Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 185
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Phytomedicine ; 128: 155505, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38547616

RESUMO

BACKGROUND: Fatty liver disease (FLD) poses a significant global health concern worldwide, with its classification into nonalcoholic fatty liver disease (NAFLD) and alcoholic fatty liver disease (AFLD) contingent upon the presence or absence of chronic and excessive alcohol consumption. The absence of specific therapeutic interventions tailored to FLD at various stages of the disease renders its treatment exceptionally arduous. Despite the fact that FLD and hyperlipidemia are intimately associated, there is still debate over how lipid-lowering medications affect FLD. Proprotein Convertase Subtilisin/ Kexin type 9 (PCSK9) is a serine protease predominantly synthesized in the liver, which has a crucial impact on cholesterol homeostasis. Research has confirmed that PCSK9 inhibitors have prominent lipid-lowering properties and substantial clinical effectiveness, thereby justifying the need for additional exploration of their potential role in FLD. PURPOSE: Through a comprehensive literature search, this review is to identify the relationship and related mechanisms between PCSK9, lipid metabolism and FLD. Additionally, it will assess the pharmacological mechanism and applicability of PCSK9 inhibitors (including naturally occurring PCSK9 inhibitors, such as conventional herbal medicines) for the treatment of FLD and serve as a guide for updating the treatment protocol for such conditions. METHODS: A comprehensive literature search was conducted using several electronic databases, including Pubmed, Medline, Embase, CNKI, Wanfang database and ClinicalTrials.gov, from the inception of the database to 30 Jan 2024. Key words used in the literature search were "fatty liver", "hepatic steatosis", "PCSK9", "traditional Chinese medicine", "herb medicine", "botanical medicine", "clinical trial", "vivo", "vitro", linked with AND/OR. Most of the included studies were within five years. RESULTS: PCSK9 participates in the regulation of circulating lipids via both LDLR dependent and independent pathways, and there is a potential association with de novo lipogenesis. Major clinical studies have demonstrated a positive correlation between circulating PCSK9 levels and the severity of NAFLD, with elevated levels of circulating PCSK9 observed in individuals exposed to chronic alcohol. Numerous studies have demonstrated the potential of PCSK9 inhibitors to ameliorate non-alcoholic steatohepatitis (NASH), potentially completely alleviate liver steatosis, and diminish liver impairment. In animal experiments, PCSK9 inhibitors have exhibited efficacy in alleviating alcoholic induced liver lipid accumulation and hepatitis. Traditional Chinese medicine such as berberine, curcumin, resveratrol, piceatannol, sauchinone, lupin, quercetin, salidroside, ginkgolide, tanshinone, lunasin, Capsella bursa-pastoris, gypenosides, and Morus alba leaves are the main natural PCS9 inhibitors. Excitingly, by inhibiting transcription, reducing secretion, direct targeting and other pathways, traditional Chinese medicine exert inhibitory effects on PCSK9, thereby exerting potential FLD therapeutic effects. CONCLUSION: PCSK9 plays an important role in the development of FLD, and PCSK9 inhibitors have demonstrated beneficial effects on lipid regulation and FLD in both preclinical and clinical studies. In addition, some traditional Chinese medicines have improved the disease progression of FLD by inhibiting PCSK9 and anti-inflammatory and antioxidant effects. Consequently, the inhibition of PCSK9 appears to be a promising therapeutic strategy for FLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Inibidores de PCSK9 , Animais , Humanos , Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso Alcoólico/tratamento farmacológico , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Inibidores de PCSK9/uso terapêutico , Pró-Proteína Convertase 9/metabolismo
2.
J Tradit Chin Med ; 44(2): 277-288, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38504534

RESUMO

OBJECTIVE: To analyze the effect and molecular mechanism of Gehua Jiejiu Dizhi decoction (, GJDD) on alcoholic fatty live disease (AFLD) by using proteomic methods. METHODS: The male C57BL/6J mouse were randomly divided into four groups: control group, model group, GJDD group and resveratrol group. After the AFLD model was successfully prepared by intragastric administration of alcohol once on the basis of the Lieber-DeCarli classical method, the GJDD group and resveratrol group were intragastrically administered with GJDD (4900 mg/kg) and resveratrol (400 mg/kg) respectively, once a day for 9 d. The fat deposition of liver tissue was observed and evaluated by oil red O (ORO) staining. 4DLabel-free quantitative proteome method was used to determine and quantify the protein expression in liver tissue of each experimental group. The differentially expressed proteins were screened according to protein expression differential multiples, and then analyzed by Gene ontology classification and Kyoto Encyclopedia of Genes and Genomes pathway enrichment. Finally, expression validation of the differentially co-expressed proteins from control group, model group and GJDD group were verified by targeted proteomics quantification techniques. RESULTS: In semiquantitative analyses of ORO, all kinds of steatosis (ToS, MaS, and MiS) were evaluated higher in AFLD mice compared to those in GJDD or resveratrol-treated mice. 4DLabel-free proteomics analysis results showed that a total of 4513 proteins were identified, of which 3763 proteins were quantified and 946 differentially expressed proteins were screened. Compared with the control group, 145 proteins were up-regulated and 148 proteins were down-regulated in the liver tissue of model group. In addition, compared with the model group, 92 proteins were up-regulated and 135 proteins were down-regulated in the liver tissue of the GJDD group. 15 differentially co-expressed proteins were found between every two groups (model group vs control group, GJDD group vs model group and GJDD group vs control group), which were involved in many biological processes. Among them, 11 differentially co-expressed key proteins (Aox3, H1-5, Fabp5, Ces3a, Nudt7, Serpinb1a, Fkbp11, Rpl22l1, Keg1, Acss2 and Slco1a1) were further identified by targeted proteomic quantitative technology and their expression patterns were consistent with the results of 4D label-free proteomic analysis. CONCLUSIONS: Our study provided proteomics-based evidence that GJDD alleviated AFLD by modulating liver protein expression, likely through the modulation of lipid metabolism, bile acid metabolism and with exertion of antioxidant stress.


Assuntos
Fígado Gorduroso Alcoólico , Serpinas , Camundongos , Masculino , Animais , Fígado Gorduroso Alcoólico/tratamento farmacológico , Fígado Gorduroso Alcoólico/genética , Fígado Gorduroso Alcoólico/metabolismo , Antioxidantes/metabolismo , Proteômica/métodos , Resveratrol/metabolismo , Esforço Físico , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Metabolismo dos Lipídeos , Ácidos e Sais Biliares/metabolismo , Lipídeos , Serpinas/metabolismo , Aldeído Oxirredutases/metabolismo
3.
Phytomedicine ; 121: 155080, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37757711

RESUMO

BACKGROUND: Asperosaponin VI (AVI) is a natural triterpenoid saponin isolated from Dipsacus asper Wall with documented anti-inflammatory and bone protective effects. Our previous work reported that AVI protects the liver of septic mice from acute inflammatory damage. In this paper, we further explored the protective effect and the potential mechanisms of AVI in alcoholic fatty liver disease (AFLD). METHODS: The Lieber-Decarli model was constructed to evaluate the effect of AVI on AFLD in C57BL/6 J mice. Additional in vitro work was performed to investigate HepG2 cells exposed to alcohol, then analyzed the degree of liver injury by detecting the ALT and AST levels both in the liver and serum. H&E staining and Sirius red staining were used to evaluate the histopathology variations in the liver. Further, observe lipid droplets in the cytoplasm by Oil Red O staining. We detected the expression of inflammatory cytokines with qualitative PCR; ROS, MDA, SOD, and GSH-px levels were analyzed to observe oxidative stress. Finally, exploring the activation of AMPK signaling pathway by real-time PCR and Western blotting. RESULTS: Histological examination of liver tissue combined with serum ALT and AST levels showed a significant protective effect of AVI against alcoholic liver injury in AFLD mice. Compared with the model group, AVI evidently improved antioxidant capacity, reduced inflammatory response and lipid accumulation both in vitro and in vivo. For mechanically, it was found that AVI up-regulated phosphorylation level of AMP-activated protein kinase (AMPK) and inhibited the endoplasmic reticulum stress (ER) pathway in AFLD. CONCLUSION: AVI protects mice from alcohol-induced hepatic steatosis and liver injury through activating AMPK signaling and repress ER stress, suggesting that it might be a potential therapeutic agent for AFLD.


Assuntos
Fígado Gorduroso Alcoólico , Saponinas , Camundongos , Animais , Fígado Gorduroso Alcoólico/tratamento farmacológico , Fígado Gorduroso Alcoólico/patologia , Metabolismo dos Lipídeos , Proteínas Quinases Ativadas por AMP/metabolismo , Camundongos Endogâmicos C57BL , Fígado , Saponinas/metabolismo , Estresse Oxidativo , Estresse do Retículo Endoplasmático
4.
J Ethnopharmacol ; 307: 116227, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-36739928

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Verbenalin is a major compound in Verbena officinalis L. Verbena officinalis L was first recorded in the 'Supplementary Records of Famous Physicians.' Verbenalin (VE) is its active constituent and has been found to have many biological effects, including anti-obesity, anti-inflammatory, and antioxidant activities, removing jaundice, and treating malaria. It could treat lump accumulation, dysmenorrhea, throat obstruction, edema, jaundice, and malaria. Palmitic acid (PA), oleic acid (OA), ethanol, and acetaminophen liver injuries have been proven to benefit from verbenalin. AIM OF THE STUDY: To study the effects of verbenalin on the prevention of alcoholic steatohepatitis (ASH) through the regulation of oxidative stress and mitochondrial dysfunction by regulating MDMX (Murine double minute X)/PPARα (Peroxisome proliferator-activated receptor alpha)-mediated ferroptosis. MATERIAL AND METHODS: C57BL/6 mice treated with alcohol followed by the Gao-Binge protocol were administered verbenalin by gavage simultaneously. The mitochondrial mass and morphology were visualized using TEM. AML-12 cells were stimulated with ethanol to mimic ASH in vitro. Western blotting, co-immunoprecipitation, and kit determination were simultaneously performed. The target protein of verbenalin was identified by molecular docking, and cellular thermal shift assay (CETSA) further confirmed its interactions. RESULTS: Verbenalin alleviates oxidative stress and ferroptosis in alcohol-associated steatohepatitis. To elucidate the molecular mechanism by which verbenalin inhibits abnormal mitochondrial dysfunction, molecular docking was performed, and MDMX was identified as the target protein of verbenalin. CETSA assays revealed a specific interaction between MDMX and verbenalin. Co-immunoprecipitation demonstrated that PPARα played a critical role in promoting the ability of MDMX to affect ferroptosis. Verbenalin regulates MDMX/PPARα-mediated ferroptosis in AML-12 cells. CONCLUSION: Verbenalin regulates ferroptosis and highlights the therapeutic potential of verbenalin and ferroptosis inhibition in reducing alcoholic steatohepatitis.


Assuntos
Fígado Gorduroso Alcoólico , Ferroptose , Leucemia Mieloide Aguda , Hepatopatia Gordurosa não Alcoólica , Animais , Feminino , Camundongos , Etanol/farmacologia , Fígado Gorduroso Alcoólico/metabolismo , Leucemia Mieloide Aguda/metabolismo , Fígado , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Simulação de Acoplamento Molecular , Hepatopatia Gordurosa não Alcoólica/metabolismo , PPAR alfa/metabolismo , Proteínas/metabolismo
5.
Food Funct ; 14(3): 1573-1583, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36655918

RESUMO

Dietary oil composition determines the pathological processes of alcoholic fatty liver disease (AFLD). Oil rich in saturated fatty acids protects, whereas oil rich in polyunsaturated fatty acids aggravates the alcohol-induced liver injury. However, limited studies have been conducted to address how monounsaturated fatty acids (MUFAs) enriched oil controls the pathological development of AFLD. Therefore, this study was designed to evaluate the effect of MUFA-enriched extra virgin olive oil (OO) on AFLD. Twenty C57BL/6J mice were randomly allocated into four groups and fed modified Lieber-DeCarli liquid diets containing isocaloric maltose dextrin a non-alcohol or alcohol with corn oil and OO for four weeks. Dietary OO significantly exacerbated alcohol-induced liver dysfunction, evidenced by histological examinations and disturbed biochemical parameters. Dietary OO with alcohol decreased hormone-sensitive lipase (HSL), phosphorylated 5'-AMP-activated protein kinase (p-AMPK), and carnitine palmitoyltransferase-Iα (CPT1α) expression, and increased sterol regulatory element-binding protein-1c (SREBP-1c), diacylglycerol acyltransferase-2 (DGAT2), and very low-density lipoprotein receptor (VLDLR) expression in the liver. It also promoted the expression of hepatic interleukin-6 (IL-6) and hepatic tumour necrosis factor-alpha (TNF-α) at the transcriptional level. Additionally, adipose tissue lipolysis partially had an etiologic effect on alcohol-induced hepatic steatosis under OO pretreatment. In conclusion, MUFA-enriched OO exacerbated liver dysfunction in vivo. OO should be cautiously considered as a unique dietary oil source for individuals with AFLD.


Assuntos
Fígado Gorduroso Alcoólico , Camundongos , Animais , Azeite de Oliva/farmacologia , Fígado Gorduroso Alcoólico/etiologia , Fígado Gorduroso Alcoólico/metabolismo , Ácidos Graxos Monoinsaturados/metabolismo , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Etanol/metabolismo , Ácidos Graxos/metabolismo , Óleo de Milho/metabolismo
6.
J Med Food ; 25(12): 1102-1111, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36516056

RESUMO

Alcoholic liver disease (ALD) is a major chronic liver disease. Chronic alcohol consumption induces dysbiosis, disruption of gut barrier function, oxidative stress, inflammation, and changes in lipid metabolism, thereby leading to ALD. In this study, we investigated whether the commercial Morinda citrifolia extract Nonitri can ameliorate ALD symptoms through the gut-liver axis. We used mice chronically administered EtOH and found a marked increase in serum endotoxin levels and biomarkers of liver pathology. Moreover, the EtOH-treated group showed significantly altered gut microbial composition particularly that of Alistipes, Bacteroides, and Muribaculum and disrupted gut barrier function. However, Nonitri improved serum parameters, restored the microbial proportions, and regulated levels of zonula occludens1, occludin, and claudin1. Furthermore, Nonitri suppressed inflammation by inhibiting endotoxin-triggered toll-like receptor 4-signaling pathway and fat deposition by reducing lipogenesis through activating AMP-activated protein kinase in the liver. Furthermore, Pearson's correlation analysis showed that gut microbiota and ALD-related markers were correlated, and Nonitri regulated these bacteria. Taken together, our results indicate that the hepatoprotective effect of Nonitri reduces endotoxin levels by improving gut health, and inhibits fat deposition by regulating lipid metabolism.


Assuntos
Fígado Gorduroso Alcoólico , Hepatopatias Alcoólicas , Morinda , Camundongos , Animais , Fígado Gorduroso Alcoólico/tratamento farmacológico , Fígado Gorduroso Alcoólico/metabolismo , Disbiose/microbiologia , Hepatopatias Alcoólicas/tratamento farmacológico , Hepatopatias Alcoólicas/prevenção & controle , Fígado/metabolismo , Etanol/metabolismo , Endotoxinas , Inflamação/metabolismo , Camundongos Endogâmicos C57BL
7.
Front Endocrinol (Lausanne) ; 13: 1018557, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36246879

RESUMO

Background: At present, the incidence of alcoholic fatty liver disease (AFLD) is increasing year by year, and numerous studies have confirmed that liver diseases are closely related to intestinal flora. Seabuckthorn and Astragalus membranaceus, as traditional Chinese medicine (TCM) with the homology of medicine and food, have good liver protection, and their polysaccharides can regulate the intestinal flora. Here, we studied the effects of HRP, APS and the combination of the two polysaccharides on the intestinal flora of AFLD mice, which provided scientific basis for the treatment of AFLD with the two polysaccharides. Materials and methods: Thirty Kunming (KM) mice were randomly divided into the control group (Con), the model group (Mod), the HRP treatment group (HRP), the APS treatment group (APS), and HRP+APS treatment group (HRP+APS), with six mice in each group. The AFLD model was constructed by continuous intragastric administration of 42% vol Niulanshan ethanol solution for 28 days, and the mice in each polysaccharide group were given corresponding drugs. The levels of AST, ALT, TC and TG in serum of mice were measured. 16S rRNA amplicon sequencing technique was used to determine the diversity and richness of intestinal flora, and the relative abundance of intestinal flora at phylum level and genus level of the mice in each group. Results: HRP, APS and HRP+APS could reduce the serum levels of AST, ALT, TC and TG in mice. In addition, HRP, APS and HRP + APS restored the diversity, relative abundance and community structure of intestinal mucosa bacteria in AFLD mice to a certain extent. Specifically, HRP, APS and HRP+APS remarkably decreased the ratio of Firmicutes to Bacteroidetes, and ultimately increased the abundance of beneficial bacteria and reduced the abundance of pathogenic bacteria. Conclusion: HRP, APS, and HRP+APS can improve the intestinal microecology of AFLD model mice, alleviate liver injury, and maintain normal intestinal function in different degrees.


Assuntos
Astrágalo , Fígado Gorduroso Alcoólico , Microbioma Gastrointestinal , Hippophae , Animais , Astrágalo/química , Etanol , Fígado Gorduroso Alcoólico/tratamento farmacológico , Camundongos , Polissacarídeos/farmacologia , RNA Ribossômico 16S
8.
Life Sci ; 310: 121064, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36220368

RESUMO

AIMS: This work investigated the effects of creatine supplementation on different pathways related to the pathogenesis of non-alcoholic fatty liver disease and alcoholic liver disease. MAIN METHODS: To induce alcoholic liver disease, male Swiss mice were divided into three groups: control, ethanol and ethanol supplemented with creatine. To induce non-alcoholic fatty liver disease, mice were divided into three groups: control, high-fat diet and high-fat diet supplemented with creatine. Each group consisted of eight animals. In both cases, creatine monohydrate was added to the diets (1 %; weight/vol). KEY FINDINGS: Creatine supplementation prevented high-fat diet-induced non-alcoholic fatty liver disease progression, demonstrated by attenuated liver fat accumulation and liver damage. On the other hand, when combined with ethanol, creatine supplementation up-regulated key genes related to ethanol metabolism, oxidative stress, inflammation and lipid synthesis, and exacerbated ethanol-induced liver steatosis and damage, demonstrated by increased liver fat accumulation and histopathological score, as well as elevated oxidative damage markers and inflammatory mediators. SIGNIFICANCE: Our results clearly demonstrated creatine supplementation exerts different outcomes in relation to non-alcoholic fatty liver disease and alcoholic liver disease, namely it protects against high-fat diet-induced non-alcoholic fatty liver disease but exacerbates ethanol-induced alcoholic liver disease. The exacerbating effects of the creatine and ethanol combination appear to be related to oxidative stress and inflammation-mediated up-regulation of ethanol metabolism.


Assuntos
Fígado Gorduroso Alcoólico , Hepatopatias Alcoólicas , Hepatopatia Gordurosa não Alcoólica , Masculino , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Hepatopatia Gordurosa não Alcoólica/complicações , Creatina/farmacologia , Fígado Gorduroso Alcoólico/etiologia , Fígado Gorduroso Alcoólico/prevenção & controle , Fígado/metabolismo , Dieta Hiperlipídica/efeitos adversos , Suplementos Nutricionais , Hepatopatias Alcoólicas/patologia , Etanol/toxicidade , Etanol/metabolismo , Estresse Oxidativo , Inflamação/patologia
9.
J Ethnopharmacol ; 295: 115407, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35640740

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Our previous studies found that the ethanol extract of Gynura procumbens (EEGS) reduced hepatic steatosis in alcoholic fatty liver disease (AFLD). AIM OF THE STUDY: To explore the active ingredients from EEGS and their relevant mechanism of action in alleviating alcoholic liver injuries. AIM OF THE STUDY: To explore the active ingredients from EEGS and their intestinal absorption characteristics as an approach for understanding mechanism of action in alleviating alcoholic liver injuries. MATERIALS AND METHODS: Monitored by high-performance liquid chromatography (HPLC) and thin-layer chromatography (TLC), chemical constituents from the prepared EEGS were isolated by means of solvent extraction, repeated column chromatography, preparative HPLC and other methods, and their structures were identified based on spectroscopic methods. The in vivo intestinal absorption rate of chlorogenic acid (CA), the active component of the EEGS, both in a single form and in the EEGS were monitored by the single-pass intestinal perfusion (SPIP) method in rats. The protective effect of EEGS and its active components on alcoholic liver injuries was evaluated in the alcoholic liver injury model of C57BL/6J male mice induced by Lieber-DeCarli alcohol liquid feed. RESULTS: Three noncaffeoyl quinic acid components were isolated and identified from the EEGS, namely, 3-trans-p-coumaroyl quinic acid (0.9%), 3-cis-p-coumaroyl quinic acid (2.7%), and trans-p-coumaric acid (0.6%). In vivo intestinal absorption of CA decreased with the increase of pH value of perfusion solution in the range of 5.5-7.8. The maximum absorption percentage of CA alone was 6.7 ± 2.4%, while the maximum absorption percentage of CA in the EEGS was 16.0 ± 2.2%, which was 2.4 times higher than that of CA alone. The results of animal experiments showed that the degree of fatty liver of mice treated with EEGS was significantly lower than that of the CA, trans-p-coumaric acid, and the combination group of CA and trans-p-coumaric acid alone. CONCLUSION: The above results indicated that trans-p-coumaric acid isolated from the dried stems of Gynura procumbens assisted CA being absorbed into the body and worked together with CA to improve the function of liver lipid metabolism, reduce hepatic lipid accumulation in a mouse model of AFLD and effectively counteract alcohol-induced fatty liver disease.


Assuntos
Asteraceae , Fígado Gorduroso Alcoólico , Fígado Gorduroso , Animais , Asteraceae/química , Ácido Clorogênico/uso terapêutico , Ácidos Cumáricos , Etanol/química , Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso Alcoólico/metabolismo , Absorção Intestinal , Fígado , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Ácido Quínico/farmacologia , Ratos
10.
Phytomedicine ; 101: 154113, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35490493

RESUMO

BACKGROUND: With the development of economy and increased workload, chronic a high-fat/alcohol diet intake may lead to alcoholic fatty liver disease (AFLD), which is considered as a crucial health problem worldwide. E Se tea is produced of the leaves and leaf buds of Malus toringoides (Rehd.) Hughes in Tibet and has human health benefits with anti-hyperglycemia, hypertension, and hyperlipidemia effects. PURPOSE: The objective of this work was to investigate the protective effect of aqueous-ethanol and hot-water extracts of E Se tea against chronic high-fat/alcohol diet induced AFLD rats. METHODS: Firstly, to determine the chemical profiling of E Se tea extracts, UHPLC-ESI-HRMS analysis was conducted. Secondly, Sprague-Dawley male rats were used to establish the AFLD animal model by feeding with high-fat/alcohol diet. The animals were treated with E Se tea extracts for 12 weeks. Serum parameters were determined, histologic sections were prepared, and activities of enzymes related to inflammatory response and lipid metabolism imbalance were analyzed. The underlying mechanisms of E Se tea extracts alleviating AFLD were analyzed by immunofluorescence staining and Western blotting analysis. Lastly, key targets of 11-MT against AFLD were verified through molecular docking. RESULTS: In this study, seven main compounds were confirmed or tentatively identified in E Se tea extracts by UHPLC-ESI-HRMS. The results revealed that both the extracts could reverse histopathological steatotic alternation of the liver and reduced the activity of liver damage markers (ALT, AST). E Se tea extracts mitigated oxidative stress by inhibiting CYP2E1 protein and lipid peroxidation parameters (MDA), but enhancing the endogenous antioxidants (CAT, GSH, SOD). Moreover, E Se tea extracts ameliorated inflammation by restraining the activation of NF-κB, consequently releasing the expression of proinflammatory cytokines (TNF-α, IL-6, IL-1ß, COX-2 and iNOS). Subsequently, E Se tea extracts reduced hepatocyte apoptosis by increasing capase-9, caspase-3 and Bax protein expression but decreasing Bcl-2 protein expression. Furthermore, E Se tea extracts improved metabolism imbalance by stimulating AMPK/SREBP1/FAS and PPAR-α/CPT1 signaling pathway by regulating lipid metabolism parameters (TC, TG, HDL-C, LHD-C). Furthermore, molecular docking results indicated that 7 chemical constituents of E Se tea extracts had strong docking affinity with 4 key target proteins (AMPK, PPAR-α, NF-кB and Caspase-9). CONCLUSION: E Se tea ameliorated AFLD through ameliorating inflammatory response, apoptosis, and lipid metabolism imbalance.


Assuntos
Fígado Gorduroso Alcoólico , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Etanol/farmacologia , Fígado Gorduroso Alcoólico/tratamento farmacológico , Fígado Gorduroso Alcoólico/prevenção & controle , Fígado , Masculino , Simulação de Acoplamento Molecular , NF-kappa B/metabolismo , Estresse Oxidativo , PPAR alfa/metabolismo , Extratos Vegetais/química , Ratos , Ratos Sprague-Dawley , Chá
11.
Food Res Int ; 155: 111095, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35400467

RESUMO

The pathological characteristics of alcohol-associated liver damage (ALD) mainly include liver lipid accumulation, which subsequently leads to alcohol-associated steatohepatitis, fibrosis and cirrhosis. Dietary factors such as alcohol and fat may contribute to the development of ALD. A chronic alcohol-fed mouse model was used to investigate the effect of fatty acids in Jinhua ham on ALD. The fatty acids in Jinhua ham could prevent the occurrence of ALD from chronic alcohol consumption. In addition, the fatty acids in Jinhua ham with liver protective activity were long-chain saturated fatty acids (LCSFAs), including palmitic acid and stearic acid. In contrast, long-chain polyunsaturated fatty acids aggravated the pathogenesis of ALD. Furthermore, the mechanism underlying the prevention of ALD by fatty acids in Jinhua ham was ascribed to increasing relative abundances of Akkermansia muciniphila and Lactobacillus in the gut, which were beneficial to regulating intestinal homeostasis, ameliorating intestinal barrier dysfunction and reducing alcohol-associated hepatitis and oxidative stress damage. This study demonstrated that dietary supplementation with saturated fatty acids could prevent or mitigate ALD by regulating the gut microbiota (GM) and improving the intestinal barrier, while provided a more affordable dietary intervention strategy for the prevention of ALD.


Assuntos
Fígado Gorduroso Alcoólico , Microbioma Gastrointestinal , Hepatopatias Alcoólicas , Animais , Etanol/efeitos adversos , Ácidos Graxos/farmacologia , Fígado Gorduroso Alcoólico/prevenção & controle , Hepatopatias Alcoólicas/prevenção & controle , Camundongos , Camundongos Endogâmicos C57BL , Ácidos Esteáricos/farmacologia
12.
J Med Food ; 25(4): 456-463, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35438556

RESUMO

We examined the efficacy of fermented Curcuma longa L. (FT) on the development of alcoholic fatty liver in mice and investigated the underlying mechanism. The protective potential of FT against ethanol-induced fatty liver was determined using C57BL/6 male mice allocated into four groups (8 mice/group). Control groups received either distilled water or 5 g/kg body weight (b.w.) per day ethanol for 8 days. Treatment groups were administered either 300 mg/kg b.w. per day of milk thistle or FT before receiving ethanol. FT contained a higher amount of caffeic acid and tetrahydrocurcumin than C. longa. FT pretreatment significantly suppressed the elevated hepatic lipid droplets associated with ethanol ingestion. In comparison with ethanol-treated control, FT pretreated mice showed inhibited cytochrome P4502E1 (CYP2E1), sterol regulatory element-binding protein-1 (SREBP-1c), and acetyl-CoA carboxylase production but elevated AMP-activated protein kinase, peroxisome proliferator-activated receptor-alpha (PPAR-α), and carnitine palmitoyltransferase 1 (CPT-1) levels. Taken together, FT is a promising hepatoprotectant for preventing of alcoholic fatty liver through modulating fatty acid synthesis and oxidation.


Assuntos
Fígado Gorduroso Alcoólico , Hepatopatia Gordurosa não Alcoólica , Animais , Curcuma , Citocromo P-450 CYP2E1/genética , Citocromo P-450 CYP2E1/metabolismo , Etanol/metabolismo , Fígado Gorduroso Alcoólico/tratamento farmacológico , Fígado Gorduroso Alcoólico/metabolismo , Fígado Gorduroso Alcoólico/prevenção & controle , Feminino , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo
13.
Arch Biochem Biophys ; 722: 109236, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35429444

RESUMO

Baicalin is a flavonoid compound abundant in multiple edible and medicinal plants such as Scutellaria baicalensis Georgi. In this study, we provide evidence to support the fact that baicalin ameliorates alcohol-induced hepatic steatosis via regulating SREBP1c elicited PNPLA3 competitive binding to ATGL. Results showed that baicalin significantly attenuated the development of metabolic disorders and hepatic steatosis in alcohol-induced rats after four weeks of treatment. It was evident that baicalin treatment significantly normalized the serous contents of hepatic triglyceride (TG), alanine aminotransferase (ALT), and aspartate aminotransferase (AST), and attenuated the increase of hepatic vacuolization and Oil Red O staining area caused by alcohol. Meanwhile, baicalin relieves alcohol-induced hepatic fibrosis by masson staining and RT-qPCR analysis. Mechanistically, alcohol aggravated the nuclear expression of SREBP1c, which contributed to the high expression of PNPLA3 and FASN, thereby enhancing the binding of PNPLA3 to ABHD5, and indirectly impairing the binding ability between ATGL and ABHD5, ultimately causing a decline in the hydrolysis capacity in liver lipid droplets. As expected, these alcohol-induced pathobolism were reversed by baicalin treatment both in vivo and in vitro. In conclusion, this study has demonstrated that baicalin can protect against alcohol-induced hepatic lipid accumulation by activating hepatic lipolysis via suppressing SREBP1c elicited PNPLA3 competitive binding to ATGL. Baicalin is a promising natural product for preventing alcohol-induced hepatic steatosis.


Assuntos
Fígado Gorduroso Alcoólico , Animais , Ligação Competitiva , Etanol/metabolismo , Fígado Gorduroso Alcoólico/tratamento farmacológico , Fígado Gorduroso Alcoólico/metabolismo , Flavonoides/metabolismo , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Fígado/metabolismo , Ratos , Proteína de Ligação a Elemento Regulador de Esterol 1/genética
14.
J Ethnopharmacol ; 292: 115225, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35341932

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The therapeutic properties of Hippophae rhamnoides L. were already known in ancient Greece as well as in Tibetan and Mongolian medicine. Modern studies have indicated that Hippophae rhamnoides L. fermentation liquid protected against alcoholic fatty liver disease (AFLD). However, the underlying mechanism of Hippophae rhamnoides L. flavonoids extract (HLF) treating AFLD remains elusive. AIM OF THE STUDY: This study aimed to investigate the hepatoprotective effect of HLF in mice with AFLD and the interaction between AFLD and gut microbiota. MATERIALS AND METHODS: Chemical constituents of HLF were analyzed by Liquid Chromatography-Ion Trap-ESI-Mass Spectrometry. The Hepatoprotective effect of HLF was evaluated in mice with AFLD induced by alcohol (six groups, n = 10) daily at doses of 0.1, 0.2, and 0.4 g/kg for 30 consecutive days. At the end of experiment, mice were sacrificed and the liver, serum and feces were harvested for analysis. The liver histological changes were observed by H&E staining and oil red O staining. Moreover, the alterations of fecal microflora were detected by 16S rRNA gene sequencing. The inflammatory related genes were determined by qRT-PCR and western blotting respectively. RESULTS: The results showed that the oral administration of HLF remarkably alleviated hepatic lipid accumulation by decreasing the levels of ALT, AST, TG and TC. The levels of TNF-α, TGF-ß, and IL-6 were also reduced after treatment with HLF. Meanwhile, the protein and mRNA expression of NF-kB p65, MAPK p38 and TAK-1 in the liver of mice with AFLD were all reduced by HLF compared with model group. Furthermore, the 16S rRNA gene sequencing analysis demonstrated that HLF treatment can help restore the imbalance of intestinal microbial ecosystem and reverse the changes in Fimicutes/Bacterodietes, Clostridiales, Lachnospiraceae, S24-7, and Prevotella in mice with AFLD. CONCLUSION: HLF can effectively ameliorate liver injury in mice with AFLD, and regulate the composition of gut microbiota. Its regulatory mechanism may be related to TAK1/p38MAPK/p65NF-κB pathway. This study may provide novel insights into the mechanism of HLF on AFLD and a basis for promising clinical usage.


Assuntos
Fígado Gorduroso Alcoólico , Microbioma Gastrointestinal , Hippophae , Animais , Ecossistema , Fígado Gorduroso Alcoólico/tratamento farmacológico , Fígado Gorduroso Alcoólico/metabolismo , Flavonoides/metabolismo , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Hippophae/química , Fígado , Camundongos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , RNA Ribossômico 16S/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
15.
Molecules ; 27(3)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35163881

RESUMO

Ampelopsis grossedentata (AG) is an ancient medicinal plant that is mainly distributed and used in southwest China. It exerts therapeutic effects, such as antioxidant, anti-diabetic, and anti-inflammatory activities, reductions in blood pressure and cholesterol and hepatoprotective effects. Researchers in China recently reported the anti-obesity effects of AG extract in diet-induced obese mice and rats. To verify these findings, we herein investigated the effects of AG extract and its principal compound, ampelopsin, in high-fat diet (HFD)- and alcohol diet-fed mice, olive oil-loaded mice, and differentiated 3T3-L1 cells. The results obtained showed that AG extract and ampelopsin significantly suppressed increases in the weights of body, livers and abdominal fat and also up-regulated the expression of carnitine palmitoyltransferase 1A in HFD-fed mice. In olive oil-loaded mice, AG extract and ampelopsin significantly attenuated increases in serum triglyceride (TG) levels. In differentiated 3T3-L1 cells, AG extract and ampelopsin promoted TG decomposition, which appeared to be attributed to the expression of hormone-sensitive lipase. In alcohol diet-fed mice, AG extract and ampelopsin reduced serum levels of ethanol, glutamic oxaloacetic transaminase (GOT), and glutamic pyruvic transaminase (GPT) and liver TG. An examination of metabolic enzyme expression patterns revealed that AG extract and ampelopsin mainly enhanced the expression of aldehyde dehydrogenase and suppressed that of cytochrome P450, family 2, subfamily e1. In conclusion, AG extract and ampelopsin suppressed diet-induced intestinal fat accumulation and reduced the risk of fatty liver associated with HFD and alcohol consumption.


Assuntos
Fármacos Antiobesidade/farmacologia , Dieta Hiperlipídica , Fígado Gorduroso Alcoólico/tratamento farmacológico , Flavonoides/farmacologia , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Extratos Vegetais/farmacologia , Chá/química , Células 3T3-L1 , Adiposidade , Animais , Antioxidantes/farmacologia , Fígado Gorduroso Alcoólico/etiologia , Fígado Gorduroso Alcoólico/metabolismo , Fígado Gorduroso Alcoólico/patologia , Metabolismo dos Lipídeos , Lipogênese , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Camundongos Obesos , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Obesidade/tratamento farmacológico , Obesidade/etiologia , Obesidade/metabolismo , Obesidade/patologia , Fitoterapia , Ratos , Ratos Sprague-Dawley
16.
Nutrients ; 13(12)2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34959999

RESUMO

In this study, we investigated the pharmacological effect of a water extract of Raphani Semen (RSWE) on alcoholic fatty liver disease (AFLD) using ethanol-induced AFLD mice (the NIAAA model) and palmitic acid (PA)-induced steatosis HepG2 cells. An RSWE supplement improved serum and hepatic triglyceride (TG) levels of AFLD mice, as well as their liver histological structure. To explore the molecular action of RSWE in the improvement of AFLD, we investigated the effect of RSWE on four major pathways for lipid homeostasis in the liver: free fatty acid transport, lipogenesis, lipolysis, and ß-oxidation. Importantly, RSWE decreased the mRNA expression of de novo lipogenesis-related genes, such as Srebf1, Cebpa, Pparg, and Lpin1, as well as the protein levels of these factors, in the liver of AFLD mice. That these actions of RSWE affect lipogenesis was confirmed using PA-induced steatosis HepG2 cells. Overall, our findings suggest that RSWE has the potential for improvement of AFLD by inhibiting de novo lipogenesis.


Assuntos
Fígado Gorduroso Alcoólico/tratamento farmacológico , Lipogênese/efeitos dos fármacos , Extratos Vegetais/farmacologia , Raphanus/química , Sementes/química , Animais , Etanol/efeitos adversos , Ácidos Graxos não Esterificados/metabolismo , Fígado Gorduroso Alcoólico/metabolismo , Células Hep G2 , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipólise/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oxirredução/efeitos dos fármacos , Ácido Palmítico/efeitos adversos , Fosfatidato Fosfatase/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Triglicerídeos/sangue
17.
Molecules ; 26(22)2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34834064

RESUMO

Alcohol is metabolized in liver. Chronic alcohol abuse results in alcohol-induced fatty liver and liver injury. Red quinoa (Chenopodium formosanum) was a traditional staple food for Taiwanese aborigines. Red quinoa bran (RQB) included strong anti-oxidative and anti-inflammatory polyphenolic compounds, but it was usually regarded as the agricultural waste. Therefore, this study is to investigate the effect of water and ethanol extraction products of RQB on the prevention of liquid alcoholic diet-induced acute liver injury in mice. The mice were given whole grain powder of red quinoa (RQ-P), RQB ethanol extract (RQB-E), RQB water extract (RQB-W), and rutin orally for 6 weeks, respectively. The results indicated that RQB-E, RQB-W, and rutin decreased alcoholic diet-induced activities of aspartate aminotransferase and alanine aminotransferase, and the levels of serum triglyceride, total cholesterol, and hepatic triglyceride. Hematoxylin and eosin staining of liver tissues showed that RQB-E and RQB-W reduced lipid droplet accumulation and liver injury. However, ethanol extraction process can gain high rutin and antioxidative agents contents from red quinoa, that showed strong effects in preventing alcoholic fatty liver disease and liver injury via increasing superoxide dismutase/catalase antioxidative system and repressing the expressions of fatty acid synthesis enzyme acetyl-CoA carboxylase.


Assuntos
Antioxidantes/uso terapêutico , Chenopodium quinoa , Fígado Gorduroso Alcoólico/prevenção & controle , Extratos Vegetais/uso terapêutico , Rutina/uso terapêutico , Animais , Antioxidantes/química , Chenopodium quinoa/química , Etanol/efeitos adversos , Ácidos Graxos/metabolismo , Fígado Gorduroso Alcoólico/etiologia , Fígado Gorduroso Alcoólico/metabolismo , Lipogênese/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/química , Rutina/química
18.
Nutrients ; 13(5)2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-34064981

RESUMO

Alcoholic liver disease (ALD) is one type of liver disease, causing a global healthcare problem and mortality. The liver undergoes tissue damage by chronic alcohol consumption because it is the main site for metabolism of ethanol. Chronic alcohol exposure progresses from alcoholic fatty liver (AFL) to alcoholic steatohepatitis (ASH), which further lead to fibrosis, cirrhosis, and even hepatocellular cancer. Therapeutic interventions to combat ALD are very limited such as use of corticosteroids. However, these therapeutic drugs are not effective for long-term usage. Therefore, additional effective and safe therapies to cope with ALD are urgently needed. Previous studies confirmed that edible food plants and their bioactive compounds exert a protective effect against ALD. In this review article, we summarized the hepatoprotective potential of edible food plants and their bioactive compounds. The underlying mechanism for the prevention of ALD by edible food plants was as follows: anti-oxidation, anti-inflammation, lipid regulation, inhibition of apoptosis, gut microbiota composition modulation, and anti-fibrosis.


Assuntos
Hepatopatias Alcoólicas/terapia , Plantas Comestíveis/química , Polifenóis/uso terapêutico , Substâncias Protetoras/uso terapêutico , Consumo de Bebidas Alcoólicas , Animais , Etanol/efeitos adversos , Etanol/metabolismo , Fígado Gorduroso Alcoólico/metabolismo , Fígado Gorduroso Alcoólico/terapia , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Hepatopatias Alcoólicas/metabolismo , Neoplasias Hepáticas , Compostos Fitoquímicos/química , Compostos Fitoquímicos/uso terapêutico , Extratos Vegetais/uso terapêutico , Substâncias Protetoras/química
19.
Oxid Med Cell Longev ; 2021: 5188205, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35003517

RESUMO

Alcoholic fatty liver disease (AFLD) is a common chronic liver disease and has become a critical global public health problem. Green tea is a popular drink worldwide and contains several bioactive compounds. Different green teas could contain diverse compounds and possess distinct bioactivities. In the present study, the effects of 10 green teas on chronic alcohol induced-fatty liver disease in mice were explored and compared. The results showed that several green teas significantly reduced triacylglycerol levels in serum and liver as well as the aminotransferase activities in mice at a dose of 200 mg/kg, suggesting that they possess hepatoprotective effects. Moreover, several green teas remarkably decreased the expression of cytochrome P450 2E1, the levels of malondialdehyde and 4-hydroxynonenoic acid, and the contents of proinflammatory cytokines, indicating that they could alleviate oxidation damage and inflammation induced by chronic alcohol exposure. In addition, Seven Star Matcha Tea and Selenium-Enriched Matcha Tea could increase glutathione level. Furthermore, the main phytochemical components in green teas were determined and quantified by high-performance liquid chromatography, and the correlation analysis showed that gallic acid, gallocatechin, catechin, chlorogenic acid, and epigallocatechin gallate might at least partially contribute to protective effects on AFLD. In conclusion, Selenium-Enriched Chaoqing Green Tea, Xihu Longjing Tea, Taiping Houkui Tea, and Selenium-Enriched Matcha Tea showed the strongest preventive effects on AFLD. This research also provides the public with new insights about the effects of different green teas on AFLD.


Assuntos
Doença Crônica/tratamento farmacológico , Fígado Gorduroso Alcoólico/tratamento farmacológico , Inflamação/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/química , Chá/química , Animais , Fígado Gorduroso Alcoólico/patologia , Humanos , Masculino , Camundongos
20.
Biomed Pharmacother ; 134: 111121, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33341668

RESUMO

Exessive drinking is commonly associated with a wide spectrum of liver injuries. The term alcoholic liver disease (ALD) is generally used to refer to this spectrum of hepatic abnormalities, and the term hepatic steatosis denotes early lesions. Puerariae Lobatae Radix (PLR) is a common traditional Chinese medicine and has been widely used as an efficient treatment for alcohol-induced damage. Flavonoids are the principal components of PLR that could potentially be responsible for the activation of alcohol metabolism and lipid-lowering effects. However, little is known about the mechanisms underlying their activity against alcoholic injury. In this study, PLR flavonoids (PLF) were obtained by microwave extraction. A 2% ethanol solution was used to establish a model of alcoholic fatty liver disease by exposure of zebrafish larvae for 32 h, and then the zebrafish were administered PLF and puerarin. The results showed that PLF and puerarin significantly decreased lipid accumulation and the levels of total cholesterol and triglycerides in zebrafish larvae. Moreover, PLF and puerarin downregulated the expression of genes related to alcohol and lipid metabolism (CYP2y3, CYP3a65, ADH8a, ADH8b, HMGCRB, and FASN), endoplasmic reticulum stress, and DNA damage (CHOP, EDEM1, GADD45αa, and ATF6) and reduced levels of inflammatory factors (IL-1ß, TNF-α) in zebrafish larvae. PLF and puerarin increased the phosphorylation of AMP-activated protein kinase-α (AMPKα) and decreased the total protein level of ACC1. The findings suggested that PLF and puerarin alleviated alcohol-induced hepatic steatosis in zebrafish larvae by regulating alcohol and lipid metabolism, which was closely related to the regulation of the AMPKα-ACC signaling pathway. In conclusion, the study provided a possible therapeutic drug for ALD treatment.


Assuntos
Etanol/metabolismo , Fígado Gorduroso Alcoólico/prevenção & controle , Flavonoides/farmacologia , Isoflavonas/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Pueraria , Proteínas Quinases Ativadas por AMP/metabolismo , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo , Animais , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Fígado Gorduroso Alcoólico/metabolismo , Fígado Gorduroso Alcoólico/patologia , Flavonoides/isolamento & purificação , Regulação Enzimológica da Expressão Gênica , Mediadores da Inflamação/metabolismo , Isoflavonas/isolamento & purificação , Fígado/metabolismo , Fígado/patologia , Pueraria/química , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA