Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 456
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Nutrients ; 13(11)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34836101

RESUMO

We used time-restricted feeding (TRF) to investigate whether microbial metabolites and the hunger hormone ghrelin can become the dominant entraining factor during chronic jetlag to prevent disruption of the master and peripheral clocks, in order to promote health. Therefore, hypothalamic clock gene and Agrp/Npy mRNA expression were measured in mice that were either chronically jetlagged and fed ad libitum, jetlagged and fed a TRF diet, or not jetlagged and fed a TRF diet. Fecal short-chain fatty acid (SCFA) concentrations, plasma ghrelin and corticosterone levels, and colonic clock gene mRNA expression were measured. Preventing the disruption of the food intake pattern during chronic jetlag using TRF restored the rhythmicity in hypothalamic clock gene mRNA expression of Reverbα but not of Arntl. TRF countered the changes in plasma ghrelin levels and in hypothalamic Npy mRNA expression induced by chronic jetlag, thereby reestablishing the food intake pattern. Increase in body mass induced by chronic jetlag was prevented. Alterations in diurnal fluctuations in fecal SCFAs during chronic jetlag were prevented thereby re-entraining the rhythmic expression of peripheral clock genes. In conclusion, TRF during chronodisruption re-entrains the rhythms in clock gene expression and signals from the gut that regulate food intake to normalize body homeostasis.


Assuntos
Proteínas CLOCK/metabolismo , Relógios Circadianos/genética , Ritmo Circadiano/genética , Jejum/metabolismo , Síndrome do Jet Lag/prevenção & controle , Animais , Doença Crônica , Colo/metabolismo , Corticosterona/sangue , Modelos Animais de Doenças , Ácidos Graxos Voláteis/metabolismo , Fezes/química , Comportamento Alimentar/fisiologia , Expressão Gênica/fisiologia , Grelina/sangue , Hipotálamo/metabolismo , Síndrome do Jet Lag/genética , Camundongos , RNA Mensageiro/metabolismo
2.
Life Sci ; 286: 119989, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34597609

RESUMO

AIMS: Isoformononetin (IFN), a methoxyl isoflavone present in most of human dietary supplements. However, being a highly potent antioxidant and anti-inflammatory molecule, its activity against neuronal oxidative stress and neuroinflammation has not been explored till now. The present study was inquested to assess the antioxidant, anti-apoptotic and anti-inflammatory activity of IFN against streptozotocin induced neuroinflammation in different brain regions of rat. MAIN METHODS: Four groups of animals were subjected to treatment as control, toxic control (STZ; single intracerebrovascular injection), third group (STZ + IFN; 20 mg/kg p.o.), fourth group (IFN) for 14 days. The different brain regions of rats were evaluated for inflammatory, apoptotic and biochemical antioxidant markers. The brain tissues were further assessed for gene expression, immunohistochemical and western blotting examination for localization of inflammasome cascade expression that plays a pivotal role in neuroinflammation. KEY FINDINGS: The modulation in oxidant/antioxidant status after exposure of STZ was significantly balanced after administration of IFN to rats. Further, IFN was also found to be an apoptotic agent as it modulates the apoptotic gene (Bax) and anti-apoptotic gene (BcL2) expression. IFN significantly curtailed the augmented protein expression of NLRP3, NLRP2, ASC, NFκBP65, IL-1ß and caspase-1 due to STZ administration in cortex and hippocampus rat brain regions. SIGNIFICANCE: The aforementioned results proclaim the neuroprotective functioning of IFN against STZ induced inflammation. IFN significantly prevents the neuroinflammation by decreasing the generation of ROS that reduces the activation of NLRP3/ASC/IL-1 axis thereby exerting neuroprotection as evidenced in rat model of STZ induced neuroninflammation.


Assuntos
Antioxidantes/farmacologia , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Encefalite/prevenção & controle , Interleucina-1/metabolismo , Isoflavonas/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Estreptozocina/toxicidade , Animais , Modelos Animais de Doenças , Encefalite/induzido quimicamente , Encefalite/metabolismo , Encefalite/patologia , Expressão Gênica/fisiologia , Interferons/fisiologia , Peroxidação de Lipídeos/efeitos dos fármacos , Óxido Nítrico/biossíntese , Estresse Oxidativo/efeitos dos fármacos , Coelhos , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo
3.
Nutrients ; 13(7)2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34202492

RESUMO

The classic ketogenic diet is a diet high in fat, low in carbohydrates, and well-adjusted proteins. The reduction in glucose levels induces changes in the body's metabolism, since the main energy source happens to be ketone bodies. Recent studies have suggested that nutritional interventions may modulate drug addiction. The present work aimed to study the potential effects of a classic ketogenic diet in modulating alcohol consumption and its rewarding effects. Two groups of adult male mice were employed in this study, one exposed to a standard diet (SD, n = 15) and the other to a ketogenic diet (KD, n = 16). When a ketotic state was stable for 7 days, animals were exposed to the oral self-administration paradigm to evaluate the reinforcing and motivating effects of ethanol. Rt-PCR analyses were performed evaluating dopamine, adenosine, CB1, and Oprm gene expression. Our results showed that animals in a ketotic state displayed an overall decrease in ethanol consumption without changes in their motivation to drink. Gene expression analyses point to several alterations in the dopamine, adenosine, and cannabinoid systems. Our results suggest that nutritional interventions may be a useful complementary tool in treating alcohol-use disorders.


Assuntos
Consumo de Bebidas Alcoólicas/prevenção & controle , Alcoolismo/dietoterapia , Dieta Cetogênica/psicologia , Ingestão de Alimentos/genética , Ingestão de Alimentos/psicologia , Adenosina/metabolismo , Consumo de Bebidas Alcoólicas/psicologia , Alcoolismo/psicologia , Animais , Canabinoides/metabolismo , Modelos Animais de Doenças , Dopamina/metabolismo , Etanol , Expressão Gênica/fisiologia , Masculino , Camundongos , Motivação/genética
4.
Bioorg Chem ; 114: 105044, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34157554

RESUMO

Helicobacter pylori (H. pylori) infection is a common disease that can cause H. pylori-associated gastritis (HAG), peptic ulcers, and gastric cancer. As a traditional Chinese medicine, Polygonum capitatum (PC) manifests its unique advantages in the prevention and treatment of complex diseases and chronic diseases, due to its ability to clear heat, detoxify and relieve pain, promote blood circulation, and remove blood stasis. In order to explore the molecular mechanism of PC for HAG, the study collected the predicted targets of active compounds, conducted functional analysis by the STRING database, collected HAG differential expression genes, and conducted KEGG enrichment analysis on the intersection of predicted targets and differential expression genes of gastritis by Cluego. The results show that PC works mainly by affecting phosphorylation of IκBα, NF-κB p65, p38MAPK, and ERK1/2 and nuclear transposition of NF-κB p65 and p-p38MAPK, which has been proved by in vivo and in vitro experiments. These results suggest that PC may act on HAG with multiple targets and pathways, and play a key role in the process of HAG treatment.


Assuntos
Antibacterianos/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Medicamentos de Ervas Chinesas/uso terapêutico , Gastrite/tratamento farmacológico , Infecções por Helicobacter/tratamento farmacológico , Polygonum/química , Animais , Linhagem Celular , Feminino , Gastrite/genética , Gastrite/microbiologia , Expressão Gênica/fisiologia , Infecções por Helicobacter/genética , Helicobacter pylori/efeitos dos fármacos , Humanos , Inflamação/tratamento farmacológico , Inflamação/microbiologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Farmacologia em Rede , Ratos Sprague-Dawley
5.
Neuropeptides ; 88: 102165, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34126542

RESUMO

Adropin has been shown to be involved in the regulation of food intake in mice. However, the mechanism of adropin in feeding regulation is still largely unknown. Using the tilapia, Oreochromis niloticus, we identified and characterized a novel form of adropin (designated adropin-b) encoding a 68-amino acid precursor. Although adropin-b shared low amino acid identities with its tilapia paralog (designated adropin-a), synteny analysis proved that tilapia adropin is orthologous to its human counterpart. The transcripts of adropin-b were ubiquitously expressed in various tissues with the highest levels in the olfactory bulb. A decrease in adropin-b mRNA levels was observed 1 h following a meal in the olfactory bulb, hypothalamus, and optic tectum, whereas fasting for 7 days induced an increase in adropin-b mRNA levels in the olfactory bulb, hypothalamus, and optic tectum of tilapia brain. However, no changes in adropin-a mRNA levels were observed in the postprandial and fasting state. Intraperitoneal injection of tilapia adropin-b was shown to increase food consumption, but adropin-a did not affect feeding. Co-treatment of the fish with adropin-b and neuropeptide Y (NPY) had no additive effects on appetite. The appetite stimulatory effects of adropin-b appeared to be mediated by upregulating the orexigenic Npy, Orexin, and Proapelin gene expression, paralleled by inhibition of the mRNA levels of anorexigenic proopiomelanocortin (Pomc) and cocaine-amphetamine-regulated transcript (Cart) in vivo and in vitro. These observations suggested that adropin-b participated in appetite control and gene regulation of central orexigenic and anorexigenic factors in a fish model.


Assuntos
Clonagem Molecular , Ingestão de Alimentos/fisiologia , Regulação da Expressão Gênica/fisiologia , Hipotálamo/metabolismo , Neuropeptídeo Y/metabolismo , Animais , Regulação do Apetite/fisiologia , Ciclídeos/genética , Ciclídeos/metabolismo , Jejum/fisiologia , Expressão Gênica/fisiologia , Tilápia/genética , Tilápia/metabolismo
6.
Aging (Albany NY) ; 13(9): 13087-13107, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33971622

RESUMO

Mimecan encodes a secretory protein that is secreted into the human serum as two mature proteins with molecular masses of 25 and 12 kDa. We found 12-kDa mimecan to be a novel satiety hormone mediated by the upregulation of the expression of interleukin (IL)-1ß and IL-6 in the hypothalamus. Mimecan was found to be expressed in human pituitary corticotroph cells and was up-regulated by glucocorticoids, while the secretion of adrenocorticotropic hormone (ACTH) in pituitary corticotroph AtT-20 cells was induced by mimecan. However, the effects of mimecan in adrenal tissue on the hypothalamic-pituitary-adrenal (HPA) axis functions remain unknown. We demonstrated that the expression of mimecan in adrenal tissues is significantly downregulated by hypoglycemia and scalded stress. It was down-regulated by ACTH, but upregulated by glucocorticoids through in vivo and in vitro studies. We further found that 12-kDa mimecan fused protein increased the corticosterone secretion of adrenal cells in vivo and in vitro. Interestingly, compared to litter-mate mice, the diurnal rhythm of corticosterone secretion was disrupted under basal conditions, and the response to restraint stress was stronger in mimecan knockout mice. These findings suggest that mimecan stimulates corticosterone secretion in the adrenal tissues under basal conditions; however, the down-regulated expression of mimecan by increased ACTH secretion after stress in adrenal tissues might play a role in maintaining the homeostasis of an organism's responses to stress.


Assuntos
Expressão Gênica/fisiologia , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Estresse Fisiológico/fisiologia , Glândulas Suprarrenais/metabolismo , Hormônio Adrenocorticotrópico/sangue , Animais , Glucocorticoides/metabolismo , Hipotálamo/metabolismo , Camundongos , Camundongos Knockout , Hipófise/metabolismo
7.
Genes Brain Behav ; 20(4): e12718, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33251675

RESUMO

Regulation of pollen and nectar foraging in honeybees is linked to differences in the sensitivity to the reward. Octopamine (OA) participates in the processing of reward-related information in the bee brain, being a candidate to mediate and modulate the division of labour among pollen and nectar foragers. Here we tested the hypothesis that OA affects the resource preferences of foragers. We first investigated whether oral administration of OA is involved in the transition from nectar to pollen foraging. We quantified the percentage of OA-treated bees that switched from a sucrose solution to a pollen feeder when the sugar concentration was decreased experimentally. We also evaluated if feeding the colonies sucrose solution containing OA increases the rate of bees collecting pollen. Finally, we quantified OA and tyramine (TYR) receptor genes expression of pollen and nectar foragers in different parts of the brain, as a putative mechanism that affects the decision-making process regarding the resource type collected. Adding OA in the food modified the probability that foragers switch from nectar to pollen collection. The proportion of pollen foragers also increased after feeding colonies with OA-containing food. Furthermore, the expression level of the AmoctαR1 was upregulated in foragers arriving at pollen sources compared with those arriving at sugar-water feeders. Using age-matched pollen and nectar foragers that returned to the hive, we detected an upregulated expression of a TYR receptor gene in the suboesophageal ganglia. These findings support our prediction that OA signalling affects the decision in honeybee foragers to collect pollen or nectar.


Assuntos
Comportamento Animal/fisiologia , Encéfalo/metabolismo , Comportamento Alimentar/fisiologia , Expressão Gênica/fisiologia , Animais , Abelhas , Néctar de Plantas/metabolismo , Pólen/metabolismo , Receptores de Amina Biogênica/metabolismo , Sacarose/metabolismo
8.
Brain Res ; 1751: 147191, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33152341

RESUMO

The objective of this study was to examine the effect of epigenetic treatment using an histone deacetylases (HDAC) inhibitor in addition to aerobic exercise on the epigenetic markers and neurotrophic gene expressions in the motor cortex, to find a more enriched brain pre-conditioning for motor learning in neurorehabilitation. ICR mice were divided into four groups based on two factors: HDAC inhibition and exercise. Intraperitoneal administration of an HDAC inhibitor (1.2 g/kg sodium butyrate, NaB) and treadmill exercise (approximately at 10 m/min for 60 min) were conducted five days a week for four weeks. NaB administration inhibited total HDAC activity and enhanced acetylation level of histones specifically in histone H4, accompanying the increase of transcription levels of immediate-early genes (IEGs) (c-fos and Arc) and neurotrophins (BDNF and NT-4) crucial for neuroplasticity in the motor cortex. However, exercise enhanced HDAC activity and acetylation level of histone H4 and H3 without the modification of transcription levels. In addition, there were no synergic effects between HDAC inhibition and the exercise regime on the gene expressions. This study showed that HDAC inhibition could present more enriched condition for neuroplasticity to the motor cortex. However, exercise-induced neurotrophic gene expressions could depend on exercise regimen based on the intensity, the term etc. Therefore, this study has a novelty suggesting that pharmacological HDAC inhibition could be an alternative potent approach to present a neuronal platform with enriched neuroplasticity for motor learning and motor recovery, however, an appropriate exercise regimen is expected in this approach.


Assuntos
Ácido Butírico/farmacologia , Plasticidade Neuronal/genética , Condicionamento Físico Animal/fisiologia , Acetilação/efeitos dos fármacos , Animais , Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Ácido Butírico/metabolismo , Cognição/fisiologia , Epigênese Genética/efeitos dos fármacos , Epigênese Genética/fisiologia , Feminino , Expressão Gênica/genética , Expressão Gênica/fisiologia , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/fisiologia , Hipocampo/metabolismo , Inibidores de Histona Desacetilases/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Histonas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Córtex Motor/metabolismo , Córtex Motor/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/metabolismo
9.
J Dairy Sci ; 103(12): 11439-11448, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33222856

RESUMO

Nutritional interventions, either by controlling dietary energy (DE) or supplementing rumen-protected choline (RPC) or both, may mitigate negative postpartum metabolic health outcomes. A companion paper previously reported the effects of DE density and RPC supplementation on production and health outcomes. The objective of this study was to examine the effects of DE and RPC supplementation on the expression of hepatic oxidative, gluconeogenic, and lipid transport genes during the periparturient period. At 47 ± 6 d relative to calving (DRTC), 93 multiparous Holstein cows were randomly assigned in groups to dietary treatments in a 2 × 2 factorial of (1) excess energy (EXE) without RPC supplementation (1.63 Mcal of NEL/kg of dry matter; EXE-RPC); (2) maintenance energy (MNE) without RPC supplementation (1.40 Mcal of NEL/kg dry matter; MNE-RPC); (3) EXE with RPC supplementation (EXE+RPC); and (4) MNE with RPC supplementation (MNE+RPC). To achieve the objective of this research, liver biopsy samples were collected at -14, +7, +14, and +21 DRTC and analyzed for mRNA expression (n = 16/treatment). The interaction of DE × RPC decreased glucose-6-phosphatase and increased peroxisome proliferator-activated receptor α in MNE+RPC cows. Expression of cytosolic phosphoenolpyruvate carboxykinase was altered by the interaction of dietary treatments with reduced expression in EXE+RPC cows. A dietary treatment interaction was detected for expression of pyruvate carboxylase although means were not separated. Dietary treatment interactions did not alter expression of carnitine palmitoyltransferase 1A or microsomal triglyceride transfer protein. The 3-way interaction of DE × RPC × DRTC affected expression of carnitine palmitoyltransferase 1A, glucose-6-phosphatase, and peroxisome proliferator-activated receptor α and tended to affect cytosolic phosphoenolpyruvate carboxykinase. Despite previously reported independent effects of DE and RPC on production variables, treatments interacted to influence hepatic metabolism through altered gene expression.


Assuntos
Bovinos/genética , Colina/administração & dosagem , Ingestão de Energia/fisiologia , Gluconeogênese/genética , Metabolismo dos Lipídeos/genética , Fígado/metabolismo , Animais , Bovinos/fisiologia , Dieta/veterinária , Suplementos Nutricionais , Feminino , Expressão Gênica/fisiologia , Glucose-6-Fosfatase/metabolismo , Lactação/efeitos dos fármacos , Leite/metabolismo , Período Periparto/efeitos dos fármacos , Gravidez , Cuidado Pré-Natal , Rúmen/metabolismo
10.
Behav Brain Res ; 390: 112660, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32387350

RESUMO

Exposure to maternal high-fat (HF) diet during gestation and lactation alters adult offspring's feeding behavior and diet preference. However, the impact of maternal exercise on offspring's diet preference and reward system development is less studied. In this study, we investigate the effect of perinatal maternal exercise on the development of diet preference, dopamine- and opioid-related gene expression in the central reward system in female offspring from HF-fed Sprague-Dawley rat dams. We found maternal HF diet did not alter adult offspring HF preference, but influenced offspring's dopamine and opioid system both at weaning and in adulthood, and these offspring retained higher body weight in adulthood. However, offspring from dams exposed to both HF diet and exercise during gestation and lactation had normalized body weight, decreased fat mass and lower HF-diet preference but increased energy intake in adulthood. The dopamine- and opioid-related gene expression in central reward system and POMC expression in hypothalamus was elevated in these adult offspring. We conclude that maternal exercise during gestation and lactation can potentially overcome the negative effects of perinatal exposure to HF diet in female offspring by altering their diet preference, central reward system signaling and hypothalamus neuropeptide expression.


Assuntos
Peso Corporal/fisiologia , Dieta Hiperlipídica , Preferências Alimentares/fisiologia , Expressão Gênica/fisiologia , Hipotálamo/metabolismo , Lactação/fisiologia , Fenômenos Fisiológicos da Nutrição Materna/fisiologia , Condicionamento Físico Animal/fisiologia , Gravidez/fisiologia , Pró-Opiomelanocortina/metabolismo , Recompensa , Animais , Animais Recém-Nascidos , Comportamento Animal/fisiologia , Modelos Animais de Doenças , Feminino , Ratos Sprague-Dawley
11.
Biol Reprod ; 103(1): 36-48, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32318713

RESUMO

The pig oocyte maturation protocol differs from other mammalian species due to dependence on follicular fluid (FF) supplementation. One of the most abundant components of the porcine follicular fluid are fatty acids (FAs). Although evidence from other mammalian models revealed a negative impact of saturated fatty acids (SFA) on developmental competence of oocytes, pig has not yet been widely analyzed. Therefore, we aimed to investigate whether supplementation of IVM medium with 150 µM of stearic acid (SA) and oleic acid (OA) affects lipid content and expression of genes related to fatty acid metabolism in porcine cumulus-oocyte complexes and parthenogenetic embryo development. We found significant influence of fatty acids on lipid metabolism in cumulus cells without affecting the oocyte proper. The expression of ACACA, SCD, PLIN2, FADS1, and FADS2 genes was upregulated (P < 0.01) in cumulus cells, while their expression in oocytes did not change. The increase in gene expression was more pronounced in the case of OA (e.g., up to 30-fold increase in PLIN2 transcript level compared to the control). The number of lipid droplets and occupied area increased significantly in the cumulus cells and did not change in oocytes after SA treatment. Oleic acid improved the blastocyst rate (48 vs 32% in control), whereas stearic acid did not affect this parameter (27%). Additionally, we have discovered a phenotypic diversity of LD in cumulus cells in response to FA supplementation, suggesting extensive lipolysis in response to SA. Stearic acid excess in maturation media led to the formation of multiple micro lipid droplets in cumulus cells.


Assuntos
Células do Cúmulo/metabolismo , Desenvolvimento Embrionário/fisiologia , Ácidos Graxos/farmacologia , Gotículas Lipídicas/metabolismo , Lipólise/fisiologia , Suínos/embriologia , Animais , Apoptose/efeitos dos fármacos , Blastocisto/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Ácidos Graxos/metabolismo , Feminino , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/fisiologia , Técnicas de Maturação in Vitro de Oócitos/veterinária , Gotículas Lipídicas/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Lipólise/efeitos dos fármacos , Ácido Oleico/farmacologia , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , RNA Mensageiro/análise , Ácidos Esteáricos/farmacologia
12.
Dev Psychobiol ; 62(6): 749-757, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32115686

RESUMO

During infection, sickness behaviors, such as a hunched stance with piloerection, can facilitate host resistance by supporting the generation and maintenance of fever. Fever, in turn, is mediated by hypothalamic neuroimmune signaling. Sickness behaviors, however, can also be influenced by social stimuli. In this study, guinea pig pups were injected with lipopolysaccharide to simulate a bacterial infection and then exposed to a novel, threatening environment while either with their mother or alone. We found that the presence of the mother suppressed sickness behavior, but enhanced fever, and had no measureable effect on gene expression of hypothalamic mediators of fever. This 3-way dissociation induced by the mother's presence is interpreted in terms of the differential adaptive consequences of behavioral and febrile responses for pups in this situation. The results contribute to a growing literature linking immunological and social processes.


Assuntos
Comportamento Animal/fisiologia , Medo/fisiologia , Febre , Expressão Gênica/fisiologia , Hipotálamo , Comportamento de Doença/fisiologia , Mães , Animais , Feminino , Febre/induzido quimicamente , Febre/imunologia , Febre/metabolismo , Cobaias , Hipotálamo/imunologia , Hipotálamo/metabolismo , Lipopolissacarídeos/farmacologia , Masculino
13.
Mol Psychiatry ; 25(5): 939-950, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-30356120

RESUMO

Genetic factors do not fully account for the relatively high heritability of neurodevelopmental conditions, suggesting that non-genetic heritable factors contribute to their etiology. To evaluate the potential contribution of aberrant thyroid hormone status to the epigenetic inheritance of neurological phenotypes, we examined genetically normal F2 generation descendants of mice that were developmentally overexposed to thyroid hormone due to a Dio3 mutation. Hypothalamic gene expression profiling in postnatal day 15 F2 descendants on the paternal lineage of ancestral male and female T3-overexposed mice revealed, respectively, 1089 and 1549 differentially expressed genes. A large number of them, 675 genes, were common to both sets, suggesting comparable epigenetic effects of thyroid hormone on both the male and female ancestral germ lines. Oligodendrocyte- and neuron-specific genes were strongly overrepresented among genes showing, respectively, increased and decreased expression. Altered gene expression extended to other brain regions and was associated in adulthood with decreased anxiety-like behavior, increased marble burying and reduced physical activity. The sperm of T3-overexposed male ancestors revealed significant hypomethylation of CpG islands associated with the promoters of genes involved in the early development of the central nervous system. Some of them were candidates for neurodevelopmental disorders in humans including Nrg3, Nrxn1, Gabrb3, Gabra5, Apba2, Grik3, Reln, Nsd1, Pcdh8, En1, and Elavl2. Thus, developmental levels of thyroid hormone influence the epigenetic information of the germ line, disproportionately affecting genes with critical roles in early brain development, and leading in future generations to disease-relevant alterations in postnatal brain gene expression and adult behavior.


Assuntos
Comportamento Animal/fisiologia , Epigênese Genética/fisiologia , Expressão Gênica/fisiologia , Células Germinativas/fisiologia , Hipotálamo/metabolismo , Padrões de Herança/fisiologia , Hormônios Tireóideos/fisiologia , Animais , Encéfalo/crescimento & desenvolvimento , Ilhas de CpG/genética , Metilação de DNA , Feminino , Iodeto Peroxidase/genética , Masculino , Camundongos , Mutação , Proteína Reelina
14.
Physiol Behav ; 212: 112719, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31634524

RESUMO

Food intake patterns are regulated by signals from the gustatory neural circuit, a complex neural network that begins at the tongue and continues to homeostatic and hedonic brain regions involved in eating behavior. The goal of the current study was to investigate the short-term effects of continuous access to a high fat diet (HFD) versus limited access to dietary fat on the gustatory neural circuit. Male Sprague-Dawley rats were fed a chow diet, a HFD (56% kcal from fat), or provided limited, daily (2 h/day) or limited, intermittent (2 h/day, 3 times/week) access to vegetable shortening for 2 weeks. Real time PCR was used to determine mRNA expression of markers of fat sensing/signaling (e.g. CD36) on the circumvallate papillae, markers of homeostatic eating in the mediobasal hypothalamus (MBH) and markers of hedonic eating in the nucleus accumbens (NAc). Continuous HFD increased mRNA levels of lingual CD36 and serotonin signaling, altered markers of homeostatic and hedonic eating. Limited, intermittent access to dietary fat selectively altered the expression of genes associated with the regulation of dopamine signaling. Overall, these data suggest that short-term, continuous access to HFD leads to altered fat taste and decreased expression of markers of homeostatic and hedonic eating. Limited, intermittent access, or binge-like, consumption of dietary fat led to an overall increase in markers of hedonic eating, without altering expression of lingual fat sensors or homeostatic eating. These data suggest that there are differential effects of meal patterns on gustatory neurocircuitry which may regulate the overconsumption of fat and lead to obesity.


Assuntos
Antígenos CD36/fisiologia , Comportamento Alimentar/fisiologia , Hipotálamo/metabolismo , Núcleo Accumbens/metabolismo , Papilas Gustativas/metabolismo , Animais , Biomarcadores/metabolismo , Antígenos CD36/biossíntese , Dieta Hiperlipídica , Dopamina/biossíntese , Expressão Gênica/fisiologia , Masculino , Ratos , Serotonina/biossíntese , Transdução de Sinais/fisiologia
15.
Plant Physiol Biochem ; 143: 257-264, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31525603

RESUMO

Wild ginseng (Panax ginseng) can survive in their natural habitat for hundreds of years, reflecting a remarkable plasticity. Plant stem cells (SCs) play a key role in the regenerative capacity and lifelong activity of these plants. WUSCHEL-RELATED HOMEOBOX (WOX) genes are master regulators of plant SC pluripotency, but their functions in medicinal plants have not been previously reported. To investigate whether these genes define different SC niches in ginseng, we cloned and analysed five WOX genes in ginseng (PgWOXs) and found that they might regulate root reconstruction. Then, the whole-mount RNA in situ hybridization was used to characterize the 3D gene expression pattern of PgWOXs in ginseng seedlings and cultured adventitious roots. PgWOX4 was expressed in vascular cambium SCs; PgWOX5 and PgWOX11 were mainly expressed in the tips of seedling and adventitious roots, which are the energetic centre of the meristem; and PgWOX13a and PgWOX13b were detected in the parenchyma cells of the main root of seedlings and cultured adventitious roots, suggesting that they are important for maintaining the balance between SC differentiation and self-renewal in the phloem and xylem. This is the first report of SC regulation in medical herbs; we expect that P. ginseng can serve as a model herb for investigating the relationship between SCs and their herbal morphological features, which would be a new research direction to improve the yield and quality of the medicinal materials by regulating the herbal SCs.


Assuntos
Panax/metabolismo , Proteínas de Plantas/metabolismo , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Expressão Gênica/genética , Expressão Gênica/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Panax/genética , Proteínas de Plantas/genética
16.
Brain Res ; 1723: 146404, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31454515

RESUMO

A short-term episode of elevated core body temperature that induces Hsp70 expression (thermal preconditioning) may protect against heatstroke during subsequent hyperthermia. The protective effects of thermal preconditioning may involve several cellular and immunological mechanisms and improvements in baroreflex sensitivity. To substantiate the hypothesis that the protective effect of thermal preconditioning also occurs in conditions with intact thermoregulation, we examined the evolution of spontaneous cardiovagal baroreflex sensitivity and the protective effect of Hsp70 expression after thermal preconditioning in nonanesthetized Wistar-Kyoto rats with implanted telemetric transmitters. In the baroreflex centers of the medulla oblongata, thermal preconditioning induced Hsp70 in perineuronal and perivascular oligodendrocytes, microglia, and endothelial cells but not in neurons. The maximal Hsp70 expression was detected 4 h after preconditioning, but a significant number of Hsp70-positive cells was still present 72 h after preconditioning. Increased c-Fos expression in the neurons of baroreflex centers was detectable only 4 h after preconditioning. The mean values of cardiovagal baroreflex sensitivity did not show significant differences during the 72-hour follow-up period after thermal preconditioning. Similarly, cardiovascular variability measures of the autonomic nervous system activity were also not significantly affected by thermal preconditioning. During passive hyperthermia, thermal preconditioning had no statistically significant effect on thermoregulation and the onset of arterial pressure decline. Our data suggest that thermal preconditioning induces a glial type of Hsp70 expression in the baroreflex centers of the medulla oblongata. However, this response was not associated with cardiovagal baroreflex sensitization and protection against hemodynamic instability during passive hyperthermia.


Assuntos
Febre/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Bulbo/fisiologia , Animais , Pressão Arterial , Sistema Cardiovascular/metabolismo , Células Endoteliais/metabolismo , Febre/fisiopatologia , Expressão Gênica/fisiologia , Proteínas de Choque Térmico HSP70/genética , Frequência Cardíaca/fisiologia , Golpe de Calor/metabolismo , Hemodinâmica/fisiologia , Temperatura Alta/efeitos adversos , Hipertermia Induzida , Masculino , Ratos , Ratos Endogâmicos WKY
17.
Curr Opin Psychol ; 28: 302-306, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31352296

RESUMO

Recent research in functional genomics shows that social stressors affect the expression of immune response genes. These effects are mediated in part via our adaptive capacity for intracellular molecules to respond to extracellular signals, a process called signal transduction. Under this framework, one-way stressors can be transduced into cellular changes is through central nervous system (CNS) modulation of peripheral neural, endocrine, and molecular activity. Mindfulness meditation is a consciousness discipline used to cultivate attention and self-regulation, and may thus be relevant to the signal transduction process outlined in the social genomics literature. In this opinion article, we briefly review results from existing controlled trials that test the effects of mindfulness meditation on gene expression. We then speculate on a mind-body conceptual model, grounded in existing social genomics theory. In the spirit of hypothesis generation, we argue that mindfulness meditation changes brain activity patterns related to attention, self-regulation, and threat evaluation and so may alter the signal transduction process that regulates the expression of immune response genes.


Assuntos
Encéfalo/fisiologia , Expressão Gênica/fisiologia , Meditação , Atenção Plena , Transdução de Sinais/fisiologia , Estresse Psicológico , Encéfalo/imunologia , Encéfalo/metabolismo , Humanos , Estresse Psicológico/genética , Estresse Psicológico/imunologia , Estresse Psicológico/metabolismo
18.
Physiol Behav ; 207: 167-178, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31082443

RESUMO

We investigated at the transcriptional level the role of daily rhythm in melatonin secretion in seasonal responses in the migratory blackheaded bunting (Emberiza melanocephala), which when exposed to short (SP) and long (LP) photoperiods exhibits distinct seasonal life-history states (LHSs). We reproduced the seasonal LHS by subjecting buntings to SP (8 h light: 16 h darkness, 8 L:16D), which maintained the nonmigratory/ nonbreeding phenotype, and to LP (16 L:8D), which induced the premigratory/ prebreeding, migratory/ breeding and nonmigratory/ postbreeding phenotypes. Plasma melatonin measured at 4 h intervals showed loss of the daily rhythm in the LP-induced premigratory/ prebreeding and migratory/ breeding LHSs. Subsequently, mRNA expression of genes coding for the aryl-alkamine-N-acetyltransferase (AANAT; the rate-liming enzyme of melatonin biosynthesis) and for the receptors for melatonin (Mel1A, Mel1B and Mel1C) was examined in the retina, pineal and hypothalamus; the interacting independent circadian clocks comprising the songbird circadian timing system. Except AANAT that was not amplified in the hypothalamus, we found significant alterations in both, the level and persistence of 24 h rhythm in mRNA expression of all genes, albeit with photoperiod and seasonal differences between three circadian clock tissues. Particularly, 24 h mRNA expression pattern of all genes, except retinal Mel1A, lacked a significant daily rhythm in the LP-induced migratory/ breeding LHS. These results underscore the overall importance of the circadian rhythm in the role of melatonin in photoperiodically-controlled seasonal responses in migratory songbirds.


Assuntos
Arilalquilamina N-Acetiltransferase/biossíntese , Arilalquilamina N-Acetiltransferase/genética , Relógios Circadianos/genética , Ritmo Circadiano/genética , Expressão Gênica/genética , Expressão Gênica/fisiologia , Melatonina/metabolismo , Receptores de Melatonina/biossíntese , Receptores de Melatonina/genética , Estações do Ano , Aves Canoras/fisiologia , Migração Animal/fisiologia , Animais , Química Encefálica/genética , Química Encefálica/fisiologia , Cruzamento , DNA Complementar/biossíntese , DNA Complementar/genética , Hipotálamo/metabolismo , Masculino , Fotoperíodo , RNA Mensageiro/biossíntese , RNA Mensageiro/genética
19.
Brain Struct Funct ; 224(3): 1331-1344, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30725232

RESUMO

The functional connectivity between thalamic medio-dorsal nucleus (MD) and cortical regions, especially the dorsolateral prefrontal cortex (DLPFC), is implicated in attentional processing and is anomalous in schizophrenia, a brain disease associated with polygenic risk and attentional deficits. However, the molecular and genetic underpinnings of thalamic connectivity anomalies are unclear. Given that gene co-expression across brain areas promotes synchronous interregional activity, our aim was to investigate whether coordinated expression of genes relevant to schizophrenia in MD and DLPFC may reflect thalamic connectivity anomalies in an attention-related network including the DLPFC. With this aim, we identified in datasets of post-mortem prefrontal mRNA expression from healthy controls a gene module with robust overrepresentation of genes with coordinated MD-DLPFC expression and enriched for schizophrenia genes according to the largest genome-wide association study to date. To link this gene cluster with imaging phenotypes, we computed a Polygenic Co-Expression Index (PCI) combining single-nucleotide polymorphisms predicting module co-expression. Finally, we investigated the association between PCI and thalamic functional connectivity during attention through fMRI Independent Component Analysis in 265 healthy participants. We found that PCI was positively associated with connectivity strength of a thalamic region overlapping with the MD within an attention brain circuit. These findings identify a novel association between schizophrenia-related genes and thalamic functional connectivity. Furthermore, they highlight the association between gene expression co-regulation and brain connectivity, such that genes with coordinated MD-DLPFC expression are associated with coordinated activity between the same brain regions. We suggest that gene co-expression is a plausible mechanism underlying biological phenotypes of schizophrenia.


Assuntos
Expressão Gênica/fisiologia , Imageamento por Ressonância Magnética , Vias Neurais/diagnóstico por imagem , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/fisiologia , Tálamo/diagnóstico por imagem , Tálamo/fisiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Mapeamento Encefálico , Criança , Pré-Escolar , Feminino , Ontologia Genética , Humanos , Processamento de Imagem Assistida por Computador , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Herança Multifatorial/fisiologia , Oxigênio/sangue , Polimorfismo de Nucleotídeo Único/genética , Adulto Jovem
20.
Neuroendocrinology ; 108(4): 291-307, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30630179

RESUMO

BACKGROUND: The mechanisms whereby neuroinflammation negatively affects neuronal function in the hypothalamus are not clear. Our previous study determined that obesity-mediated chronic inflammation elicits sex-specific impairment in reproductive function via reduction in spine density in gonadotropin-releasing hormone (GnRH) neurons. Neuroinflammation and subsequent decrease in GnRH neuron spine density was specific for male mice, while protection in females was independent of ovarian estrogens. METHODS: To examine if neuroinflammation-induced cytokines can directly regulate GnRH gene expression, herein we examined signaling pathways and mechanisms in males in vivo and in GnRH-expressing cell line, GT1-7. RESULTS: GnRH neurons express cytokine receptors, and chronic or acute neuroinflammation represses GnRH gene expression in vivo. Leukemia inhibitory factor (LIF) in particular represses GnRH expression in GT1-7 cells, while other cytokines do not. STAT3 and MAPK pathways are activated following LIF treatment, but only MAPK pathway, specifically p38α, is sufficient to repress the GnRH gene. LIF induces cFOS that represses the GnRH gene via the -1,793 site in the enhancer region. In vivo, following high-fat diet, cFOS is induced in GnRH neurons and neurons juxtaposed to the leaky blood brain barrier of the organum vasculosum of the lamina terminalis, but not in the neurons further away. CONCLUSION: Our results indicate that the increase in LIF due to neuroinflammation induces cFOS and represses the GnRH gene. Therefore, in addition to synaptic changes in GnRH neurons, neuroinflammatory cytokines directly regulate gene expression and reproductive function, and the specificity for neuronal targets may stem from the proximity to the fenestrated capillaries.


Assuntos
Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo/metabolismo , Inflamação/metabolismo , Fator Inibidor de Leucemia/metabolismo , Animais , Expressão Gênica/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Transdução de Sinais/fisiologia , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA