Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 410
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Food Funct ; 14(21): 9892-9906, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37853813

RESUMO

Accumulating evidence has shown that gut microbiota and its metabolites have important significance in the etiology of obesity and related disorders. Prebiotics prevent and alleviate obesity by modulating the gut microbiota. However, how pectin oligosaccharides (POS) derived from pectin degradation affect gut microbiota and obesity remains unclear. To investigate the potential anti-obesity effects of POS, mice were fed a high-fat diet (HFD) for 12 weeks and a POS supplement with drinking water during the last 8 weeks. The outcomes demonstrated that POS supplementation in HFD-fed mice decreased body weight (P < 0.01), improved glucose tolerance (P < 0.001), reduced fat accumulation (P < 0.0001) and hepatic steatosis, protected intestinal barrier, and reduced pro-inflammatory cytokine levels. After fecal metagenomic sequencing, the POS corrected the gut microbiota dysbiosis caused by the HFD, as shown by the increased populations of Bifidobacterium, Lactobacillus taiwanensis, and Bifidobacterium animalis, and decreased populations of Alistipes and Erysipelatoclostridium, which were previously considered harmful bacteria. Notably, the changed gut microbiota was associated with the obesity prevention of POS. These findings demonstrate that POS regulates particular gut microbiota, which is essential owing to its ability to prevent disorders associated with obesity.


Assuntos
Fígado Gorduroso , Microbioma Gastrointestinal , Animais , Camundongos , Dieta Hiperlipídica/efeitos adversos , Pectinas/farmacologia , Obesidade/prevenção & controle , Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso/etiologia , Fígado Gorduroso/prevenção & controle , Oligossacarídeos/farmacologia , Camundongos Endogâmicos C57BL
2.
Am J Physiol Gastrointest Liver Physiol ; 325(2): G135-G146, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37280515

RESUMO

Medium-chain fatty acids (MCFA) and long-chain fatty acids (LCFAs) are often added to enhance the caloric value of infant formulas. Evidence suggests that MCFAs promote growth and are preferred over LCFAs due to greater digestibility and ease of absorption. Our hypothesis was that MCFA supplementation would enhance neonatal pig growth to a greater extent than LCFAs. Neonatal pigs (n = 4) were fed a low-energy control (CONT) or two isocaloric high-energy formulas containing fat either from LCFAs, or MCFAs for 20 days. Pigs fed the LCFAs had greater body weight compared with CONT- and MCFA-fed pigs (P < 0.05). In addition, pigs fed the LCFAs and MCFAs had more body fat than those in the CONT group. Liver and kidney weights as a percentage of body weight were greater (P ≤ 0.05) for pigs fed the MCFAs than those fed the CONT formula, and in those fed LCFAs, liver and kidney weights as a percentage of body weight were intermediate (P ≤ 0.05). Pigs in the CONT and LCFA groups had less liver fat (12%) compared with those in the MCFA (26%) group (P ≤ 0.05). Isolated hepatocytes from these pigs were incubated in media containing [13C]tracers of alanine, glucose, glutamate, and propionate. Our data suggest alanine contribution to pyruvate is less in hepatocytes from LCFA and MCFA pigs than those in the CONT group (P < 0.05). These data suggest that a formula rich in MCFAs caused steatosis compared with an isocaloric LCFA formula. In addition, MCFA feeding can alter hepatocyte metabolism and increase total body fat without increasing lean deposition.NEW & NOTEWORTHY Our data suggest that feeding high-energy MCFA formula resulted in hepatic steatosis compared with isoenergetic LCFA or low-energy formulas. Steatosis coincided with greater laurate, myristate, and palmitate accumulation, suggesting elongation of dietary laurate. Data also suggest that hepatocytes metabolized alanine and glucose to pyruvate, but neither entered the tricarboxylic acid (TCA) cycle. In addition, the contribution of alanine and glucose was greater for the low-energy formulas compared with the high-energy formulas.


Assuntos
Fígado Gorduroso , Lauratos , Animais , Suínos , Ácidos Graxos/metabolismo , Fígado Gorduroso/etiologia , Glucose , Piruvatos , Peso Corporal
3.
Mol Nutr Food Res ; 67(7): e2200478, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36760156

RESUMO

SCOPE: Serotonin (5-HT)-induced visceral adipocyte lipolysis is essential for the development of obesity-related complications. Diet supplementation of luteolin prevents high-fat diet (HFD)-fed mice against obesity and associated fatty liver. However, independent of the body weight loss, whether dietary luteolin can substantially reduce hepatic steatosis remains unclear. METHODS AND RESULTS: In differentiated 3T3-L1 cells, 5-HT treatment promotes adipocyte lipolysis, while luteolin significantly inhibits 5-HT-induced lipolysis, Ca2+ -PKG cascade, and SIRT1/FoxO1/AMPKα signaling through binding to 5-HT receptor HTR2B. Further, 5-week-old mice are fed with an HFD for 16 weeks. At the 6th, 8th, or 10th weeks of HFD feeding, some mice are switched to a luteolin-containing HFD, respectively. In all HFD-fed mice, body weight gain and body component are unaffected by dietary luteolin. However, diet supplementation of luteolin at the 6th or 8th, rather than at the 10th weeks, alleviates hepatic steatosis. Meanwhile, dietary luteolin reduces epididymal adipose tissue (EAT) lipolysis, and represses the level of lipolytic enzyme, the expression of Htr2b, and the activation of PKG and SIRT1/FoxO1/AMPKα signaling in EAT. CONCLUSIONS: Diet supplementation of luteolin before the formation of fatty liver protects HFD-fed mice against ectopic lipid deposition in liver by inhibiting visceral adipocyte lipolysis.


Assuntos
Fígado Gorduroso , Lipólise , Camundongos , Animais , Luteolina/farmacologia , Luteolina/metabolismo , Camundongos Obesos , Sirtuína 1/metabolismo , Gordura Intra-Abdominal/metabolismo , Serotonina/metabolismo , Fígado/metabolismo , Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso/etiologia , Obesidade/metabolismo , Tecido Adiposo/metabolismo , Dieta Hiperlipídica/efeitos adversos , Suplementos Nutricionais , Camundongos Endogâmicos C57BL
4.
J Food Biochem ; 46(6): e14077, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35246859

RESUMO

Obesity is a health and medical problem and is known as the accumulation of fat that increases the risk of cardiovascular, type 2 diabetes mellitus, and infertility. Cinnamon is a spice that is used mainly as a flavoring additive and folk remedies to treat diabetes. Molecular mechanisms of its effects on hepatic lipogenesis and beta-oxidation, inflammation, and oxidative damage are not fully understood. Therefore, the aim of this study was to evaluate the protective and therapeutic effect of different doses of cinnamon in obese male rats. Forty-eight adult male Wister rats were randomly assigned into eight controlled and treated groups. Serum levels of lipid, glucose, and insulin profiles were measured along with liver levels of antioxidant enzymes, MDA and TNF-α. Hepatic expression of genes involved in beta-oxidation, lipogenesis, oxidative stress, and inflammation was also evaluated. Hepatic levels of oxidative and inflammatory biomarkers and serum levels of glucose, liver enzymes, insulin, and lipid profiles increased significantly in obese rats. Moreover, hepatic expression of SREBP-1c and NF-κB increased, and PPAR-alpha, CD36, FAS, CPT-1, and Nrf-2 decreased in obese rats. However, pretreatment and treatment with different doses of cinnamon in obese rats could significantly ameliorate them in obese rats. It can be concluded that cinnamon could improve hepatic steatosis caused by a high-fat diet via enhancing hepatic beta-oxidation and inhibiting hepatic lipogenesis, oxidative damage, and inflammation in male rats. PRACTICAL APPLICATIONS: Obesity as a medical and psychiatric problem is seen in more than a third of the world's population. Obesity leads to cardiovascular disease, diabetes, and in some cases even death. Cinnamon as a spice and folk remedy has long been used as a treatment for obesity and liver disease. Cinnamon has received a great of attention from the past to the present due to its pharmacological properties and in addition to its availability, cheapness and low side effects. Cinnamon can prevent dyslipidemia, hyperglycemia, oxidative damage, and inflammation by modulating multiple signaling pathways. Our results showed that cinnamon could improve hepatic steatosis caused by HFD via enhancing hepatic beta-oxidation and inhibiting hepatic lipogenesis, oxidative damage, and inflammation. Therefore, it can be recommended that cinnamon and its products can be used as a very suitable option for the production of pharmaceutical supplements for the prevention and treatment of metabolic diseases.


Assuntos
Diabetes Mellitus Tipo 2 , Fígado Gorduroso , Animais , Cinnamomum zeylanicum/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica/efeitos adversos , Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso/etiologia , Glucose/metabolismo , Inflamação/tratamento farmacológico , Insulina , Lipídeos , Lipogênese/genética , Masculino , Obesidade/complicações , Obesidade/etiologia , Estresse Oxidativo , Ratos , Ratos Wistar
5.
Sci Rep ; 12(1): 449, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013417

RESUMO

Therapeutic approach for NAFLD is limited and there are no approved drugs. Pioglitazone (PGZ), a thiazolidinedione (TZD) that acts via peroxisome proliferator activated receptor gamma (PPARγ) is the only agent that has shown consistent benefit and efficacy in clinical trials. However, the mechanism of its therapeutic effect on NAFLD remains unclear. The poor understanding may be due to problems with mouse, a species most used for animal experiments. TZDs exacerbate fatty liver in mouse models while they improve it in rat models like in human patients. Therefore, we compared the effects of TZDs including PGZ and rosiglitazone (RGZ) in ob/ob mice and Lepmkyo/Lepmkyo rats, models of leptin-deficient obesity, and A-ZIP/F-1 mice and seipin knockout (SKO) rats, models of generalized lipodystrophy. Pparg mRNA expression was markedly upregulated in fatty livers of mouse models while it was unchanged in rat models. TZDs exacerbated fatty liver in ob/ob and A-ZIP/F-1 mice, improved it in Lepmkyo/Lepmkyo rats and showed no effect in SKO rats. Gene expression analyses of Pparg and its target gene, Fsp27 revealed that PPARγ in the adipose tissue is the exclusive therapeutic target of TZDs in rats but PPARγ in the liver in addition to the adipose tissue is also a major site of actions for TZDs in mice. Although the response to TZDs in mice is the complete opposite of that in human patients, no report has pointed out the problem with TZD studies using mouse models so far. The present study might provide useful suggestions in research on TZDs.


Assuntos
Fígado Gorduroso/tratamento farmacológico , Metabolismo dos Lipídeos/efeitos dos fármacos , PPAR gama/metabolismo , Pioglitazona/uso terapêutico , Tiazolidinedionas/uso terapêutico , Animais , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Fígado Gorduroso/etiologia , Fígado Gorduroso/metabolismo , Leptina/deficiência , Lipodistrofia/complicações , Masculino , Camundongos Endogâmicos C57BL , Obesidade/complicações , PPAR gama/agonistas , Pioglitazona/farmacologia , Ratos Transgênicos , Tiazolidinedionas/farmacologia
6.
Nutrients ; 13(9)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34578953

RESUMO

Maternal supplementation during pregnancy with docosahexaenoic acid (DHA) is internationally recommended to avoid postpartum maternal depression in the mother and improve cognitive and neurological outcomes in the offspring. This study was aimed at determining whether this nutritional intervention, in the rat, protects the offspring against the development of obesity and its associated metabolic disorders. Pregnant Wistar rats received an extract of fish oil enriched in DHA or saline (SAL) as placebo by mouth from the beginning of gestation to the end of lactation. At weaning, pups were fed standard chow or a free-choice, high-fat, high-sugar (fc-HFHS) diet. Compared to animals fed standard chow, rats exposed to the fc-HFHS diet exhibited increased body weight, liver weight, body fat and leptin in serum independently of saline or DHA maternal supplementation. Nevertheless, maternal DHA supplementation prevented both the glucose intolerance and the rise in serum insulin resulting from consumption of the fc-HFHS diet. In addition, animals from the DHA-fc-HFHS diet group showed decreased hepatic triglyceride accumulation compared to SAL-fc-HFHS rats. The beneficial effects on glucose homeostasis declined with age in male rats. Yet, the preventive action against hepatic steatosis was still present in 6-month-old animals of both sexes and was associated with decreased hepatic expression of lipogenic genes. The results of the present work show that maternal DHA supplementation during pregnancy programs a healthy phenotype into the offspring that was protective against the deleterious effects of an obesogenic diet.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Ácidos Docosa-Hexaenoicos/farmacologia , Fígado Gorduroso/prevenção & controle , Lactação , Animais , Dieta Hiperlipídica/métodos , Suplementos Nutricionais , Modelos Animais de Doenças , Ácidos Docosa-Hexaenoicos/administração & dosagem , Fígado Gorduroso/etiologia , Feminino , Fenômenos Fisiológicos da Nutrição Materna/efeitos dos fármacos , Gravidez , Ratos , Ratos Wistar
7.
Food Funct ; 12(17): 7897-7908, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34241611

RESUMO

This study aimed to elucidate the effect of punicic acid (PUA, cis9,trans11,cis13-18 : 3) on obesity and liver steatosis in mice induced by high-fat diet (HFD), and to explore the possible mechanism. Mice were fed with either a HFD or a control diet for 8 weeks. Half of HFD-mice received daily supplementation of PUA. Supplementation with PUA ameliorated the liver steatosis and obesity in mice fed by HFD, as demonstrated by the decreased hepatic triglyceride accumulation, body weight gain and fat weight. A HFD increased the ratio of Firmicutes to Bacteroidetes, whereas supplementation with PUA effectively restored it. PUA supplementation counteracted the upregulation in family Desulfovibrionaceae and Helicobacteraceae, and the downregulation in Muribaculaceae and Bacteroidaceae induced by HFD. Correspondingly, the family of Desulfovibrionaceae was positively related, whereas Muribaculaceae was negatively related to the amount of epididymal and perirenal fat, and the level of liver triglyceride and total cholesterol. The family Helicobacteraceae was also positively related to the amount of epididymal and perirenal fat. Moreover, PUA supplementation counteracted the increase in the population of Anaerotruncus, Faecalibaculim, Mucispirillum, and the decrease in the population of Lactobacillus, Roseburia, Oscillibacter at the genus level induced by HFD. These results demonstrated that PUA can at least in part ameliorate obesity and liver steatosis in mice induced by HFD by regulating gut microbiota composition.


Assuntos
Fígado Gorduroso/metabolismo , Microbioma Gastrointestinal , Ácidos Linolênicos/metabolismo , Obesidade/metabolismo , Óleos de Plantas/metabolismo , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Dieta Hiperlipídica/efeitos adversos , Fígado Gorduroso/dietoterapia , Fígado Gorduroso/etiologia , Fígado Gorduroso/microbiologia , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Obesidade/dietoterapia , Obesidade/etiologia , Obesidade/microbiologia , Óleos de Plantas/química , Punica granatum/química , Punica granatum/metabolismo , Sementes/química , Sementes/metabolismo
8.
PLoS One ; 16(4): e0250261, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33878116

RESUMO

Obesity is an enduring medical issue that has raised concerns around the world. Natural plant extracts have shown therapeutic potential in preventing oxidative stress and inflammation related to obesity complications. In this study, Senna alexandrina Mill. leaves were utilized to treat high-fat diet-related metabolic disorders and non-alcoholic fatty liver diseases. Plasma biochemical assays were conducted to determine the lipid profiles and oxidative stress parameters, and the gene expression of antioxidant enzymes and inflammatory mediators was measured. Histological stained livers of high-fat diet-fed rats were observed. S. alexandrina leaf powder supplementation prevented the increase in cholesterol and triglyceride levels in high-fat diet-fed rats. Moreover, S. alexandrina leaves also reduced lipid peroxidation and nitric oxide production in these rats. Prevention of oxidative stress by S. alexandrina leaf supplementation in high-fat diet-fed rats is regulated by enhancing the antioxidant enzyme activity, followed by the restoration of corresponding gene expressions, such as NRF-2, HO-1, SOD, and CAT. Histological staining provides further evidence that S. alexandrina leaf supplementation prevents inflammatory cell infiltration, lipid droplet deposition, and fibrosis in the liver of high-fat diet-fed rats. Furthermore, this investigation revealed that S. alexandrina leaf supplementation controlled non-alcoholic fatty liver disease by modulating the expression of fat metabolizing enzymes in high-fat diet-fed rats. Therefore, S. alexandrina leaf supplementation inhibits fatty liver inflammation and fibrosis, suggesting its usefulness in treating non-alcoholic steatohepatitis. Thus, this natural leaf extract has potential in treatment of obesity related liver dysfunction.


Assuntos
Fármacos Antiobesidade/farmacologia , Fígado Gorduroso/dietoterapia , Obesidade/dietoterapia , Estresse Oxidativo/efeitos dos fármacos , Folhas de Planta/química , Senna/química , Animais , Fármacos Antiobesidade/química , Catalase/genética , Catalase/metabolismo , HDL-Colesterol/sangue , LDL-Colesterol/sangue , Dieta Hiperlipídica/efeitos adversos , Fígado Gorduroso/etiologia , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Regulação da Expressão Gênica , Heme Oxigenase (Desciclizante)/genética , Heme Oxigenase (Desciclizante)/metabolismo , Gotículas Lipídicas/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Obesidade/etiologia , Obesidade/metabolismo , Obesidade/patologia , Pós/administração & dosagem , Ratos , Ratos Wistar , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Triglicerídeos/sangue
9.
Nutrients ; 13(2)2021 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-33567531

RESUMO

Sargassum horneri (Turner) C. Agardh (S. horneri) is edible brown seaweed that grows along the coast of East Asia and has been traditionally used as a folk medicine and a local food. In this study, we evaluated the effects of S. horneri on the development of obesity and related metabolic disorders in C57BL/6J mice fed a high-fat diet. S. horneri was freeze-dried, fine-powdered, and mixed with a high-fat diet at a weight ratio of 2% or 6%. Feeding a high-fat diet to mice for 13 weeks induced obesity, diabetes, hepatic steatosis, and hypercholesterolemia. Supplementation of mice with S. horneri suppressed high-fat diet-induced body weight gain and the accumulation of fat in adipose tissue and liver, and the elevation of the serum glucose level. In addition, S. horneri improved insulin resistance. An analysis of the feces showed that S. horneri stimulated the fecal excretion of triglyceride, as well as increased the fecal polysaccharide content. Furthermore, extracts of S. horneri inhibited the activity of pancreatic lipase in vitro. These results showed that S. horneri can ameliorate diet-induced metabolic diseases, and the effect may be partly associated with the suppression of intestinal fat absorption.


Assuntos
Diabetes Mellitus/terapia , Suplementos Nutricionais , Fígado Gorduroso/terapia , Obesidade/terapia , Sargassum , Alga Marinha , Fenômenos Fisiológicos da Nutrição Animal , Animais , Glicemia/metabolismo , Diabetes Mellitus/etiologia , Dieta Hiperlipídica , Fígado Gorduroso/etiologia , Fezes/química , Absorção Gastrointestinal/fisiologia , Resistência à Insulina , Lipase/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Polissacarídeos/metabolismo , Triglicerídeos/metabolismo
10.
Nutrition ; 85: 111139, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33549947

RESUMO

OBJECTIVES: The aim of this study was to evaluate the effect of the dietary supplementation of an alpha- and gamma-tocopherol mixture (1:5 ratio) in the adipose tissue expansion, hepatic steatosis, and expression of inflammatory markers induced by consumption of a high-fat diet (HFD) in mice. METHODS: Male C57BL/6 J mice were fed for 12 wk and divided into the following: 1) control diet (CD; 10% fat, 20% protein, 70% carbohydrates); 2) CD + TF (CD plus alpha-tocopherol: 0.7 mg/kg/d, gamma-tocopherol: 3.5 mg/kg/d); 3) HFD (60% fat, 20% protein, 20% carbohydrates); and 4) HFD + TF (HFD plus alpha-tocopherol: 0.7 mg/kg/d, gamma-tocopherol: 3.5 mg/kg/d). General parameters, adipocyte size, liver steatosis, adipose and hepatic tumor necrosis factor-α (TNF-α) and interleukin-1 ß (IL-1ß) expression, hepatic nuclear factor kappa B (NF-κB), and peroxisome proliferator-activated receptor α (PPAR-α) levels were evaluated. RESULTS: Tocopherol supplementation in HFD-fed mice showed a significant decrease in the body weight (19%) and adipose tissue weight (52%), adipose tissue/body weight ratio (36%), and serum triacylglycerols (56%); a 42% decrease (P < 0.05) of adipocyte size compared to HFD; attenuation of liver steatosis by decreasing (P < 0.05) lipid vesicles presence (90%) and total lipid content (75%); and downregulation of inflammatory markers (TNF-α and IL-1ß), along with an upregulation of hepatic PPAR-α expression and its downstream-regulated genes (ACOX and CAT-1), and an inhibition of hepatic NF-κB activation. CONCLUSION: The present study suggests that alpha- and gamma-tocopherol (1:5 ratio) supplementation attenuates the adipocyte enlargement, hepatic steatosis, and metabolic inflammation induced by HFD in association with PPAR-α/NF-κB modulation.


Assuntos
Dieta Hiperlipídica , Fígado Gorduroso , Tecido Adiposo , Animais , Dieta Hiperlipídica/efeitos adversos , Suplementos Nutricionais , Modelos Animais de Doenças , Fígado Gorduroso/etiologia , Fígado Gorduroso/prevenção & controle , Fígado , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Expansão de Tecido , gama-Tocoferol/farmacologia
11.
Dis Model Mech ; 14(3)2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33608323

RESUMO

Fatty liver is an abnormal metabolic condition of excess intrahepatic fat. This condition, referred to as hepatic steatosis, is tightly associated with chronic liver disease and systemic metabolic morbidity. The most prevalent form in humans, i.e. non-alcoholic fatty liver, generally develops due to overnutrition and sedentary lifestyle, and has as yet no approved drug therapy. Previously, we have developed a relevant large-animal model in which overnourished sheep raised on a high-calorie carbohydrate-rich diet develop hyperglycemia, hyperinsulinemia, insulin resistance, and hepatic steatosis. Here, we tested the hypothesis that treatment with thiamine (vitamin B1) can counter the development of hepatic steatosis driven by overnutrition. Remarkably, the thiamine-treated animals presented with completely normal levels of intrahepatic fat, despite consuming the same amount of liver-fattening diet. Thiamine treatment also decreased hyperglycemia and increased the glycogen content of the liver, but it did not improve insulin sensitivity, suggesting that steatosis can be addressed independently of targeting insulin resistance. Thiamine increased the catalytic capacity for hepatic oxidation of carbohydrates and fatty acids. However, at gene-expression levels, more-pronounced effects were observed on lipid-droplet formation and lipidation of very-low-density lipoprotein, suggesting that thiamine affects lipid metabolism not only through its known classic coenzyme roles. This discovery of the potent anti-steatotic effect of thiamine may prove clinically useful in managing fatty liver-related disorders.This article has an associated First Person interview with the joint first authors of the paper.


Assuntos
Fígado Gorduroso/etiologia , Fígado Gorduroso/prevenção & controle , Hipernutrição/complicações , Tiamina/administração & dosagem , Tiamina/uso terapêutico , Adiposidade , Animais , Glicemia/metabolismo , Citocinas/metabolismo , Dieta Hiperlipídica , Relação Dose-Resposta a Droga , Ácidos Graxos/metabolismo , Fígado Gorduroso/sangue , Fígado Gorduroso/tratamento farmacológico , Regulação da Expressão Gênica , Glicogênio/metabolismo , Mediadores da Inflamação/metabolismo , Complexo Cetoglutarato Desidrogenase/metabolismo , Metabolismo dos Lipídeos , Fígado/metabolismo , Masculino , Mitocôndrias/metabolismo , Hipernutrição/sangue , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ovinos , Tiamina Pirofosfato/metabolismo , Aumento de Peso
12.
Nutrition ; 86: 111176, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33621858

RESUMO

OBJECTIVE: Açai is a rich source of anthocyanins and has been used as a dietary supplement and as an active pharmaceutical ingredient. Growing evidence indicates that host-microbial interactions played a vital role in the host metabolism. The aim of this study was to investigate the anthocyanin-rich extract of açai (Euterpe oleracea Mart.) fruit (AEA) regarding its antiobesity activity and gut microbiota-modulating effect. METHODS: Thirty-six male SPF C57BL/6J mice were randomly divided into three groups and fed a low-fat diet, high-fat diet, or a high-fat diet supplemented with AEA for 14 wk. The antiobesity effect of AEA was evaluated, and the microbial changes were analyzed by 16S rRNA sequencing. Spearman correlation analysis was used to determine the correlations between gut microbiota and obesity-related indicators. RESULTS: The results showed that AEA treatment alleviated HFD-induced obesity, hepatic steatosis, and insulin resistance. Moreover, AEA supplement changed the structure of the gut microbiota, and significantly enriched Akkermansia muciniphila, which was negatively correlated with the physical biomarkers (e.g., serum glucose, insulin, and triacylglycerols) and the genes involved in lipid metabolism. CONCLUSION: AEA alleviated high-fat diet-induced obesity, insulin resistance, and hepatic steatosis. The microbial changes may be one of the potential mechanisms for AEA in improving obesity and obesity-related disorders.


Assuntos
Fígado Gorduroso , Microbioma Gastrointestinal , Resistência à Insulina , Animais , Antocianinas/farmacologia , Dieta Hiperlipídica/efeitos adversos , Fígado Gorduroso/etiologia , Fígado Gorduroso/prevenção & controle , Fígado , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/tratamento farmacológico , Obesidade/etiologia , Extratos Vegetais/farmacologia , RNA Ribossômico 16S
13.
Front Endocrinol (Lausanne) ; 12: 773340, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35035378

RESUMO

The gut microbiota is a newly identified contributor to the development of non-alcoholic fatty liver disease (NAFLD). Previous studies of Bifidobacterium adolescentis (B. adolescentis), a species of Bifidobacterium that is common in the human intestinal tract, have demonstrated that it can alleviate liver steatosis and steatohepatitis. Fibroblast growth factor 21 (FGF21) has long been considered as a biomarker of NAFLD, and recent studies have shown the protective effect of FGF21 analogs on NAFLD. We wondered whether B. adolescentis treatment would alleviate NAFLD via the interaction with FGF21. To this end, male C57BL/6J mice on a choline-deficient high-fat diet (CDHFD) were treated with drinking water supplemented with B. adolescentis for 8 weeks, followed by the acute administration of recombinant mouse FGF21 protein (rmFGF21) to conduct the FGF21 response test. Consistent with previous studies, B. adolescentis supplementation reversed the CDHFD-induced liver steatosis and steatohepatitis. This was evaluated on the NAFLD activity score (NAS), reduced liver enzymes, and lipid accumulation. Further studies demonstrated that B. adolescentis supplementation preserved the gut barrier, reduced the gut microbiota-derived lipopolysaccharide (LPS), and inhibited the hepatic TLR4/NF-κB pathway. This was accompanied by the elevated expressions of the receptors of FGF21, fibroblast growth factor receptor 1 (FGFR1) and ß-klotho (KLB), in the liver and the decreased expression of FGF21. The results of FGF21 response test showed that B. adolescentis supplementation alleviated the CDHFD-induced FGF21 resistance. In vivo experiments suggested that LPS could suppress the expression of FGF21 and KLB in a dose-dependent manner. Collectively, this study showed that B. adolescentis supplementation could alleviate NAFLD by increasing FGF21 sensitivity.


Assuntos
Bifidobacterium adolescentis/metabolismo , Dieta Hiperlipídica/efeitos adversos , Fatores de Crescimento de Fibroblastos/metabolismo , Microbioma Gastrointestinal/fisiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Animais , Fígado Gorduroso/etiologia , Fígado Gorduroso/metabolismo , Fígado Gorduroso/terapia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/terapia
14.
Hepatology ; 73(3): 1176-1193, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32438524

RESUMO

BACKGROUND AND AIMS: Iron is essential yet also highly chemically reactive and potentially toxic. The mechanisms that allow cells to use iron safely are not clear; defects in iron management are a causative factor in the cell-death pathway known as ferroptosis. Poly rC binding protein 1 (PCBP1) is a multifunctional protein that serves as a cytosolic iron chaperone, binding and transferring iron to recipient proteins in mammalian cells. Although PCBP1 distributes iron in cells, its role in managing iron in mammalian tissues remains open for study. The liver is highly specialized for iron uptake, utilization, storage, and secretion. APPROACH AND RESULTS: Mice lacking PCBP1 in hepatocytes exhibited defects in liver iron homeostasis with low levels of liver iron, reduced activity of iron enzymes, and misregulation of the cell-autonomous iron regulatory system. These mice spontaneously developed liver disease with hepatic steatosis, inflammation, and degeneration. Transcriptome analysis indicated activation of lipid biosynthetic and oxidative-stress response pathways, including the antiferroptotic mediator, glutathione peroxidase type 4. Although PCBP1-deleted livers were iron deficient, dietary iron supplementation did not prevent steatosis; instead, dietary iron restriction and antioxidant therapy with vitamin E prevented liver disease. PCBP1-deleted hepatocytes exhibited increased labile iron and production of reactive oxygen species (ROS), were hypersensitive to iron and pro-oxidants, and accumulated oxidatively damaged lipids because of the reactivity of unchaperoned iron. CONCLUSIONS: Unchaperoned iron in PCBP1-deleted mouse hepatocytes leads to production of ROS, resulting in lipid peroxidation (LPO) and steatosis in the absence of iron overload. The iron chaperone activity of PCBP1 is therefore critical for limiting the toxicity of cytosolic iron and may be a key factor in preventing the LPO that triggers the ferroptotic cell-death pathway.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Fígado Gorduroso/etiologia , Compostos de Ferro/metabolismo , Peroxidação de Lipídeos , Metalochaperonas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Feminino , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos Knockout , Estresse Oxidativo
15.
Cancer Lett ; 499: 5-13, 2021 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-33264641

RESUMO

The endocrine FGF21 was discovered as a novel metabolic regulator in 2005 with new functions bifurcating from the canonic heparin-binding FGFs that directly promote cell proliferation and growth independent of a co-receptor. Early studies have demonstrated that FGF21 is a stress sensor in the liver and possibly, several other endocrine and metabolic tissues. Hepatic FGF21 signals via endocrine routes to quench episodes of metabolic derangements, promoting metabolic homeostasis. The convergence of mouse and human studies shows that FGF21 promotes lipid catabolism, including lipolysis, fatty acid oxidation, mitochondrial oxidative activity, and thermogenic energy dissipation, rather than directly regulating insulin and appetite. The white and brown adipose tissues and, to some extent, the hypothalamus, all of which host a transmembrane receptor binary complex of FGFR1 and co-receptor KLB, are considered the essential tissue and molecular targets of hepatic or pharmacological FGF21. On the other hand, a growing body of work has revealed that pancreatic acinar cells form a constitutive high-production site for FGF21, which then acts in an autocrine or paracrine mode. Beyond regulation of macronutrient metabolism and physiological energy expenditure, FGF21 appears to function in forestalling the development of fatty pancreas, steato-pancreatitis, fatty liver, and steato-hepatitis, thereby preventing the development of advanced pathologies such as pancreatic ductal adenocarcinoma or hepatocellular carcinoma. This review is intended to provide updates on these new discoveries that illuminate the protective roles of FGF21-FGFR1-KLB signal pathway in metabolic anomalies-associated severe tissue damage and malignancy, and to inform potential new preventive or therapeutic strategies for obesity-inflicted cancer patients via reducing metabolic risks and inflammation.


Assuntos
Carcinoma Hepatocelular/patologia , Carcinoma Ductal Pancreático/patologia , Fatores de Crescimento de Fibroblastos/metabolismo , Neoplasias Hepáticas/patologia , Obesidade/metabolismo , Neoplasias Pancreáticas/patologia , Tecido Adiposo/metabolismo , Animais , Comunicação Autócrina , Carcinoma Hepatocelular/etiologia , Carcinoma Hepatocelular/prevenção & controle , Carcinoma Ductal Pancreático/etiologia , Carcinoma Ductal Pancreático/prevenção & controle , Proliferação de Células , Modelos Animais de Doenças , Metabolismo Energético , Fígado Gorduroso/etiologia , Fígado Gorduroso/patologia , Fatores de Crescimento de Fibroblastos/genética , Humanos , Hipotálamo/metabolismo , Proteínas Klotho , Metabolismo dos Lipídeos , Fígado/patologia , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/prevenção & controle , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Transgênicos , Obesidade/complicações , Obesidade/patologia , Pâncreas/patologia , Neoplasias Pancreáticas/etiologia , Neoplasias Pancreáticas/prevenção & controle , Comunicação Parácrina , Fatores de Proteção , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais
16.
Sci Rep ; 10(1): 22110, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33335253

RESUMO

Studies on animal models have demonstrated that feeding a low-arginine diet inhibits triacylglycerol (TAG) secretion from the liver, resulting in marked fatty liver development in rats. Here, we first showed that culturing hepatocytes in the medium mimicking the serum amino acid profile of low-arginine diet-fed rats induced TAG accumulation in the cells, indicating that the specific amino acid profile caused TAG accumulation in hepatocytes. Dietary adenine supplementation completely recovered hepatic TAG secretion and abolished hepatic TAG accumulation in rats. A comprehensive non-linear analysis revealed that inhibition of hepatic TAG accumulation by dietary adenine supplementation could be predicted using only serum amino acid concentration data. Comparison of serum amino acid concentrations indicated that histidine, methionine, and branched-chain amino acid (BCAA) concentrations were altered by adenine supplementation. Furthermore, when the serum amino acid profiles of low-arginine diet-fed rats were altered by modifying methionine or BCAA concentrations in their diets, their hepatic TAG accumulation was abolished. Altogether, these results suggest that an increase in methionine and BCAA levels in the serum in response to dietary arginine deficiency is a key causative factor for hepatic TAG accumulation, and dietary adenine supplementation could disrupt this phenomenon by altering serum amino acid profiles.


Assuntos
Adenina/administração & dosagem , Aminoácidos/sangue , Suplementos Nutricionais , Suscetibilidade a Doenças , Fígado Gorduroso/etiologia , Fígado Gorduroso/metabolismo , Animais , Modelos Animais de Doenças , Fígado Gorduroso/patologia , Hepatócitos/metabolismo , Metaboloma , Metabolômica/métodos , Purinas/metabolismo , Ratos , Triglicerídeos/biossíntese , Triglicerídeos/sangue
17.
J Nutr ; 150(Suppl 1): 2524S-2531S, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33000164

RESUMO

The metabolism of methionine and cysteine in the body tissues determines the concentrations of several metabolites with various biologic activities, including homocysteine, hydrogen sulfide (H2S), taurine, and glutathione. Hyperhomocysteinemia, which is correlated with lower HDL cholesterol in blood in volunteers and animal models, has been associated with an increased risk for cardiovascular diseases. In humans, the relation between methionine intake and hyperhomocysteinemia is dependent on vitamin status (vitamins B-6 and B-12 and folic acid) and on the supply of other amino acids. However, lowering homocysteinemia by itself is not sufficient for decreasing the risk of cardiovascular disease progression. Other compounds related to methionine metabolism have recently been identified as being involved in the risk of atherosclerosis and steatohepatitis. Indeed, the metabolism of sulfur amino acids has an impact on phosphatidylcholine (PC) metabolism, and anomalies in PC synthesis due to global hypomethylation have been associated with disturbances of lipid metabolism. In addition, impairment of H2S synthesis from cysteine favors atherosclerosis and steatosis in animal models. The effects of taurine on lipid metabolism appear heterogeneous depending on the populations of volunteers studied. A decrease in the concentration of intracellular glutathione, a tripeptide involved in redox homeostasis, is implicated in the etiology of cardiovascular diseases and steatosis. Last, supplementation with betaine, a compound that allows remethylation of homocysteine to methionine, decreases basal and methionine-stimulated homocysteinemia; however, it adversely increases plasma total and LDL cholesterol. The study of these metabolites may help determine the range of optimal and safe intakes of methionine and cysteine in dietary proteins and supplements. The amino acid requirement for protein synthesis in different situations and for optimal production of intracellular compounds involved in the regulation of lipid metabolism also needs to be considered for dietary attenuation of atherosclerosis and steatosis risk.


Assuntos
Aterosclerose/etiologia , Cisteína/metabolismo , Fígado Gorduroso/etiologia , Metabolismo dos Lipídeos , Metionina/metabolismo , Estado Nutricional , Enxofre/metabolismo , Aminoácidos Sulfúricos/metabolismo , Animais , Aterosclerose/metabolismo , Betaína/metabolismo , Betaína/farmacologia , Colesterol/sangue , Proteínas Alimentares/química , Suplementos Nutricionais , Fígado Gorduroso/metabolismo , Glutationa/metabolismo , Humanos , Sulfeto de Hidrogênio/metabolismo , Hiper-Homocisteinemia/etiologia , Hiper-Homocisteinemia/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Necessidades Nutricionais , Fosfatidilcolinas/metabolismo , Compostos de Enxofre/metabolismo , Taurina/metabolismo , Taurina/farmacologia
18.
Acta Sci Pol Technol Aliment ; 19(3): 279-289, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32978911

RESUMO

BACKGROUND: Recent shifts in lifestyles and diets have caused the incidence of obesity to increase rapidly, resulting in a serious threat to modern human health. There is a growing interest the use of plant or fungi derived supplements as a safe and effective means to treat obesity. In recent times, edible-medicinal fungi have garnered attention as therapeutics owing to their biocompatibility and effectiveness. Attempts to determine the therapeutic effects of these fungi have become a prime focus in drug discovery programs. Therefore, this study aimed to determine the anti-obesity effects of P. eryngii chitin in rats with obesity induced by administration of a high fat diet. METHODS: To investigate the therapeutic effects of chitin from Pleurotus eryngii on high fat diet-induce obesity, we treated obese rats with different concentrations of chitin from P. eryngii for 4 weeks, using Lipitor as positive control. The living condition, food intake, body weight, perirenal adipose tissue, periepididymal adipose tissue, adipose tissue coefficient, serum lipid levels, including total cholesterol (TC), total glyceride (TG), high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C), were measured, and levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), themalonaldehyde (MDA), and superoxide dismutase (SOD) activity in liver were determined. The rats were also monitored for pathological changes in the liver and aorta. RESULTS: These studies indicated that administration of chitin from P. eryngii could significantly decrease obese rat food utilization rates and accumulation of adipose tissue in the body, thus preventing development of increased body weight. The treatment also significantly reduced serum lipid levels, including levels of TC, TG and LDL-C. Treatment with P. eryngii-derived chitin also enhanced ALT and AST enzymatic activity, enhanced SOD enzymatic activity, and reduced the MDA content of the liver, as well as significantly reducing the liver index and alleviating liver steatosis and aortic atherosclerosis resulting from obesity. CONCLUSIONS: In conclusion, chitin from P. eryngii had therapeutic effects on hyperlipidemia, fatty liver, and aortic atherosclerosis resulting from obesity in rats.


Assuntos
Produtos Biológicos/uso terapêutico , Peso Corporal/efeitos dos fármacos , Quitina/uso terapêutico , Dieta Hiperlipídica , Metabolismo dos Lipídeos/efeitos dos fármacos , Obesidade/tratamento farmacológico , Pleurotus/química , Tecido Adiposo/metabolismo , Alanina Transaminase/sangue , Animais , Aspartato Aminotransferases/sangue , Aterosclerose/etiologia , Aterosclerose/prevenção & controle , Produtos Biológicos/farmacologia , Quitina/farmacologia , Ingestão de Alimentos/efeitos dos fármacos , Fígado Gorduroso/etiologia , Fígado Gorduroso/prevenção & controle , Hiperlipidemias/etiologia , Hiperlipidemias/prevenção & controle , Lipídeos/sangue , Fígado/efeitos dos fármacos , Fígado/enzimologia , Fígado/metabolismo , Masculino , Obesidade/sangue , Obesidade/complicações , Ratos Sprague-Dawley , Superóxido Dismutase/sangue
19.
Nutrients ; 12(9)2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32825073

RESUMO

Obesity is a worldwide epidemic characterized by excessive fat accumulation, associated with multiple comorbidities and complications. Emerging evidence points to gut microbiome as a driving force in the pathogenesis of obesity. Vinegar intake, a traditional remedy source of exogenous acetate, has been shown to improve glycemic control and to have anti-obesity effects. New functional foods may be developed by supplementing traditional food with probiotics. B. coagulans is a suitable choice because of its resistance to high temperatures. To analyze the possible synergic effect of Vinegar and B. coagulans against the metabolic alterations induced by a high fat diet (HFD), we fed twelve-week-old C57BL/6 mice with HFD for 5 weeks after 2 weeks of acclimation on a normal diet. Then, food intake, body weight, blood biochemical parameters, histology and liver inflammatory markers were analyzed. Although vinegar drink, either alone or supplemented with B. coagulans, reduced food intake, attenuated body weight gain and enhanced glucose tolerance, only the supplemented drink improved the lipid serum profile and prevented hepatic HFD-induced overexpression of CD36, IL-1ß, IL-6, LXR and SREBP, thus reducing lipid deposition in the liver. The beneficial properties of the B. coagulans-supplemented vinegar appear to be mediated by a reduction in insulin and leptin circulating levels.


Assuntos
Ácido Acético/administração & dosagem , Ácido Acético/farmacologia , Bacillus coagulans , Dieta Hiperlipídica/efeitos adversos , Suplementos Nutricionais , Fígado Gorduroso/dietoterapia , Fígado Gorduroso/etiologia , Alimento Funcional , Resistência à Insulina , Fígado/metabolismo , Malus , Obesidade/dietoterapia , Obesidade/etiologia , Probióticos/administração & dosagem , Probióticos/farmacologia , Aumento de Peso/efeitos dos fármacos , Animais , Fármacos Antiobesidade , Ingestão de Alimentos/efeitos dos fármacos , Fígado Gorduroso/prevenção & controle , Microbioma Gastrointestinal , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Obesidade/microbiologia
20.
Int J Mol Sci ; 21(15)2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32752280

RESUMO

Goat's milk is a rich source of bioactive compounds (peptides, conjugated linoleic acid, short chain fatty acids, monounsaturated and polyunsaturated fatty acids, polyphenols such as phytoestrogens and minerals among others) that exert important health benefits. However, goat's milk composition depends on the type of food provided to the animal and thus, the abundance of bioactive compounds in milk depends on the dietary sources of the goat feed. The metabolic impact of goat milk rich in bioactive compounds during metabolic challenges such as a high-fat (HF) diet has not been explored. Thus, we evaluated the effect of milk from goats fed a conventional diet, a conventional diet supplemented with 30% Acacia farnesiana (AF) pods or grazing on metabolic alterations in mice fed a HF diet. Interestingly, the incorporation of goat's milk in the diet decreased body weight and body fat mass, improved glucose tolerance, prevented adipose tissue hypertrophy and hepatic steatosis in mice fed a HF diet. These effects were associated with an increase in energy expenditure, augmented oxidative fibers in skeletal muscle, and reduced inflammatory markers. Consequently, goat's milk can be considered a non-pharmacologic strategy to improve the metabolic alterations induced by a HF diet. Using the body surface area normalization method gave a conversion equivalent daily human intake dose of 1.4 to 2.8 glasses (250 mL per glass/day) of fresh goat milk for an adult of 60 kg, which can be used as reference for future clinical studies.


Assuntos
Metabolismo Energético/efeitos dos fármacos , Ácidos Graxos/administração & dosagem , Fígado Gorduroso/prevenção & controle , Leite/química , Mitocôndrias Musculares/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Obesidade/prevenção & controle , Animais , Biomarcadores/análise , Dieta Hiperlipídica/efeitos adversos , Suplementos Nutricionais , Fígado Gorduroso/etiologia , Expressão Gênica/efeitos dos fármacos , Cabras , Resistência à Insulina , Ácidos Linoleicos Conjugados/administração & dosagem , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Obesidade/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA