future research using larger sample sizes, elite athletes, female participants and more precise outcome measures such as muscle biopsies and magnetic imagery.
Assuntos
Composição Corporal/efeitos dos fármacos , Colágeno/biossíntese , Exercício Físico , Articulações/lesões , Peptídeos/farmacologia , Colágeno/química , Colágeno/farmacologia , Suplementos Nutricionais , Exercício Físico/efeitos adversos , Exercício Físico/fisiologia , Humanos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/fisiologia , Mialgia/tratamento farmacológico , Mialgia/metabolismo , Peptídeos/químicaRESUMO
Excessive exercise load can cause muscle soreness and fatigue, as well as inflammation and oxidative stress. Lemon verbena (Aloysia triphylla; Lippia citriodora) is often used as a spice in tea or beverages. Its leaves are rich in polyphenols, which have antioxidant and anti-inflammatory bioactivities. In the present study, we investigated whether supplementation with Planox® lemon verbena extract (LVE) could improve muscle damage and biochemical indicators after exhaustive exercise challenge. All subjects (30 males and 30 females) underwent a double-blind trial and were randomly divided into a placebo group (0 mg/human/day) and an LVE supplement group (400 mg/human/day), with gender-equal distribution. All subjects started supplementation 10 days before exhaustive exercise and continued it until all tests were completed. Before the intervention, after the exhaustive exercise, and on the following 3 days, the participants underwent 12-minute Cooper running/walking; blood collection; assessments of pain, muscle stiffness, maximum jump heights, and isometric maximum muscle strength. The results showed that supplementation with LVE effectively increased GPx and reduced CK, IL-6, 8-OHdG and muscle pain after the exhaustive exercise, but it had significant effect on strength recovery. In summary, LVE is a safe and edible natural plant extract that can reduce muscle damage and soreness after exercise. This trial was registered at clinicaltrials.gov as NCT04742244.
Assuntos
Antioxidantes/administração & dosagem , Suplementos Nutricionais , Mialgia/dietoterapia , Extratos Vegetais/administração & dosagem , Verbenaceae/química , Administração Oral , Adulto , Antioxidantes/efeitos adversos , Método Duplo-Cego , Exercício Físico/efeitos adversos , Feminino , Humanos , Contração Isométrica/fisiologia , Masculino , Músculo Esquelético/fisiopatologia , Mialgia/diagnóstico , Mialgia/etiologia , Mialgia/fisiopatologia , Estresse Oxidativo , Placebos/administração & dosagem , Placebos/efeitos adversos , Extratos Vegetais/efeitos adversos , Adulto JovemRESUMO
Exercise-induced muscle damage (EIMD) is characterized by a reduction in functional performance, disruption of muscle structure, production of reactive oxygen species, and inflammatory reactions. Ginseng, along with its major bioactive component ginsenosides, has been widely employed in traditional Chinese medicine. The protective potential of American ginseng (AG) for eccentric EIMD remains unclear. Twelve physically active males (age: 22.4 ± 1.7 years; height: 175.1 ± 5.7 cm; weight: 70.8 ± 8.0 kg; peak oxygen consumption [VËO2peak] 54.1 ± 4.3 mL/kg/min) were administrated by AG extract (1.6 g/day) or placebo (P) for 28 days and subsequently challenged by downhill (DH) running (-10% gradient and 60% VËO2peak). The levels of circulating 8-iso-prostaglandin F 2α (PGF2α), creatine kinase (CK), interleukin (IL)-1ß, IL-4, IL-10, and TNF-α, and the graphic pain rating scale (GPRS) were measured before and after supplementation and DH running. The results showed that the increases in plasma CK activity induced by DH running were eliminated by AG supplementation at 48 and 72 h after DH running. The level of plasma 8-iso-PGF2α was attenuated by AG supplementation immediately (p = 0.01 and r = 0.53), 2 h (p = 0.01 and r = 0.53) and 24 h (p = 0.028 and r = 0.45) after DH running compared with that by P supplementation. Moreover, our results showed an attenuation in the plasma IL-4 levels between AG and P supplementation before (p = 0.011 and r = 0.52) and 72 h (p = 0.028 and r = 0.45) following DH running. Our findings suggest that short-term supplementation with AG alleviates eccentric EIMD by decreasing lipid peroxidation and promoting inflammatory adaptation.