Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 165
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Control Release ; 370: 168-181, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38643936

RESUMO

The high prevalence and severity of hepatocellular carcinoma (HCC) present a significant menace to human health. Despite the significant advancements in nanotechnology-driven antineoplastic agents, there remains a conspicuous gap in the development of targeted chemotherapeutic agents specifically designed for HCC. Consequently, there is an urgent need to explore potent drug delivery systems for effective HCC treatment. Here we have exploited the interplay between HCC and adipocyte to engineer a hybrid adipocyte-derived exosome platform, serving as a versatile vehicle to specifically target HCC and exsert potent antitumor effect. A lipid-like prodrug of docetaxel (DSTG) with a reactive oxygen species (ROS)-cleavable linker, and a lipid-conjugated photosensitizer (PPLA), spontaneously co-assemble into nanoparticles, functioning as the lipid cores of the hybrid exosomes (HEMPs and NEMPs). These nanoparticles are further encapsuled within adipocyte-derived exosome membranes, enhancing their affinity towards HCC cancer cells. As such, cancer cell uptakes of hybrid exosomes are increased up to 5.73-fold compared to lipid core nanoparticles. Our in vitro and in vivo experiments have demonstrated that HEMPs not only enhance the bioactivity of the prodrug and extend its circulation in the bloodstream but also effectively inhibit tumor growth by selectively targeting hepatocellular carcinoma tumor cells. Self-facilitated synergistic drug release subsequently promoting antitumor efficacy, inducing significant inhibition of tumor growth with minimal side effects. Our findings herald a promising direction for the development of targeted HCC therapeutics.


Assuntos
Adipócitos , Antineoplásicos , Carcinoma Hepatocelular , Docetaxel , Exossomos , Neoplasias Hepáticas , Nanopartículas , Exossomos/metabolismo , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/patologia , Animais , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/patologia , Humanos , Docetaxel/administração & dosagem , Docetaxel/farmacologia , Docetaxel/uso terapêutico , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Adipócitos/efeitos dos fármacos , Nanopartículas/química , Nanopartículas/administração & dosagem , Pró-Fármacos/administração & dosagem , Pró-Fármacos/uso terapêutico , Linhagem Celular Tumoral , Fármacos Fotossensibilizantes/administração & dosagem , Fármacos Fotossensibilizantes/uso terapêutico , Fármacos Fotossensibilizantes/farmacologia , Camundongos Nus , Fototerapia/métodos , Sistemas de Liberação de Medicamentos , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Camundongos Endogâmicos BALB C
2.
Pharmacol Res ; 203: 107179, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38615876

RESUMO

Exosomes, small yet vital extracellular vesicles, play an integral role in intercellular communication. They transport critical components, such as proteins, lipid bilayers, DNA, RNA, and glycans, to target cells. These vesicles are crucial in modulating the extracellular matrix and orchestrating signal transduction processes. In oncology, exosomes are pivotal in tumor growth, metastasis, drug resistance, and immune modulation within the tumor microenvironment. Exosomal proteins, noted for their stability and specificity, have garnered widespread attention. This review delves into the mechanisms of exosomal protein loading and their impact on tumor development, with a focus on the regulatory effects of natural products and traditional Chinese medicine on exosomal protein loading and function. These insights not only offer new strategies and methodologies for cancer treatment but also provide scientific bases and directions for future clinical applications.


Assuntos
Produtos Biológicos , Exossomos , Medicina Tradicional Chinesa , Neoplasias , Humanos , Exossomos/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Animais , Produtos Biológicos/uso terapêutico , Produtos Biológicos/farmacologia , Microambiente Tumoral/efeitos dos fármacos
3.
Biomed Pharmacother ; 174: 116543, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38608523

RESUMO

In recent years, there has been an increasing number of related studies on exosomes. Most studies have focused on exosomes derived from mammals, confirming the important role that exosomes play in cell communication. Plants, as a natural ingredient, plant-derived exosomes have been confirmed to have similar structures and functions to mammalian-derived exosomes. Plant-derived exosome-like nanoparticles (PELNs) are lipid bilayer membrane nanovesicles containing bioactive constituents such as miRNA, mRNA, protein, and lipids obtained from plant cells, that can participate in intercellular communication and mediate transboundary communication, have high bioavailability and low immunogenicity, are relatively safe, and have been shown to play an important role in maintaining cell homeostasis and preventing, and treating a variety of diseases. In this review, we describe the biogenesis, isolation and purification methods, structural composition, stability, safety, function of PELNs and challenges. The functions of PELNs in anti-inflammatory, antioxidant, antitumor and drug delivery are mainly described, and the status of research on exosome nanoparticles of Chinese herbal medicines is outlined. Overall, we summarized the importance of PELNs and the latest research results in this field and provided a theoretical basis for the future research and clinical application of PELNs.


Assuntos
Exossomos , Nanopartículas , Plantas , Animais , Humanos , Sistemas de Liberação de Medicamentos/métodos , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/uso terapêutico , Exossomos/metabolismo , Nanopartículas/química , Plantas/química , Plantas/metabolismo
4.
Sci Total Environ ; 925: 171774, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38508246

RESUMO

This study investigates the intricate interplay between environmental pollutants and exosomes, shedding light on a novel paradigm in environmental health and disease. Cellular stress, induced by environmental toxicants or disease, significantly impacts the production and composition of exosomes, crucial mediators of intercellular communication. The heat shock response (HSR) and unfolded protein response (UPR) pathways, activated during cellular stress, profoundly influence exosome generation, cargo sorting, and function, shaping intercellular communication and stress responses. Environmental pollutants, particularly lipophilic ones, directly interact with exosome lipid bilayers, potentially affecting membrane stability, release, and cellular uptake. The study reveals that exposure to environmental contaminants induces significant changes in exosomal proteins, miRNAs, and lipids, impacting cellular function and health. Understanding the impact of environmental pollutants on exosomal cargo holds promise for biomarkers of exposure, enabling non-invasive sample collection and real-time insights into ongoing cellular responses. This research explores the potential of exosomal biomarkers for early detection of health effects, assessing treatment efficacy, and population-wide screening. Overcoming challenges requires advanced isolation techniques, standardized protocols, and machine learning for data analysis. Integration with omics technologies enhances comprehensive molecular analysis, offering a holistic understanding of the complex regulatory network influenced by environmental pollutants. The study underscores the capability of exosomes in circulation as promising biomarkers for assessing environmental exposure and systemic health effects, contributing to advancements in environmental health research and disease prevention.


Assuntos
Poluentes Ambientais , Exossomos , MicroRNAs , Exossomos/metabolismo , Poluentes Ambientais/toxicidade , Poluentes Ambientais/metabolismo , MicroRNAs/metabolismo , Biomarcadores/metabolismo , Saúde Ambiental
5.
Zhongguo Zhong Yao Za Zhi ; 49(1): 55-61, 2024 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-38403338

RESUMO

The theory of kidney storing essence storage, an important part of the basic theory of traditional Chinese medicine(TCM), comes from the Chapter 9 Discussion on Six-Plus-Six System and the Manifestations of the Viscera in the Plain Questions, which says that "the kidney manages closure and is the root of storage and the house of Jing(Essence)". According to this theory, essence is the fundamental substance of human life activities and it is closely related to the growth and development of the human body. Alzheimer's disease(AD) is one of the common neurodegenerative diseases, with the main pathological features of Aß deposition and Tau phosphorylation, which activate neurotoxic reactions and eventually lead to neuronal dysfunction and cell death, severely impairing the patient's cognitive and memory functions. Although research results have been achieved in the TCM treatment of AD, the complex pathogenesis of AD makes it difficult to develop the drugs capable of curing AD. The stem cell therapy is an important method to promote self-repair and regeneration, and bone marrow mesenchymal stem cells(BMSCs) as adult stem cells have the ability of multi-directional differentiation. By reviewing the relevant literature, this paper discusses the association between BMSCs and the TCM theory of kidney storing essence, and expounds the material basis of this theory from the perspective of molecular biology. Studies have shown that TCM with the effect of tonifying the kidney in the treatment of AD are associated with BMSCs. Exosomes produced by such cells are one of the main substances affecting AD. Exosomes containing nucleic acids, proteins, and lipids can participate in intercellular communication, regulate cell function, and affect AD by reducing Aß deposition, inhibiting Tau protein phosphorylation and neuroinflammation, and promoting neuronal regeneration. Therefore, discussing the prevention and treatment of exosomes and AD based on the theory of kidney storing essence will provide a new research idea for the TCM treatment of AD.


Assuntos
Doença de Alzheimer , Exossomos , Adulto , Humanos , Doença de Alzheimer/prevenção & controle , Doença de Alzheimer/tratamento farmacológico , Exossomos/metabolismo , Exossomos/patologia , Rim/patologia , Medicina Tradicional Chinesa , Neurônios
6.
Int J Nanomedicine ; 19: 1097-1108, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38327597

RESUMO

Introduction: Osteosarcoma is a prevalent and highly malignant primary bone tumor. However, current clinical therapeutic drugs for osteosarcoma are not suitable for long-term use due to significant side effects. Therefore, there is an urgent need to develop new drugs with fewer side effects. Dipsacus asperoides C. Y. Cheng et T. M. Ai, a traditional Chinese medicine, is commonly used for its anti-inflammatory, anti-pain, bone fracture healing, and anti-tumor effects. In this study, we investigated the effects of exosome-like nanoparticles derived from Dipsacus asperoides (DAELNs) on osteosarcoma cells in vitro and in vivo. Methods: DAELNs were isolated and purified from Dipsacus asperoides and their physical and chemical properties were characterized using transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA). The cellular uptake of DAELNs in osteosarcoma cells was analyzed by PKH26 staining. The proliferation, invasion, migration, and apoptosis of osteosarcoma cells were assessed using CCK8 assay, EdU assay, colony-formation assay, transwell assay, wound healing assay, and mitochondrial membrane potential measurement, respectively. The regulatory mechanism of DAELNs inhibiting the progression of osteosarcoma via activating P38/JNK signaling pathway was investigated using Western blotting and immunohistochemistry. Moreover, the therapeutic effects of DAELNs were evaluated using in vivo small animal imaging assay, HE staining, and immunohistochemistry. Results: Our results showed that DAELNs inhibited the proliferation, invasion, migration, and fostered the apoptosis of osteosarcoma cells in vitro and suppressed the tumor growth of osteosarcoma cells in a xenograft nude mouse model. Furthermore, the bio-distribution of DiD-labeled DAELNs showed preferential targeting of osteosarcoma tumors and excellent biosafety in histological analysis of the liver and kidney. Mechanistically, DAELNs activated the P38/JNK signaling pathway-induced apoptosis. Conclusion: Taken together, DAELNs are novel, natural, and osteosarcoma-targeted agents that can serve as safe and effective therapeutic approaches for the treatment of osteosarcoma.


Assuntos
Neoplasias Ósseas , Dipsacaceae , Exossomos , Osteossarcoma , Humanos , Camundongos , Animais , Sistema de Sinalização das MAP Quinases , Dipsacaceae/química , Exossomos/metabolismo , Apoptose , Osteossarcoma/patologia , Linhagem Celular Tumoral , Neoplasias Ósseas/patologia , Modelos Animais de Doenças , Proliferação de Células , Movimento Celular
7.
Phytomedicine ; 126: 155208, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387275

RESUMO

BACKGROUND: Pulmonary premetastatic niche (PMN) formation plays a key role in the lung metastasis of hepatocellular carcinoma (HCC). Hypoxia promotes the secretion of tumor-derived exosomes (TDEs) and facilitates the formation of PMN. However, the mechanisms remain unexplored. METHODS: TDEs from normoxic (N-TDEs) or hypoxic (H-TDEs) HCC cells were used to induce fibroblast activation in vitro and PMN formation in vivo. Oleanolic acid (OA) was intragastrically administered to TDEs-preconditioned mice. Bioinformatics analysis and drug affinity responsive target stability (DARTS) assays were performed to identify targets of OA in fibroblasts. RESULTS: H-TDEs induced activation of pulmonary fibroblasts, promoted formation of pulmonary PMN and subsequently facilitated lung metastasis of HCC. OA inhibited TDEs-induced PMN formation and lung metastasis and suppressed TDEs-mediated fibroblast activation. MAPK1 and MAPK3 (ERK1/2) were the potential targets of OA. Furthermore, H-TDEs enhanced ERK1/2 phosphorylation in fibroblasts in vitro and in vivo, which was suppressed by OA treatment. Blocking ERK1/2 signaling with its inhibitor abated H-TDEs-induced activation of fibroblasts and PMN formation. H-TDEs-induced phosphorylation of ERK1/2 in fibroblasts touched off the activation NF-κB p65, which was mitigated by OA. In addition, the ERK activator C16-PAF recovered the activation of ERK1/2 and NF-κB p65 in H-TDEs-stimulated MRC5 cells upon OA treatment. CONCLUSION: The present study offers insights into the prevention of TDEs-induced PMN, which has been insufficiently investigated. OA suppresses the activation of inflammatory fibroblasts and the development of pulmonary PMN by targeting ERK1/2 and thereby has therapeutic potential in the prevention of lung metastasis of HCC.


Assuntos
Carcinoma Hepatocelular , Exossomos , Neoplasias Hepáticas , Neoplasias Pulmonares , Ácido Oleanólico , Animais , Camundongos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Ácido Oleanólico/metabolismo , NF-kappa B/metabolismo , Sistema de Sinalização das MAP Quinases , Exossomos/metabolismo , Hipóxia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo
8.
Pharmacol Res ; 200: 107062, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38211637

RESUMO

Extracellular vesicles (EVs) are tiny lipid bilayer-enclosed membrane particles released from a variety of cell types into the surrounding environment. These EVs have massive participated in cell-to-cell communication and interspecies communication. In recent years, plant-derived extracellular vesicles (PDEVs) and "exosome-like" EVs populations found in distinct plants have attracted widespread attention. Especially, research on medicinal plant-derived extracellular vesicles (MPDEVs) are increasing, which are considered a kind of promising natural compound. This review summarizes current knowledge on MPDEVs in terms of bioactive compounds, including small RNA, protein, lipid, and metabolite, have been found on the surface and/or in the lumen of MPDEVs. Moreover, both in vitro and in vivo experiments have shown that MPDEVs exert broad biomedical functions, such as anti-inflammatory, anticancer, antioxidant, modulate microbiota, etc. MPDEVs may be a better substitute than animal-derived extracellular vesicles (ADEVs) because of safety and biocompatibility in the future.


Assuntos
Exossomos , Vesículas Extracelulares , Plantas Medicinais , Animais , Vesículas Extracelulares/metabolismo , Exossomos/metabolismo , Comunicação Celular , RNA/metabolismo
9.
Pharmacol Res ; 200: 107071, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38218354

RESUMO

Plant-derived exosome-like nanoparticles (ELNs) have drawn considerable attention for oral treatment of colonic diseases. However, the roles of ELNs derived from garlic on colitis remain unclear. Here, we demonstrate that garlic ELNs (GELNs), with desirable particle sizes (79.60 nm) and trafficking large amounts of functional proteins and microRNAs, stably roam in the gut and confer protection against ulcerative colitis (UC). In mice with DSS-induced colitis, orally administered GELNs effectively ameliorated bloody diarrhea, normalized the production of proinflammatory cytokines, and prevented colonic barrier impairment. Mechanistically, GELNs were taken up by gut microbes and reshaped DSS-induced gut microbiota dysbiosis, in which Bacteroides was the dominant respondent genus upon GELNs treatment. Notably, GELNs-enriched peu-MIR2916-p3 specifically promoted the growth of Bacteroides thetaiotaomicron, an intestinal symbiotic bacterium with palliative effects on colitis. Our findings provide new insights into the medicinal application of GELNs and highlight their potential as natural nanotherapeutic agents for preventing and treating UC.


Assuntos
Bacteroides thetaiotaomicron , Colite Ulcerativa , Colite , Exossomos , Alho , Microbioma Gastrointestinal , Camundongos , Animais , Exossomos/metabolismo , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/microbiologia , Colo , Sulfato de Dextrana/farmacologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
10.
J Control Release ; 367: 425-440, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38295998

RESUMO

Triple-negative breast cancer (TNBC) is characterized by complex heterogeneity, high recurrence and metastasis rates, and short overall survival, owing to the lack of endocrine and targeted receptors, which necessitates chemotherapy as the major treatment regimen. Exosome-like nanovesicles derived from medicinal plants have shown great potential as novel biotherapeutics for cancer therapy by delivering their incorporated nucleic acids, especially microRNAs (miRNAs), to mammalian cells. In this study, we isolated exosome-like nanovesicles derived from B. javanica (BF-Exos) and investigated their influence and underlying molecular mechanisms in TNBC. We found that BF-Exos delivered 10 functional miRNAs to 4T1 cells, significantly retarding the growth and metastasis of 4T1 cells by regulating the PI3K/Akt/mTOR signaling pathway and promoting ROS/caspase-mediated apoptosis. Moreover, BF-Exos were shown to inhibit the secretion of vascular endothelial growth factor, contributing to anti-angiogenesis in the tumor microenvironment. In vivo, BF-Exos inhibited tumor growth, metastasis, and angiogenesis in breast tumor mouse models, while maintaining high biosafety. Overall, BF-Exos are considered promising nanoplatforms for the delivery of medicinal plant-derived nucleic acids, with great potential to be developed into novel biotherapeutics for the treatment of TNBC.


Assuntos
Exossomos , MicroRNAs , Neoplasias de Mama Triplo Negativas , Humanos , Camundongos , Animais , MicroRNAs/uso terapêutico , Brucea javanica , Fosfatidilinositol 3-Quinases/metabolismo , Exossomos/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Linhagem Celular Tumoral , Proliferação de Células , Mamíferos/metabolismo , Microambiente Tumoral
11.
J Ethnopharmacol ; 321: 117530, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38043753

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Gan-song Yin is derived from the classic ancient prescription " Gan-song pill " for the treatment of wasting-thirst in Ningxia combined with the characteristic "fragrant medicine". It is clinically used for the treatment of early renal fibrosis caused by diabetic nephropathy. Previous studies have shown that it has a good effect and great potential in the prevention and treatment of diabetic nephropathy, but its mechanism research is still limited. AIM OF THE STUDY: To investigate the mechanism of GSY to improve DN by interfering with miR-21-5p and glycolipid metabolism in adipocyte exosomes using 3T3-L1 and TCMK-1 co-culture system. MATERIALS AND METHODS: The co-culture system of 3T3-L3 and TCMK-1 was established, the IR model was established, and the stability, lipid drop change, glucose consumption, triglyceride content, cell viability, cell cycle and apoptosis level, protein content and mRNA expression of the IR model were detected. RESULTS: GSY inhibited 3T3-L1 activity, increased glucose consumption and decreased TG content. Decreased TCMK-1 cell viability, inhibited apoptosis, cell cycle arrest occurred in G0/G1 phase and S phase. Adipocyte IR model and co-culture system were stable within 48 h. After GSY intervention, lipid droplet decomposition and glucose consumption increased. The TG content of adipocytes increased, while the TG content of co-culture system decreased. GSY can regulate the expression of TGF-ß1/SMAD signaling pathway protein in IR state. After GSY intervention, the expression of miR-21-5p was increased in 3T3-L1 and Exo cells, and decreased in TCMK-1 cells. CONCLUSIONS: GSY can regulate TGF-ß1/SMAD signaling pathway through the secretion of miR-21-5p from adipocytes, protect IR TCMK-1, regulate the protein and mRNA expression levels of PPARγ, GLUT4, FABP4, and improve glucose and lipid metabolism.


Assuntos
Nefropatias Diabéticas , Exossomos , MicroRNAs , Humanos , Fator de Crescimento Transformador beta1/metabolismo , Exossomos/metabolismo , Nefropatias Diabéticas/metabolismo , Adipócitos , Proliferação de Células , Células Epiteliais/metabolismo , Glucose/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/metabolismo
12.
J Biochem Mol Toxicol ; 38(1): e23540, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37728183

RESUMO

Dose-dependent heart failure is a major complication of the clinical use of doxorubicin (Dox), one of the most potent chemotherapeutic agents. Effective adjuvant therapy is required to prevent Dox-induced cardiotoxicity. Currently, plant-derived exosome-like nanovesicle (PELNV) has revealed their salubrious antioxidant and immunological regulating actions in various disease models. In this study, we isolated, purified and characterized Beta vulgaris-derived exosome-like nanovesicle (BELNV). Dox or normal saline was given to HL-1 cells (3 µM) and 8-week C57BL/6N mice (5 mg/kg bodyweight per week for 4 weeks) to establish the in vitro and in vivo model of Dox-induced cardiotoxicity. Administration of BELNV significantly alleviated chronic Dox-induced cardiotoxicity in terms of echocardiographic and histological results. A reduced malondialdehyde (MDA), increased ratio of glutathione (GSH) to oxidized glutathione (GSSG) and levels of system xc- and glutathione peroxidase 4 were observed, indicating that DOX-stimulated ferroptosis was reversed by BELNV. Besides, the safety of BELNV was also validated since no liver, spleen, and kidney toxicity induced by BELNV was observed. These findings provide evidence that BELNV may act as a novel therapeutic biomaterial for patients undergoing adverse effects of Dox, at least partly mediated by inhibiting Dox-induced ferroptosis.


Assuntos
Beta vulgaris , Exossomos , Ferroptose , Humanos , Camundongos , Animais , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/etiologia , Cardiotoxicidade/prevenção & controle , Miocárdio/metabolismo , Beta vulgaris/metabolismo , Exossomos/metabolismo , Camundongos Endogâmicos C57BL , Doxorrubicina/efeitos adversos , Glutationa/metabolismo , Dissulfeto de Glutationa/metabolismo , Dissulfeto de Glutationa/farmacologia , Dissulfeto de Glutationa/uso terapêutico , Estresse Oxidativo , Miócitos Cardíacos/metabolismo
13.
Int J Surg ; 110(1): 72-86, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37737899

RESUMO

BACKGROUND: The purpose of this study was to prepare neutrophil membrane-engineered Panax ginseng root-derived exosomes (N-exo) and investigate the effects of N-exo microRNA (miRNA) 182-5p (N-exo-miRNA 182-5p) on acute lung injury (ALI) in sepsis. METHODS: Panax ginseng root-derived exosomes were separated by differential centrifugation. Neutrophil membrane engineering was performed on exo to obtain N-exo. miRNA182-5p was transmitted into N-exo by electroporation technology to obtain N-exo-miRNA 182-5p. LPS was used to establish an in-vivo and in-vitro model of ALI of sepsis to evaluate the anti-inflammatory effect of N-exo-miRNA 182-5p. RESULTS: The results of transmission electron microscope showed that exo was a double-layer membrane structure like a saucer. Nanoparticle size analysis showed that the average particle size of exo was 129.7 nm. Further, compared with exo, the level of miRNA182-5p was significantly increased in N-exo. The experimental results showed that N-exo-miRNA 182-5p significantly improved ALI via target regulation of NOX4/Drp-1/NLRP3 signal pathway in vivo and in vitro . CONCLUSION: In conclusion, this study prepared a novel engineered exosome (N-exo and N-exo-miRNA 182-5p significantly improved ALI in sepsis via target regulation of NOX4/Drp-1/NLRP3 signal pathway, providing new ideas and methods for treatment of ALI in sepsis.


Assuntos
Lesão Pulmonar Aguda , Medicamentos de Ervas Chinesas , Exossomos , MicroRNAs , Panax , Extratos Vegetais , Sepse , Humanos , MicroRNAs/genética , Exossomos/genética , Exossomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Neutrófilos , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/terapia , Lesão Pulmonar Aguda/metabolismo , Transdução de Sinais , Sepse/genética , Sepse/terapia , NADPH Oxidase 4/metabolismo
14.
J Gene Med ; 26(1): e3617, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37935422

RESUMO

OBJECTIVE: Erxian Decoction (EXD) is traditionally employed in the treatment of menopausal syndromes, although its underlying mechanisms remain largely undefined. Given that the senescence of bone marrow mesenchymal stem cells (BMSCs) is intertwined with organismal aging and associated diseases, this study endeavored to elucidate the influence of EXD on aging BMSCs and uncover the mechanisms through which EXD impedes BMSC senescence. METHODS: Initially, we probed the anti-senescent mechanisms of EXD on BMSCs via network pharmacology. We subsequently isolated and identified exosomes from the serum of EXD-fed rats (EXD-Exos) and administered these to H2 O2 -induced aging BMSC. Assays were conducted to assess BMSC senescence indicators and markers pertinent to mitochondrial autophagy. Treatments with mitophagy inhibitors and activators were then employed to substantiate our findings. RESULTS: Protein-protein interaction (PPI) network analyses spotlighted AKT1, TP53, TNF, JUN, VEGFA, IL6, CASP3 and EGFR as focal targets. Gene Ontology and Kyoto Encylcopedia of Genes and Genomes pathway analyses underscored oxidative stress, mitophagy and cell proliferation as pivotal processes. Our cellular assays ascertained that EXD-Exos mitigated H2 O2 -induced senescence phenotypes in BMSCs. Moreover, EXD-Exos ameliorated disrupted mitophagy in BMSCs, as evidenced by enhanced cellular membrane potential and diminished reactive oxygen species levels. Intriguingly, EXD-Exos also preserved the osteogenic differentiation potential of BMSCs while curtailing their adipogenic propensity. CONCLUSION: Our findings compellingly suggest that EXD counteracts BMSC senescence by fostering mitophagy.


Assuntos
Dissulfetos , Medicamentos de Ervas Chinesas , Exossomos , Células-Tronco Mesenquimais , Tionas , Ratos , Animais , Osteogênese , Mitofagia , Exossomos/metabolismo , Células-Tronco Mesenquimais/metabolismo
15.
Zhongguo Zhong Yao Za Zhi ; 48(22): 5977-5984, 2023 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-38114203

RESUMO

Plant-derived exosome-like nanoparticles(PELNs) are a class of membranous vesicles with diameters approximately ranging from 30 to 300 nm, isolated from plant tissues. They contain components such as proteins, lipids, and nucleic acids. PELNs play an important role in the metabolism of plant substances and immune defense, and can also cross-regulate the physiological activities of fungi and animal cells, showing significant potential applications. In recent years, research on PELNs has significantly increased, highlighting three main issues:(1) the mixed sources of plant materials for PELNs;(2) the lack of a unified system for isolating and characterizing PELNs;(3) the urgent need to elucidate the molecular mechanisms underlying the cross-regulation of biological functions by PELNs. This article focused on these concerns. It began by summarizing the biological origin and composition of PELNs, discussing the techniques for isolating and characterizing PELNs, and analyzing their biomedical applications and potential future research directions., aiming to promote the establishment of standardized research protocols for PELNs and provide theoretical references for in-depth exploration of the mechanisms underlying PELNs' cross-regulatory effects.


Assuntos
Exossomos , Nanopartículas , Ácidos Nucleicos , Animais , Exossomos/metabolismo , Proteínas/metabolismo , Plantas/metabolismo
16.
Int J Mol Sci ; 24(21)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37958646

RESUMO

Citrus fruits are a natural source of ascorbic acid, and exosome-like nanovesicles obtained from these fruits contain measurable levels of ascorbic acid. We tested the ability of grapefruit-derived extracellular vesicles (EVs) to inhibit the growth of human leukemic cells and leukemic patient-derived bone marrow blasts. Transmission electron microscopy and nanoparticle tracking analysis (NTA) showed that the obtained EVs were homogeneous exosomes, defined as exosome-like plant-derived nanovesicles (ELPDNVs). The analysis of their content has shown measurable amounts of several molecules with potent antioxidant activity. ELPDNVs showed a time-dependent antiproliferative effect in both U937 and K562 leukemic cell lines, comparable with the effect of high-dosage ascorbic acid (2 mM). This result was confirmed by a clear decrease in the number of AML blasts induced by ELPDNVs, which did not affect the number of normal cells. ELPDNVs increased the ROS levels in both AML blast cells and U937 without affecting ROS storage in normal cells, and this effect was comparable to ascorbic acid (2 mM). With our study, we propose ELPDNVs from grapefruits as a combination/supporting therapy for human leukemias with the aim to improve the effectiveness of the current therapies.


Assuntos
Citrus paradisi , Exossomos , Leucemia Mieloide Aguda , Humanos , Exossomos/metabolismo , Ácido Ascórbico/farmacologia , Ácido Ascórbico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Agricultura Orgânica , Leucemia Mieloide Aguda/metabolismo
17.
Int J Mol Sci ; 24(22)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38003296

RESUMO

The endogenous miRNAs of breast milk are the products of more than 1000 nonprotein-coding genes, giving rise to mature small regulatory molecules of 19-25 nucleotides. They are incorporated in macromolecular complexes, loaded on Argonaute proteins, sequestrated in exosomes and lipid complexes, or present in exfoliated cells of epithelial, endothelial, or immune origins. Their expression is dependent on the stage of lactation; however, their detection depends on progress in RNA sequencing and the reappraisal of the definition of small RNAs. Some miRNAs from plants are detected in breast milk, opening the possibility of the stimulation of immune cells from the allergy repertoire. Each miRNA harbors a seeding sequence, which targets mRNAs, gene promoters, or long noncoding RNAs. Their activities depend on their bioavailability. Efficient doses of miRNAs are estimated to be roughly 100 molecules in the cytoplasm of target cells from in vitro and in vivo experiments. Each miRNA is included in networks of stimulation/inhibition/sequestration, driving the expression of cellular phenotypes. Three types of stress applied during lactation to manipulate miRNA supply were explored using rodent offspring: a foster mother, a cafeteria diet, and early weaning. This review presents the main mature miRNAs described from current mothers' cohorts and their bioavailability in experimental models as well as studies assessing the potential of miR-26 or miR-320 miRNA families to alter offspring phenotypes.


Assuntos
Exossomos , MicroRNAs , Terapia Nutricional , Feminino , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Leite Humano/metabolismo , Lactação/genética , Exossomos/genética , Exossomos/metabolismo
18.
Int J Nanomedicine ; 18: 5983-6000, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37901360

RESUMO

Introduction: Pathogenic respiratory RNA viruses, including influenza A virus (IAV), respiratory syncytial virus (RSV), and SARS-CoV-2, are major causes of causes of acute respiratory infection globally. Plant-derived exosome-like nanoparticles containing miRNAs have shown substantial cross-kingdom regulatory effects on both viral and human transcripts. Houttuynia cordata (H. cordata), a traditional Chinese medicine frequently used to treat respiratory diseases. However, the role of H. cordata-derived exosome-like nanoparticles (HELNs) and the miRNA they encapsulated are unclear. Methods: HELNs were isolated from fresh underground roots (uHELNs) and above ground stems and leaves (aHELNs) using differential centrifugation. The HELNs were identified using transmission electron microscopy, nanoparticle tracking analysis, and zeta potential. Small RNA sequencing and RT-PCR were employed to determine the miRNA expression in uHELNs and aHELNs. All genomes were sourced from the NCBI database. Target prediction of viral genomes was performed using RNAhybrid, while human target prediction was conducted using both RNAhybrid and Miranda. Functional enrichment analysis was applied to the predicted human targets to explore the hub targets and their roles in antiviral effects. The accessibility of miRNA target sites was determined through the MFOLD web server, and customized dual-luciferase reporter assays were administered to validate the computational findings. Results: A total of 12 highly enriched miRNAs were identified in both uHELNs and aHELNs. Upon prediction and verification, miR858a and miR858b were shown to target the NP gene in H1N1, while miR166a-3p targeted the ORF1ab in SARS-CoV-2. However, no valid miRNA targets were found for RSV. Regarding human transcripts, miR168a-3p, miR168b-3p, and miR8175 were found to inhibit MAPK3 expression, and novel_mir2 could suppress both AKT1 and MAPK3 expression. Discussion: This study sheds light on the collaborative antiviral mechanism of miRNAs in HELNs across two species and explores the potential antiviral scopes of both H. cordata miRNAs and HELNs.


Assuntos
Exossomos , Houttuynia , Vírus da Influenza A Subtipo H1N1 , MicroRNAs , Nanopartículas , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Houttuynia/genética , Houttuynia/metabolismo , Exossomos/genética , Exossomos/metabolismo , Antivirais/farmacologia
19.
Food Chem Toxicol ; 182: 114102, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37865333

RESUMO

Ginger exosome-like nanoparticles (GELNs) have been extensively implicated in alleviating inflammation, maintaining intestinal microbiome and are considered competent drug delivery vehicles. Despite this, the current knowledge of the GELN interaction with cancer cells is limited. Triple-negative breast cancer (TNBC), an aggressive variant lacking efficient therapeutics, necessitates novel natural counterparts with minimal side effects. This study investigates the action of GELNs isolated from ginger rhizomes against TNBC cells. GELNs were isolated by ultracentrifugation and characterized physicochemically. The interaction of GELNs with TNBC cells (MDA-MB-231) was studied in detail. The GELNs induced a concentration-dependent decrease in cell viability in MDA-MB-231 cells without affecting the normal cell lines tested. GELNs induced apoptosis as indicated by morphological changes, nuclear fragmentation, membrane damage, phosphatidyl serine translocation, ROS generation, drop in mitochondrial membrane potential, expression of apoptotic specific proteins, and increased caspase activity. GELNs also instigated cell cycle arrest, retarded cell migration and colony formation in TNBC cells. These findings report a novel action of GELNs against TNBC cells and a closer look at the underlying molecular mechanism of this interspecies communication. This opens newer prospects for using dietary ELNs to target therapeutically challenging cancers.


Assuntos
Exossomos , Nanopartículas , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/patologia , Células MDA-MB-231 , Exossomos/metabolismo , Linhagem Celular Tumoral , Pontos de Checagem do Ciclo Celular , Apoptose , Proliferação de Células
20.
Exp Eye Res ; 236: 109642, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37714423

RESUMO

Keratoconus (KC) is a corneal thinning disorder and a leading cause of corneal transplantation worldwide. Exosomes are small, secreted extracellular vesicles (30-150 nm) that mediate cellular communication via their protein, lipid, and nucleic acid content. We aimed to characterize the exosomes secreted by primary corneal fibroblasts from subjects with or without KC. Using human keratoconus stromal fibroblast cells (HKC, n = 4) and healthy stromal fibroblasts (HCF, n = 4), we collected and isolated exosomes using serial ultracentrifugation. Using nanoparticle tracking analysis (NTA) with ZetaView®, we compared the size and concentration of isolated exosomes. Different exosomal markers were identified and quantified using a transmission electron microscope (TEM) (CD81) and Western blot (CD9 and CD63). Exosomal miRNA profiles were determined by qRT-PCR using Exiqon Human panel I miRNA assays of 368 pre-selected miRNAs. Proteomic profiles were determined using a label-free spectral counting method with mass spectrometry. Differential expression analysis for miRNAs and proteins was done using student's t-test with a significance cutoff of p-value ≤0.05. We successfully characterized exosomes isolated from HCFs using several complementary techniques. We found no significant differences in the size, quantity, or morphology between exosomes secreted by HCFs with or without KC. Expression of CD81 was confirmed by immuno-EM, and expression of CD63 and CD9 with western blots in all exosome samples. We detected the expression of 72-144 miRNAs (threshold cycle Ct < 36) in all exosome samples. In HKC-derived exosome samples, miR-328-3p, miR-532-5p, miR-345-5p, and miR-424-5p showed unique expression, while let-7c-5p and miR-665 have increased expression. Protein profiling identified 157 proteins in at least half of the exosome samples, with 38 known exosomal proteins. We identified 12 up- and 2 down-regulated proteins in HKC-derived exosomes. The proteins are involved in membrane-bounded vesicles, cytoskeletal, calcium binding, and nucleotide binding. These proteins are predicted to be regulated by NRF2, miR-205, and TGF-ß1, which are involved in KC pathogenesis. We successfully characterized the HKC-derived exosomes and profiled their miRNA and protein contents, suggesting their potential role in KC development. Further studies are necessary to determine if and how these exosomes with differential protein/miRNA profiles contribute to the pathogenesis of KC.


Assuntos
Exossomos , Ceratocone , MicroRNAs , Humanos , Ceratocone/genética , Ceratocone/metabolismo , Exossomos/genética , Exossomos/metabolismo , Proteômica , MicroRNAs/genética , MicroRNAs/metabolismo , Células Estromais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA