Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 394
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Food Res Int ; 184: 114260, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38609237

RESUMO

The aim of this study was to evaluate meat quality and changes in the meat exudate metabolome of different beef muscles (5 d postmortem, longissimus lumborum and psoas major muscles) during wet-aging (additional 3, 7, 14, 21, and 28 d of aging). Shear force of meat declined significantly (P < 0.001) with aging, meanwhile, increased myofibril fragmentation index, lipid and protein oxidation with aging were observed (P < 0.01). Psoas major (PM) showed significantly higher (P < 0.05) purge loss, centrifugal loss, and cooking loss, as well as higher tenderness and more severe lipid and protein oxidation (P < 0.01) than longissimus lumborum (LL) during aging. Principal component analysis of the metabolomic profiles revealed distinct clusters according to the period of aging and the type of muscle simultaneously. Overabundant amino acids, peptides, oxidized fatty acids, and hydroxy fatty acids were found in long-term aged meat exudates, and forty metabolites were significantly correlated with meat quality characteristics. Fifty-nine metabolites were significantly affected by muscle type. These results demonstrated the potential possibility of evaluating meat quality using meat exudate metabolomics.


Assuntos
Metaboloma , Miofibrilas , Animais , Bovinos , Óleo de Rícino , Exsudatos e Transudatos , Ácidos Graxos , Carne
2.
Sci Rep ; 14(1): 2359, 2024 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-38286879

RESUMO

Biotransformation of organic pollutants is crucial for the dissipation of environmental pollutants. While the roles of microorganisms have been extensively studied, the significant contribution of various root exudates are still not very well understood. Through plant growth experiment, coupled with gas and liquid chromatography-mass spectrometry methods, this study examined the effect of the presence of M. sativa on microbial-associated biochemical transformation of petroleum hydrocarbons. The results of this study revealed that the concentration of exudates within the soil matrix is a function of proximity to root surfaces. Similarly, biodegradation was found to correlate with distance from roots, ranging from ≥ 90% within the rhizosphere to < 50% in bulk soil and unplanted control soil. Most importantly, for the first time in a study of an entire petroleum distillate, this study revealed a statistically significant negative correlation between root exudate concentration and residual total petroleum hydrocarbons. While not all the compounds that may influence biodegradation are derived from roots, the results of this study show that the presence of plant can significantly influence biodegradation of hydrocarbon pollutants through such root exudation as organic acids, amino acids, soluble sugars and terpenoids. Therefore, root exudates, including secondary metabolites, offer great prospects for biotechnological applications in the remediation of organic pollutants, including recalcitrant ones.


Assuntos
Poluentes Ambientais , Petróleo , Poluentes do Solo , Poluentes Ambientais/metabolismo , Poluentes do Solo/metabolismo , Rizosfera , Biodegradação Ambiental , Solo , Biotransformação , Exsudatos e Transudatos/metabolismo , Hidrocarbonetos/metabolismo , Petróleo/metabolismo , Raízes de Plantas/metabolismo , Microbiologia do Solo , Exsudatos de Plantas/metabolismo
3.
Clin Chim Acta ; 554: 117704, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38185284

RESUMO

BACKGROUND: Systemically administered antibiotics are thought to penetrate the wounds more effectively during negative pressure wound therapy (NPWT).To test this hypothesis total and free antibiotic concentrations were quantified in serum and wound exudate. METHODS: UHPLC-MS/MS methods were developed and validated for the determination of ceftazidime, cefepime, cefotaxime, cefuroxime, cefazolin, meropenem, oxacillin, piperacillin with tazobactam, clindamycin, ciprofloxacin, sulfamethoxazole/trimethoprim (cotrimoxazole), gentamicin, vancomycin, and linezolid. The unbound antibiotic fraction was obtained by ultrafiltration using a Millipore Microcon-30kda Centrifugal Filter Unit. Analysis was performed on a 1.7-µm Acquity UPLC BEH C18 2.1 × 100-mm column with a gradient elution. RESULTS: The validation was performed for serum, exudates and free fractions. For all matrices, requirements were met regarding linearity, precision, accuracy, limit of quantitation, and matrix effect. The coefficient of variation was in the range of 1.2-13.6%.and the recovery 87.6-115.6%, respectively. Among the 29 applications of antibiotics thus far, including vancomycin, clindamycin, ciprofloxacin, oxacillin, cefepime, cefotaxime, cotrimoxazole, and gentamicin, total and free antibiotic concentrations in serum and exudate were correlated. CONCLUSION: This method can accurately quantify the total and free concentrations of 16 antibiotics. Comparison of concentration ratios between serum and exudates allows for monitoring individual antibiotics' penetration capacity in patients receiving NPWT.


Assuntos
Tratamento de Ferimentos com Pressão Negativa , Infecção dos Ferimentos , Humanos , Antibacterianos , Espectrometria de Massas em Tandem/métodos , Cefepima , Vancomicina , Combinação Trimetoprima e Sulfametoxazol , Clindamicina , Esternotomia , Cromatografia Líquida/métodos , Ciprofloxacina , Cefotaxima , Oxacilina , Gentamicinas , Exsudatos e Transudatos , Cromatografia Líquida de Alta Pressão/métodos
4.
Sci Total Environ ; 912: 169048, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38061654

RESUMO

Biodegradable plastics (BPs) have gained increased attention as a promising solution to plastics pollution problem. However, BPs often exhibited limited in situ biodegradation in the soil environment, so they may also release microplastics (MPs) into soils just like conventional non-degradable plastics. Therefore, it is necessary to evaluate the impacts of biodegradable MPs (BMPs) on soil ecosystem. Here, we explored the effects of biodegradable poly(butylene adipate-co-terephthalate) (PBAT) MPs and conventional polyethylene (PE) MPs on soil-plant (pakchoi) system at three doses (0.02 %, 0.2 %, and 2 %, w/w). Results showed that PBAT MPs reduced plant growth in a dose-dependent pattern, while PE MPs exhibited no significant phytotoxicity. High-dose PBAT MPs negatively affected the rhizosphere soil nutrient availability, e.g., decreased available phosphorus and available potassium. Metagenomics analysis revealed that PBAT MPs caused more serious interference with the rhizosphere microbial community composition and function than PE MPs. In particular, compared with PE MPs, PBAT MPs induced greater changes in functional potential of carbon, nitrogen, phosphorus, and sulfur cycles, which may lead to alterations in soil biogeochemical processes and ecological functions. Moreover, untargeted metabolomics showed that PBAT MPs and PE MPs differentially affect plant root exudates. Mantel tests, correlation analysis, and partial least squares path model analysis showed that changes in plant growth and root exudates were significantly correlated with soil properties and rhizosphere microbiome driven by the MPs-rhizosphere interactions. This work improves our knowledge of how biodegradable and conventional non-degradable MPs affect plant growth and the rhizosphere ecology, highlighting that BMPs might pose greater threat to soil ecosystems than non-degradable MPs.


Assuntos
Plásticos Biodegradáveis , Brassica , Microplásticos , Rizosfera , Ecossistema , Plásticos , Exsudatos e Transudatos , Biodegradação Ambiental , Polietileno , Exsudatos de Plantas , Fósforo , Solo
5.
Physiol Plant ; 175(6): e14107, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38148232

RESUMO

Phosphorus (P) deficiency alters the root morphological and physiological traits of plants. This study investigates how soybean cultivars with varying low-P tolerance values respond to different P levels in hydroponic culture by assessing alterations in root length, acid phosphatase activity, organic acid exudation, and metabolites in root exudates. Three low-P-tolerant cultivars ('Maetsue,' 'Kurotome,' and 'Fukuyutaka') and three low-P-sensitive cultivars ('Ihhon,' 'Chizuka,' and 'Komuta') were grown under 0 (P0) and 258 µM P (P8) for 7 and 14 days after transplantation (DAT). Low-P-tolerant cultivars increased root length by 31% and 119%, which was lower than the 62% and 144% increases in sensitive cultivars under P0 compared to P8 at 7 and 14 DAT, respectively. Acid phosphatase activity in low-P-tolerant cultivars exceeded that in sensitive cultivars by 5.2-fold and 2.0-fold at 7 and 14 DAT. Root exudates from each cultivar revealed 177 metabolites, with higher organic acid exudation in low-P-tolerant than sensitive cultivars under P0. Low-P-tolerant cultivars increased concentrations of specific metabolites (oxalate, GABA, quinate, citrate, AMP, 4-pyridoxate, and CMP), distinguishing them from low-P-sensitive cultivars under P0. The top five metabolomic pathways (purine metabolism, arginine and proline metabolism, TCA cycle, glyoxylate and dicarboxylate metabolism, alanine, aspartate, and glutamate metabolism) were more pronounced in low-P-tolerant cultivars at 14 DAT. These findings indicate that increasing root length was not an adaptation strategy under P deficiency; instead, tolerant cultivars exhibit enhanced root physiological traits, including increased acid phosphatase activity, organic acid exudation, specific metabolite release, and accelerated metabolic pathways under P deficiency.


Assuntos
Glycine max , Fósforo , Fósforo/metabolismo , Raízes de Plantas/metabolismo , Exsudatos e Transudatos/metabolismo , Fosfatase Ácida/metabolismo
6.
J Med Food ; 26(11): 843-848, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37862040

RESUMO

Angelica keiskei Koidzumi (Ashitaba) is a traditional folk medicine and health supplement in Japan. Ashitaba yellow stem exudate (AYE) contains abundant chalcones and thus has the potential to treat and prevent many pathological states such as cancer, inflammation, obesity, diabetics, thrombosis, and hypertension. Levels of plasminogen activator inhibitor 1 (PAI-1), a key regulator of the fibrinolytic system, increase with age in mouse plasma. Therefore, we aimed to determine the effects of AYE on plasma thrombotic parameters in aging mice. Long-term (52 weeks) AYE supplementation significantly decreased age-induced increases of PAI-1 in mouse plasma. Supplementation with AYE decreased levels of the acute-phase and fibrinolytic protein plasma plasminogen, and significantly decreased those of tumor necrosis factor α. These results suggested that continuous intake of AYE throughout life decreases age-induced systemic inflammation and prevents thrombotic tendencies without affecting body weight gain in aged mice. Our findings showed that supplementing diets with AYE might help to prevent thrombotic diseases in elderly individuals.


Assuntos
Angelica , Trombose , Humanos , Animais , Camundongos , Idoso , Inibidor 1 de Ativador de Plasminogênio , Aumento de Peso , Inflamação/tratamento farmacológico , Trombose/tratamento farmacológico , Trombose/prevenção & controle , Exsudatos e Transudatos , Suplementos Nutricionais
7.
Sci Rep ; 13(1): 10954, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37414773

RESUMO

Prunus armeniaca gum is used as food additive and ethno medicinal purpose. Two empirical models response surface methodology and artificial neural network were used to search for optimized extraction parameters for gum extraction. A four-factor design was implemented for optimization of extraction process for maximum yield which was obtained under the optimized extraction parameter (temperature, pH, extraction time, and gum/water ratio). Micro and macro-elemental composition of gum was determined by using laser induced breakdown spectroscopy. Gum was evaluated for toxicological effect and pharmacological properties. The maximum predicted yield obtained by response surface methodology and artificial neural network was 30.44 and 30.70% which was very close to maximum experimental yield 30.23%. Laser induced breakdown spectroscopic spectra confirmed the presence Calcium, Potassium, Magnesium, Sodium, Lithium, Carbon, Hydrogen, Nitrogen and Oxygen. Acute oral toxicity study showed that gum is non-toxic up to 2000 mg/Kg body weight in rabbits, accompanied by high cytotoxic effects of gum against HepG2 and MCF-7cells by MTT assay. Overall, Aqueous solution of gum showed various pharmacological activities with significant value of antioxidant, antibacterial, anti-nociceptive, anti-cancer, anti-inflammatory and thrombolytic activities. Thus, optimization of parameters using mathematical models cans offer better prediction and estimations with enhanced pharmacological properties of extracted components.


Assuntos
Antioxidantes , Exsudatos de Plantas , Animais , Coelhos , Antioxidantes/farmacologia , Antioxidantes/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Gomas Vegetais/química , Água , Exsudatos e Transudatos
8.
Sci Total Environ ; 878: 163175, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37003329

RESUMO

Maximizing the potential of plant-microbe systems offers great opportunities to confront sustainability issues in agroecosystems. However, the dialog between root exudates and rhizobacteria remains largely unknown. As a novel nanofertilizer, nanomaterials (NMs) have significant potential to improve agricultural productivity due to their unique properties. Here, soil amendment with 0.1 mg·kg-1 selenium (Se) NMs (30-50 nm) significantly promoted rice seedling growth. Differences in root exudates and rhizobacteria were evident. At an earlier time point (3rd week), Se NMs increased the relative content of malic and citric acid by 15.4- and 8.1-fold, respectively. Meanwhile, the relative abundances of Streptomyces and Sphingomonas were increased by 164.6 % and 38.3 %, respectively. As the exposure time increased, succinic acid (40.5-fold) at the 4th week and salicylic acid (4.7-fold) and indole-3-acetic (7.0-fold) at the 5th week were enhanced, while Pseudomonas and Bacillus increased at the 4th (112.3 % and 50.2 %) and 5th weeks (190.8 % and 53.1 %), respectively. Further analysis indicated that (1) Se NMs directly enhanced the synthesis and secretion of malic and citric acids by upregulating their biosynthesis and transporter genes and then recruited Bacillus and Pseudomonas; (2) Se NMs upregulated the chemotaxis and flagellar genes of Sphingomonas for more interaction with rice plants, thereby promoting rice growth and stimulating root exudate secretion. This crosstalk of root exudates and rhizobacteria enhanced nutrient uptake, resulting in promoted rice growth. Our study offers insights into the crosstalk between root exudates and rhizobacteria by NMs and provides new insights into rhizosphere regulation in nano-enabled agriculture.


Assuntos
Bacillus , Oryza , Selênio , Bacillus/fisiologia , Exsudatos e Transudatos , Solo , Raízes de Plantas/microbiologia
9.
Front Immunol ; 14: 1161479, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37090725

RESUMO

Background: Blisters are tense vesicles or bullae that arise on swollen skin and are found in a wide range of injuries. As a complication of fracture, fracture blisters are considered soft tissue injuries, which often lead to adverse effects such as prolonged preoperative waiting time and increased risk of surgical site infection. However, our previous study found that in patients with acute compartment syndrome, fracture blisters may be a form of compartment pressure release, but the specific mechanism has not been revealed. Here, we mapped out the proteomic landscape of fracture blister fluid for the first time and compared its expression profile to cupping and burn blisters. Methods: First, fluid samples were collected from 15 patients with fracture blisters, 7 patients with cupping blisters, and 9 patients with burn blisters. Then, the expression levels of 92 inflammatory proteins were measured using the Olink Target 96 Inflammation panel. Protein profiles were compared across the three groups using Differential Protein Expression Analysis and Principal Component Analysis (PCA). Results: Fracture blisters had significantly higher levels of 50 proteins in comparison to cupping and 26 proteins in comparison to burn blisters. Notably, PCA showed fracture blisters closely resembled the protein expression profile of burn blisters but were distinct from the protein expression profile of cupping blisters. Conclusion: Our study provides the first characterization of fracture blister fluid using proteomics, which provides a valuable reference for further analysis of the difference between blisters caused by fractures and those caused by other pathogenic factors. This compendium of proteomic data provides valuable insights and a rich resource to better understand fracture blisters.


Assuntos
Vesícula , Síndromes Compartimentais , Exsudatos e Transudatos , Fraturas Ósseas , Inflamação , Proteínas , Humanos , Vesícula/etiologia , Queimaduras/complicações , Síndromes Compartimentais/etiologia , Ventosaterapia/efeitos adversos , Exsudatos e Transudatos/química , Fraturas Ósseas/complicações , Inflamação/etiologia , Proteínas/análise , Proteômica
10.
Int J Biol Macromol ; 241: 124569, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37100319

RESUMO

Stylo (Stylosanthes guianensis) is a tropical forage and cover crop that possesses low phosphate (Pi) tolerance traits. However, the mechanisms underlying its tolerance to low-Pi stress, particularly the role of root exudates, remain unclear. This study employed an integrated approach using physiological, biochemical, multi-omics, and gene function analyses to investigate the role of stylo root exudates in response to low-Pi stress. Widely targeted metabolomic analysis revealed that eight organic acids and one amino acid (L-cysteine) were significantly increased in the root exudates of Pi-deficient seedlings, among which tartaric acid and L-cysteine had strong abilities to dissolve insoluble-P. Furthermore, flavonoid-targeted metabolomic analysis identified 18 flavonoids that were significantly increased in root exudates under low-Pi conditions, mainly belonging to the isoflavonoid and flavanone subclasses. Additionally, transcriptomic analysis revealed that 15 genes encoding purple acid phosphatases (PAPs) had upregulated expression in roots under low-Pi conditions. Among them, SgPAP10 was characterized as a root-secreted phosphatase, and overexpression of SgPAP10 enhanced organic-P utilization by transgenic Arabidopsis. Overall, these findings provide detailed information regarding the importance of stylo root exudates in adaptation to low-Pi stress, highlighting the plant's ability to release Pi from organic-P and insoluble-P sources through root-secreted organic acids, amino acids, flavonoids, and PAPs.


Assuntos
Arabidopsis , Fabaceae , Fósforo/metabolismo , Cisteína/metabolismo , Multiômica , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Fabaceae/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Exsudatos e Transudatos
11.
Tree Physiol ; 43(7): 1081-1091, 2023 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-36912478

RESUMO

Plant-soil-microbiota interactions mediated by root exudates regulate plant growth and drive rhizosphere microbial feedbacks. It remains unknown how root exudates affect rhizosphere microbiota and soil functions in the course of forest plantation restoration. The metabolic profiles of tree root exudates are expected to shift with stand age, leading to variation in rhizosphere microbiota structure, and in turn, potentially altering soil functions. To unravel the effects of root exudates, a multi-omics study was conducted using untargeted metabonomic profiling, high-throughput microbiome sequencing and functional gene array. The interactions among root exudates, rhizosphere microbiota and nutrient cycling-related functional genes were explored under 15- to 45-year-old Robinia pseudoacacia plantations in the Loess Plateau region of China. Root exudate metabolic profiles, rather than chemodiversity, markedly changed with an increase in stand age. A total of 138 age-related metabolites were extracted from a key module of root exudates. The relative contents of six biomarker metabolites, such as glucose-1-phosphate, gluconic acid and N-acetylneuraminic acid, increased distinctly over time. The biomarker taxa (16 classes) of rhizosphere microbiota varied in a time-sensitive manner, which played potential roles in nutrient cycling and plant health. Nitrospira, Alphaproteobacteria and Acidobacteria were enriched in the rhizosphere of older stands. Key root exudates influenced functional gene abundances in the rhizosphere via direct effects or indirectly through biomarker microbial taxa (e.g., Nitrososphaeria). Overall, root exudates and rhizosphere microbiota are essential for soil function maintenance in R. pseudoacacia plantation restoration.


Assuntos
Microbiota , Robinia , Rizosfera , Solo/química , Exsudatos e Transudatos , Microbiologia do Solo , Raízes de Plantas/microbiologia
12.
Plant J ; 114(6): 1227-1242, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36917083

RESUMO

Anthropogenic global change is driving an increase in the frequency and intensity of drought and flood events, along with associated imbalances and limitation of several soil nutrients. In the context of an increasing human population, these impacts represent a global-scale challenge for biodiversity conservation and sustainable crop production to ensure food security. Plants have evolved strategies to enhance uptake of soil nutrients under environmental stress conditions; for example, symbioses with fungi (mycorrhization) in the rhizosphere and the release of exudates from roots. Although crop cultivation is managed for the effects of limited availability of nitrogen (N) and phosphorus (P), there is increasing evidence for limitation of plant growth and fitness because of the low availability of other soil nutrients such as the metals potassium (K), calcium (Ca), magnesium (Mg), and iron (Fe), which may become increasingly limiting for plant productivity under global change. The roles of mycorrhizas and plant exudates on N and P uptake have been studied intensively; however, our understanding of the effects on metal nutrients is less clear and still inconsistent. Here, we review the literature on the role of mycorrhizas and root exudates in plant uptake of key nutrients (N, P, K, Ca, Mg, and Fe) in the context of potential nutrient deficiencies in crop and non-crop terrestrial ecosystems, and identify knowledge gaps for future research to improve nutrient-uptake capacity in food crop plants.


Assuntos
Micorrizas , Humanos , Solo , Cálcio , Ecossistema , Magnésio , Potássio , Ferro , Plantas/microbiologia , Exsudatos e Transudatos , Raízes de Plantas , Fósforo
13.
Phytopathology ; 113(7): 1233-1243, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36774556

RESUMO

Spongospora subterranea f. sp. subterranea is an important pathogen of potato responsible for major losses in most potato growing regions of the world. Infection is initiated by biflagellated motile zoospores released from long-lived resting spores. Zoospore chemotaxis to the host plant root is widely believed to be stimulated by host root exudate compounds, although direct evidence is lacking. This study refined the traditional chemotaxis capillary assay, with which we provided the first empirical evidence of S. subterranea zoospore chemotaxis. Individual potato root exudate metabolites were either taxis neutral, inhibitory, or attractant to the zoospores. L-Glutamine was the strongest chemoattractant, while spermine was the most inhibitory. Zoospore motility and chemotaxis were constrained by strongly acidic or alkaline solutions of pH < 5.3 and >8.5, respectively. Beyond pH, ionic constituents of the test solution affected zoospore motility as Sorensen's phosphate buffer stalled zoospore motility, but HEPES buffer at the same concentration and pH had little or no negative motility effect. Zoospore motility, as characterized by several parameters, influenced chemotaxis. Among the parameters measured, total distance traveled was the best predictor of zoospore chemotaxis. The characterization of environmental and ecological effects on zoospore motility and chemotaxis highlights useful targets for S. subterranea disease control through manipulation of zoospore taxis or selection of host resistance traits.


Assuntos
Doenças das Plantas , Solanum tuberosum , Quimiotaxia/fisiologia , Esporos de Protozoários , Exsudatos e Transudatos , Concentração de Íons de Hidrogênio
14.
Artigo em Inglês | MEDLINE | ID: mdl-36626213

RESUMO

Perifoveal anomalous exudative vascular complex (PEVAC) was first described in 2011. Since then, individual clinical cases and a couple of case series have been published, and their characteristics have been studied in multi-modal images. To date, there is no consensus on its treatment. Initially, it was thought that PEVACs could be left to spontaneous evolution because they presented a slow progression. But it has been shown that the growth of the lesion covers a spectrum from non-exudative lesions to PEVAC with vision impairment over time. We present an updated bibliographic review of this pathology. We explain the changes in the diagnostic criteria that have been undergone. And we focus the discussion on selective treatment with focal laser, which has shown an excellent anatomical response and visual improvement or stabilization in the cases described and in our series of three patients systematically treated with focal laser. [Ophthalmic Surg Lasers Imaging Retina 2023;54:43-49.].


Assuntos
Terapia com Luz de Baixa Intensidade , Malformações Vasculares , Humanos , Exsudatos e Transudatos , Malformações Vasculares/diagnóstico , Fotocoagulação a Laser
15.
Microb Ecol ; 86(2): 1176-1188, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36571608

RESUMO

Agave lechuguilla is a widely distributed plant in arid ecosystems. It has been suggested that its microbiome is partially responsible for its great adaptability to the oligotrophic environments of the Chihuahuan Desert. To lead the recruitment of beneficial rhizobacteria, the root exudates are essential; however, the amino acids contained within these compounds had been largely overlooked. Thus, we investigated how the variations of amino acids in the rhizosphere at different growth stages of A. lechuguilla affect the rhizobacterial community composition, its functions, and activity of the beneficial bacteria. In this regard, it was found that arginine and tyrosine were related to the composition of the rhizobacterial community associated to A. lechuguilla, where the most abundant genera were from the phylum Proteobacteria and Bacteroidetes. Moreover, Firmicutes was largely represented by Bacillus in the phosphorus-mineralizing bacteria community, which may indicate its great distribution and versatility in the harsh environments of the Chihuahuan Desert. In contrast, we found a high proportion of Unknown taxa of nitrogen-fixing bacteria, reflecting the enormous diversity in the rhizosphere of these types of plants that remains to be explored. This work also reports the influence of micronutrients and the amino acids methionine and arginine over the increased activity of the nitrogen-fixing and phosphorus-mineralizing bacteria in the rhizosphere of lechuguillas. In addition, the results highlight the multiple beneficial functions present in the microbiome that could help the host to tolerate arid conditions and improve nutrient availability.


Assuntos
Agave , Alphaproteobacteria , Microbiota , Aminoácidos , Raízes de Plantas/microbiologia , Bactérias , Rizosfera , Plantas/microbiologia , Exsudatos e Transudatos , Nutrientes , Arginina , Fósforo , Microbiologia do Solo
16.
Nat Prod Res ; 37(9): 1416-1420, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35075958

RESUMO

A new benzofuran derivative, identified as myrrhain A (1), was isolated from the resinous exudates of Commiphora myrrha, together with the four known compounds: commipharane (2), myrrhterpeniod (3), myrrhone (4), and 9-methoxymyrrhone (5). All structures were elucidated by NMR and MS analyses. DPPH assay of compounds 1-5 revealed for the first time that all of them possess moderate antioxidative activity.


Assuntos
Benzofuranos , Commiphora , Commiphora/química , Resinas Vegetais/química , Espectroscopia de Ressonância Magnética , Exsudatos e Transudatos , Extratos Vegetais
17.
Curr Diabetes Rev ; 19(4): e010422202937, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35366781

RESUMO

Wound management is one of the major global challenges in recent times, and woundassociated infection has a significant impact on the healthcare economy worldwide. Wounds can be acute or chronic type, also diabetic, trauma, accidental, burn wounds and minor cuts, bruises, and rashes, etc. One of the primary treatment options available in these conditions are the use of suitable dressing materials to cover the wound and accelerate the healing process. Since ancient times, according to archaeological theories, medicinal plants and oils have been employed for the treatment of wounds. Today researchers across the globe are focusing their efforts on fabrication of novel dressing materials that can provide the most effective treatment, easy exchange of nutrients, and absorb exudate from the wounds. Very lately, various research groups are also concentrating on the design and development of herb-loaded wound dressings, as herbal preparations contain numerous phytoconstituents with a broad spectrum of pharmacological properties when compared to synthetic drugs and also due to the perceived notion that herbal products are generally safe, even when administered over prolonged periods. They contain numerous bioactive that can act on the various phases of the wound healing process, providing an ideal environment for the healing process. The present review discusses the numerous approaches that are employed for the preparation of dressing materials incorporated with plant-derived phytoconstituents/extracts. This review also provides an insight into the healing process and wound healing agents derived from medicinal plants and oils. The review can serve as a database for researchers working in this field and can help them to select the most appropriate dressing material for the effective delivery of herbal preparations in the management of wounds.


Assuntos
Bandagens , Cicatrização , Humanos , Resultado do Tratamento , Exsudatos e Transudatos , Preparações de Plantas/uso terapêutico
18.
Sci Total Environ ; 851(Pt 1): 158190, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-35995174

RESUMO

In the rhizosphere, plant root exudates (REs) serve as a bridge between plant and soil functional microorganisms, which play a key role in the redox cycle of iron (Fe). This study examined the effects of periodic flooding and cadmium (Cd) on plant REs, the rhizosphere bacterial community structure, and the formation of root Fe plaques in the typical mangrove plant Kandelia obovata, as well as the relationship between REs and Fe redox cycling bacteria. Based on two-way analysis of variance, flooding and Cd had a considerable effect on the REs of K. obovata. DOC, NH4+-N, NO3--N, dissolved inorganic phosphorus, acetic acid, and malonic acid concentrations in REs of K. obovata increased considerably with the increase of Cd concentration under 5 and 10 h flooding conditions. Fe plaque development in the plant root was stimulated by flooding and Cd, although flooding was more effective. After Cd treatment, the ways in which Fe-oxidizing bacteria (FeOB) and Fe-reducing bacteria (FeRB) were enriched in the rhizosphere and rhizoplane of plants were different. Thiobacillus and Sideroxydans (dominant FeOB) were more abundant in the plant rhizosphere, whereas Acinetobacter (dominant FeRB) was more abundant in the rhizoplane. Cd considerably decreased the relative abundance of unclassified_f_Gallionellaceae in the rhizosphere and rhizoplane but dramatically enhanced the relative abundance of Thiobacillus, Shewanella, and unclassified_f_Geobacteraceae. Unclassified_f_Geobacteraceae and Thiobacillus exhibited substantial positive correlations with citric acid and DOC in REs in the rhizosphere and rhizoplane but strong negative correlations with Sideroxydans. The findings indicate that Cd and flooding treatments may play a role in the production and breakdown of Fe plaque in K. obovata roots by affecting the relative abundance of Fe redox cycling bacteria in the rhizosphere and rhizoplane.


Assuntos
Rhizophoraceae , Poluentes do Solo , Bactérias/metabolismo , Cádmio/análise , Ácido Cítrico/metabolismo , Exsudatos e Transudatos/química , Exsudatos e Transudatos/metabolismo , Ferro/análise , Fósforo/análise , Exsudatos de Plantas/análise , Raízes de Plantas/metabolismo , Rizosfera , Plântula/metabolismo , Solo/química , Poluentes do Solo/análise
19.
Molecules ; 27(12)2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35744961

RESUMO

This work presents the first report on the phytochemical investigation of Harpephyllum caffrum Bernh. gum exudate. A known cardanol, 3-heptadec-12'-Z-enyl phenol (1) and three new alk(en)ylhydroxycyclohexanes, namely, (1R,3R)-1,3-dihydroxy-3-[heptadec-12'(Z)-enyl]cyclohexane (2) (1S,2S,3S,4S,5R)-1,2,3,4,5-pentahydroxy-5-[octadec-13'(Z)-enyl]cyclohexane (3) and (1R,2S,4R)-1,2,4-trihydroxy-4-[heptadec-12'(Z)-enyl]cyclohexane (4) were isolated from the gum. The structures of the compounds were determined by extensive 1D and 2D NMR spectroscopy and HR-ESI-MS data. The ethanolic extract of the gum was found to be the most potent tyrosinase inhibitor with IC50 of 11.32 µg/mL while compounds 2 and 3, with IC50 values of 24.90 and 26.99 µg/mL, respectively, were found to be potential anti-tyrosinase candidates from the gum. Gum exudate may be a potential source for non-destructive harvesting of selective pharmacologically active compounds from plants. The results also provide evidence that H. caffrum gum may find application in cosmetics as a potential anti-tyrosinase agent.


Assuntos
Anacardiaceae , Monofenol Mono-Oxigenase , Cicloexanos , Exsudatos e Transudatos , Estrutura Molecular , Extratos Vegetais/química , Extratos Vegetais/farmacologia
20.
Ying Yong Sheng Tai Xue Bao ; 33(4): 949-956, 2022 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-35543046

RESUMO

We explored the effects of C:N ratio in root exudates of Robinia pseudoacacia plantations on soil nutrient cycling and microbial activity on the Loess Plateau. We collected in-situ soil from the R. pseudoacacia plantations with essentially identical habitat conditions and growing time of 15, 25, 35, and 45 years. By adding root exudates with different C:N ratios (N only, C:N=10, C:N=50, C:N=100, C only) to the soil and using deionized water as a control, we analyzed the effects of C:N ratio of root exudates on the physicochemical properties of elements such as carbon, nitrogen and phosphorus, soil pH, and soil respiration. The results showed that: 1) Organic carbon content was positively correlated with the C:N ratio of root exudates. Soil organic carbon (SOC) decomposition was faster when root exudates C:N=10. Higher C:N ratio of root exudates (C:N=100) could inhibit SOC decomposition, but only C addition had no significant effect on SOC. 2) Different root exudate C:N produced no significant influence on the total nitrogen. The addition of carbon promoted microbial uptake of ammonium nitrogen, while the addition of nitrogen promoted the nitrification of ammonium nitrogen. As the C:N ratio of root exudates increased, soil ammonium nitrogen content decreased. 3) The addition of nitrogen would reduce soil pH and increase soil total phosphorus content. 4) Soil respiration of R. pseudoacacia plantations was positively correlated with the C:N ratio of root exudates. With the increases of C:N ratio, the promoting effect of root exudates on soil respiration at 25 and 35 years R. pseudoacacia plantations was stronger. In conclusion, higher C:N ratio of root exudates will significantly promote the effect on soil respiration of R. pseudoacacia plantations. Our results improved the understan-ding of the root-soil-microbial interactions in forests.


Assuntos
Compostos de Amônio , Robinia , Carbono/análise , China , Exsudatos e Transudatos/química , Nitrogênio/análise , Fósforo , Respiração , Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA