Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Infect Immun ; 91(6): e0005923, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37184383

RESUMO

Histoplasma capsulatum yeasts reside and proliferate within the macrophage phagosome during infection. This nutrient-depleted phagosomal environment imposes challenges to Histoplasma yeasts for nutrition acquisition. Histoplasma yeasts require all 20 amino acids, which can be formed by de novo biosynthesis and/or acquired directly from the phagosomal environment. We investigated how Histoplasma obtains aromatic amino acids (i.e., phenylalanine, tyrosine, and tryptophan) within the phagosome during infection of macrophages. Depletion of key enzymes of the phenylalanine or tyrosine biosynthetic pathway neither impaired Histoplasma's ability to proliferate within macrophages nor resulted in attenuated virulence in vivo. However, loss of tryptophan biosynthesis resulted in reduced growth within macrophages and severely attenuated virulence in vivo. Together, these results indicate that phenylalanine and tyrosine, but not tryptophan, are available to Histoplasma within the macrophage phagosome. The herbicide glyphosate, which targets 5-enolpyruvylshikimate-3-phosphate synthase of the aromatic amino acid biosynthetic pathway, inhibited Histoplasma yeast growth, and this growth inhibition was partially reversed by aromatic amino acid supplementation or overexpression of ARO1. These results suggest that the aromatic amino acid biosynthetic pathway is a candidate drug target to develop novel antifungal therapeutics.


Assuntos
Histoplasma , Histoplasmose , Macrófagos/microbiologia , Fagossomos/microbiologia , Tirosina/metabolismo , Aminoácidos Aromáticos/metabolismo , Histoplasmose/metabolismo
2.
mBio ; 12(3): e0108821, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34060333

RESUMO

ATP/ADP depicts the bioenergetic state of Mycobacterium tuberculosis (Mtb). However, the metabolic state of Mtb during infection remains poorly defined due to the absence of appropriate tools. Perceval HR (PHR) was recently developed to measure intracellular ATP/ADP levels, but it cannot be employed in mycobacterial cells due to mycobacterial autofluorescence. Here, we reengineered the ATP/ADP sensor Perceval HR into PHR-mCherry to analyze ATP/ADP in fast- and slow-growing mycobacteria. ATP/ADP reporter strains were generated through the expression of PHR-mCherry. Using the Mtb reporter strain, we analyzed the changes in ATP/ADP levels in response to antimycobacterial agents. As expected, bedaquiline induced a decrease in ATP/ADP. Interestingly, the transcriptional inhibitor rifampicin led to the depletion of ATP/ADP levels, while the cell wall synthesis inhibitor isoniazid did not affect the ATP/ADP levels in Mtb. The usage of this probe revealed that Mtb faces depletion of ATP/ADP levels upon phagocytosis. Furthermore, we observed that the activation of macrophages with interferon gamma and lipopolysaccharides leads to metabolic stress in intracellular Mtb. Examination of the bioenergetics of mycobacteria residing in subvacuolar compartments of macrophages revealed that the bacilli residing in phagolysosomes and autophagosomes have significantly less ATP/ADP than the bacilli residing in phagosomes. These observations indicate that phagosomes represent a niche for metabolically active Mtb, while autophagosomes and phagolysosomes harbor metabolically quiescent bacilli. Interestingly, even in activated macrophages, Mtb residing in phagosomes remains metabolically active. We further observed that macrophage activation affects the metabolic state of intracellular Mtb through the trafficking of Mtb from phagosomes to autophagosomes and phagolysosomes. IMPORTANCE ATP/ADP levels guide bacterial cells, whether to replicate or to enter nonreplicating persistence. However, tools for measuring ATP/ADP levels with spatiotemporal resolution are lacking. Here, we describe a method for tracking ATP/ADP levels at the single-cell and population levels. Using this tool, we have demonstrated that the transcription inhibitor rifampicin induces metabolic stress. In contrast, the cell wall synthesis inhibitor isoniazid does not alter the metabolic state of the bacilli, suggesting that transcription is tightly intertwined with metabolism, while cell wall synthesis is not. Furthermore, we analyzed the metabolic state of mycobacteria residing in different compartments of macrophages. We observed that Mtb cells residing inside phagosomes have healthy ATP/ADP levels. In contrast, the bacteria residing inside phagolysosomes and autophagosomes face depletion of ATP. Interestingly, the activation of macrophages facilitates the trafficking of mycobacterial cells from metabolism-conducive phagosomes to metabolism-averse phagolysosomes and autophagosomes. We believe that this tool holds the key to the identification of inhibitors of mycobacterial metabolism.


Assuntos
Metabolismo Energético , Macrófagos/microbiologia , Mycobacterium tuberculosis/metabolismo , Fagossomos/microbiologia , Difosfato de Adenosina/análise , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/análise , Trifosfato de Adenosina/metabolismo , Antibióticos Antituberculose/farmacologia , Autofagossomos/microbiologia , Humanos , Isoniazida/farmacologia , Mycobacterium tuberculosis/genética , Rifampina/farmacologia , Estresse Fisiológico/efeitos dos fármacos
3.
Cell Microbiol ; 22(1): e13129, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31652367

RESUMO

Phagocytic cells ingest bacteria by phagocytosis and kill them efficiently inside phagolysosomes. The molecular mechanisms involved in intracellular killing and their regulation are complex and still incompletely understood. Dictyostelium discoideum has been used as a model to discover and to study new gene products involved in intracellular killing of ingested bacteria. In this study, we performed random mutagenesis of Dictyostelium cells and isolated a mutant defective for growth on bacteria. This mutant is characterized by the genetic inactivation of the lrrkA gene, which encodes a protein with a kinase domain and leucine-rich repeats. LrrkA knockout (KO) cells kill ingested Klebsiella pneumoniae bacteria inefficiently. This defect is not additive to the killing defect observed in kil2 KO cells, suggesting that the function of Kil2 is partially controlled by LrrkA. Indeed, lrrkA KO cells exhibit a phenotype similar to that of kil2 KO cells: Intraphagosomal proteolysis is inefficient, and both intraphagosomal killing and proteolysis are restored upon exogenous supplementation with magnesium ions. Bacterially secreted folate stimulates intracellular killing in Dictyostelium cells, but this stimulation is lost in cells with genetic inactivation of kil2, lrrkA, or far1. Together, these results indicate that the stimulation of intracellular killing by folate involves Far1 (the cell surface receptor for folate), LrrkA, and Kil2. This study is the first identification of a signalling pathway regulating intraphagosomal bacterial killing in Dictyostelium cells.


Assuntos
Dictyostelium/enzimologia , Ácido Fólico/metabolismo , Fagossomos/microbiologia , Fosfotransferases/metabolismo , Proteínas de Protozoários/metabolismo , Transdução de Sinais , Dictyostelium/genética , Dictyostelium/microbiologia , Regulação Bacteriana da Expressão Gênica , Espaço Intracelular/microbiologia , Klebsiella pneumoniae/metabolismo , Leucina/química , Fagocitose , Fosfotransferases/genética , Domínios Proteicos , Proteínas de Protozoários/genética
4.
Nature ; 527(7578): 323-8, 2015 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-26536114

RESUMO

Staphylococcus aureus is considered to be an extracellular pathogen. However, survival of S. aureus within host cells may provide a reservoir relatively protected from antibiotics, thus enabling long-term colonization of the host and explaining clinical failures and relapses after antibiotic therapy. Here we confirm that intracellular reservoirs of S. aureus in mice comprise a virulent subset of bacteria that can establish infection even in the presence of vancomycin, and we introduce a novel therapeutic that effectively kills intracellular S. aureus. This antibody-antibiotic conjugate consists of an anti-S. aureus antibody conjugated to a highly efficacious antibiotic that is activated only after it is released in the proteolytic environment of the phagolysosome. The antibody-antibiotic conjugate is superior to vancomycin for treatment of bacteraemia and provides direct evidence that intracellular S. aureus represents an important component of invasive infections.


Assuntos
Antibacterianos/farmacologia , Bacteriemia , Imunoconjugados/farmacologia , Imunoconjugados/uso terapêutico , Espaço Intracelular/microbiologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/efeitos dos fármacos , Vancomicina/farmacologia , Animais , Antibacterianos/uso terapêutico , Bacteriemia/tratamento farmacológico , Bacteriemia/microbiologia , Portador Sadio/tratamento farmacológico , Portador Sadio/microbiologia , Desenho de Fármacos , Feminino , Imunoconjugados/química , Espaço Intracelular/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Camundongos , Testes de Sensibilidade Microbiana , Fagossomos/efeitos dos fármacos , Fagossomos/metabolismo , Fagossomos/microbiologia , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/patologia , Staphylococcus aureus/patogenicidade , Vancomicina/uso terapêutico
5.
Mol Cell Proteomics ; 14(4): 870-81, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25616868

RESUMO

Upon entry into mammalian host cells, the pathogenic bacterium Francisella must import host cell arginine to multiply actively in the host cytoplasm. We identified and functionally characterized an arginine transporter (hereafter designated ArgP) whose inactivation considerably delayed bacterial phagosomal escape and intracellular multiplication. Intramacrophagic growth of the ΔargP mutant was fully restored upon supplementation of the growth medium with excess arginine, in both F. tularensis subsp. novicida and F. tularensis subsp. holarctica LVS, demonstrating the importance of arginine acquisition in these two subspecies. High-resolution mass spectrometry revealed that arginine limitation reduced the amount of most of the ribosomal proteins in the ΔargP mutant. In response to stresses such as nutritional limitation, repression of ribosomal protein synthesis has been observed in all kingdoms of life. Arginine availability may thus contribute to the sensing of the intracellular stage of the pathogen and to trigger phagosomal egress. All MS data have been deposited in the ProteomeXchange database with identifier PXD001584 (http://proteomecentral.proteomexchange.org/dataset/PXD001584).


Assuntos
Arginina/metabolismo , Francisella/metabolismo , Interações Hospedeiro-Patógeno , Fagossomos/microbiologia , Proteínas Ribossômicas/metabolismo , Animais , Autofagia , Proteínas de Bactérias/metabolismo , Vacinas Bacterianas/imunologia , Análise por Conglomerados , Citosol/metabolismo , Feminino , Francisella/patogenicidade , Macrófagos/metabolismo , Macrófagos/microbiologia , Macrófagos/ultraestrutura , Proteínas de Membrana Transportadoras/metabolismo , Camundongos Endogâmicos BALB C , Viabilidade Microbiana , Modelos Biológicos , Mutação/genética , Fagossomos/metabolismo , Fagossomos/ultraestrutura , Transporte Proteico , Proteoma/metabolismo , Estresse Fisiológico , Frações Subcelulares/metabolismo , Virulência
6.
Cell Microbiol ; 16(3): 434-49, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24134488

RESUMO

In order to develop a successful infectious cycle, intracellular bacterial pathogens must be able to adapt their metabolism to optimally utilize the nutrients available in the cellular compartments and tissues where they reside. Francisella tularensis, the agent of the zoonotic disease tularaemia, is a highly infectious bacterium for a large number of animal species. This bacterium replicates in its mammalian hosts mainly in the cytosol of infected macrophages. We report here the identification of a novel amino acid transporter of the major facilitator superfamily of secondary transporters that is required for bacterial intracellular multiplication and systemic dissemination. We show that inactivation of this transporter does not affect phagosomal escape but prevents multiplication in the cytosol of all cell types tested. Remarkably, the intracellular growth defect of the mutant was fully and specifically reversed by addition of asparagine or asparagine-containing dipeptides as well as by simultaneous addition of aspartic acid and ammonium. Importantly, bacterial virulence was also restored in vivo, in the mouse model, by asparagine supplementation. This work unravels thus, for the first time, the importance of asparagine for cytosolicmultiplication of Francisella. Amino acid transporters are likely to constitute underappreciated players in bacterial intracellular parasitism.


Assuntos
Sistemas de Transporte de Aminoácidos/genética , Asparagina/metabolismo , Proteínas de Bactérias/genética , Francisella tularensis/crescimento & desenvolvimento , Compostos de Amônio/farmacologia , Animais , Asparagina/farmacologia , Ácido Aspártico/metabolismo , Ácido Aspártico/farmacologia , Proteínas de Bactérias/farmacocinética , Linhagem Celular Tumoral , Francisella tularensis/metabolismo , Francisella tularensis/patogenicidade , Células Hep G2 , Humanos , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Fagossomos/microbiologia , Tularemia/microbiologia
7.
J Antimicrob Chemother ; 68(11): 2576-86, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23798672

RESUMO

OBJECTIVES: The ability to target conventional drugs efficiently inside cells to kill intraphagosomal bacteria has been a major hurdle in treatment of infective diseases. We aimed to develop an efficient drug delivery system for combating infection caused by Salmonella, a well-known intracellular and intraphagosomal pathogen. Chitosan-dextran sulphate (CD) nanocapsules were assessed for their efficiency in delivering drugs against Salmonella. METHODS: The CD nanocapsules were prepared using the layer-by-layer method and loaded with ciprofloxacin or ceftriaxone. Antibiotic-loaded nanocapsules were analysed in vitro for their ability to enter epithelial and macrophage cells to kill Salmonella. In vivo pharmacokinetics and organ distribution studies were performed to check the efficiency of the delivery system. The in vivo antibacterial activity of free antibiotic and antibiotic loaded into nanocapsules was tested in a murine salmonellosis model. RESULTS: In vitro and in vivo experiments showed that this delivery system can be used effectively to clear Salmonella infection. CD nanocapsules were successfully employed for efficient targeting and killing of the intracellular pathogen at a dosage significantly lower than that of the free antibiotic. The increased retention time of ciprofloxacin in the blood and organs when it was delivered by CD nanocapsules compared with the conventional routes of administration may be the reason underlying the requirement for a reduced dosage and frequency of antibiotic administration. CONCLUSIONS: CD nanocapsules can be used as an efficient drug delivery system to treat intraphagosomal pathogens, especially Salmonella infection. This delivery system might be used effectively for other vacuolar pathogens including Mycobacteria, Brucella and Legionella.


Assuntos
Antibacterianos/metabolismo , Quitosana/metabolismo , Ciprofloxacina/metabolismo , Sulfato de Dextrana/metabolismo , Sistemas de Liberação de Medicamentos , Nanocápsulas/administração & dosagem , Salmonella/efeitos dos fármacos , Animais , Antibacterianos/farmacocinética , Linhagem Celular , Quitosana/farmacocinética , Ciprofloxacina/farmacocinética , Sulfato de Dextrana/farmacocinética , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Fagossomos/metabolismo , Fagossomos/microbiologia , Salmonelose Animal/tratamento farmacológico , Resultado do Tratamento
8.
J Immunol ; 189(8): 4069-78, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22988030

RESUMO

The mechanisms that regulate the acidification of intracellular compartments are key to host defense against pathogens. In this paper, we demonstrate that Abl tyrosine kinase, a master switch for cell growth and trafficking of intracellular organelles, controls the acidification of lysosomes in human macrophages. Pharmacological inhibition by imatinib and gene silencing of Abelson (Abl) tyrosine kinase reduced the lysosomal pH in human macrophages by increasing the transcription and expression of the proton pumping enzyme vacuolar-type H(+)-adenosine triphosphatase. Because lysosomal acidification is required for antimicrobial activity against intracellular bacteria, we determined the effect of imatinib on the growth of the major human pathogen Mycobacterium tuberculosis. Imatinib limited the multiplication of M. tuberculosis, and growth restriction was dependent on acidification of the mycobacterial compartment. The effects of imatinib were also active in vivo because circulating monocytes from imatinib-treated leukemia patients were more acidic than monocytes from control donors. Importantly, sera from imatinib-treated patients triggered acidification and growth restriction of M. tuberculosis in macrophages. In summary, our results identify the control of phagosomal acidification as a novel function of Abl tyrosine kinase and provide evidence that the regulation occurs on the level of the vacuolar-type H(+)-adenosine triphosphatase. Given the efficacy of imatinib in a mouse model of tuberculosis and our finding that orally administered imatinib increased the ability of human serum to trigger growth reduction of intracellular M. tuberculosis, clinical evaluation of imatinib as a complementary therapy of tuberculosis, in particular multidrug or extremely drug-resistant disease, is warranted.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/microbiologia , Mycobacterium tuberculosis/imunologia , Fagossomos/imunologia , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Benzamidas , Células Cultivadas , Proteínas do Citoesqueleto , Humanos , Concentração de Íons de Hidrogênio , Mesilato de Imatinib , Macrófagos Alveolares/metabolismo , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/crescimento & desenvolvimento , Fagossomos/efeitos dos fármacos , Fagossomos/microbiologia , Piperazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/imunologia , Pirimidinas/farmacologia
9.
Cell Immunol ; 259(1): 1-4, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19560127

RESUMO

CpG oligodeoxynucleotides have been previously shown to enhance antimycobacterial response in human monocytes/macrophages. The present study reports evidences showing the capability of CpG oligodeoxynucleotides to induce (i) host phospholipase D (PLD) activation, (ii) PLD dependent reactive oxygen intermediate production, (iii) PLD dependent phagolysosome maturation and (iv) PLD dependent intracellular mycobacterial killing in type II alveolar epithelial cells. These are the first evidences showing that alveolar epithelial cells may represent efficient effecter cells during primary innate antimycobacterial immune response.


Assuntos
Adjuvantes Imunológicos/farmacologia , Mycobacterium tuberculosis/imunologia , Oligodesoxirribonucleotídeos/farmacologia , Fosfolipase D/efeitos dos fármacos , Alvéolos Pulmonares/efeitos dos fármacos , Mucosa Respiratória/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Fagossomos/efeitos dos fármacos , Fagossomos/enzimologia , Fagossomos/microbiologia , Fosfolipase D/biossíntese , Alvéolos Pulmonares/imunologia , Alvéolos Pulmonares/microbiologia , Mucosa Respiratória/imunologia , Mucosa Respiratória/microbiologia
10.
Infect Immun ; 72(6): 3524-30, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15155660

RESUMO

A recent study demonstrated that polyclonal antibodies to Rickettsia conorii and monoclonal antibodies to outer membrane proteins A (OmpA) and B (OmpB) provided effective, Fc-dependent, passive immunity, even in severe combined immunodeficient mice with an established infection. In order to determine the mechanism of protection, mouse endothelial and macrophage-like cell lines were infected with R. conorii that had been exposed to polyclonal antibodies, monoclonal antibodies to OmpA or OmpB, Fab fragments of the polyclonal antibodies, or normal serum or that were left untreated. At 0 h, Fc-dependent antibody enhancement of R. conorii adherence to endothelial and macrophage-like cell lines was inhibited by the presence of normal serum, suggesting Fc receptor-mediated adherence of opsonized rickettsiae. At 3 h, the opsonized rickettsiae had been internalized. After 72 h, inhibited survival of rickettsiae exposed to polyclonal antibodies or monoclonal antibodies to OmpA or OmpB was evident compared with growth of untreated and normal serum-treated and polyclonal Fab antibody-treated R. conorii. Polyclonal antibodies and an anti-OmpB monoclonal antibody inhibited the escape of R. conorii from the phagosome, resulting in intraphagolysosomal rickettsial death. At 48 h of infection, rickettsicidal activity of macrophages by opsonized rickettsiae was inhibited by NG-monomethyl-L-arginine, superoxide dismutase, mannitol, or supplemental L-tryptophan, and endothelial rickettsicidal activity against opsonized rickettsiae was inhibited by NG-monomethyl-L-arginine, superoxide dismutase, catalase, or supplemental L-tryptophan. Thus, Fc-dependent antibodies protected against R. conorii infection of endothelium and macrophages by opsonization that inhibited phagosomal escape and resulted in phagolysosomal killing mediated by nitric oxide, reactive oxygen intermediates, and L-tryptophan starvation.


Assuntos
Anticorpos Antibacterianos/farmacologia , Anticorpos Monoclonais/farmacologia , Células Endoteliais/microbiologia , Macrófagos/microbiologia , Infecções por Rickettsia/prevenção & controle , Rickettsia conorii/patogenicidade , Animais , Anticorpos Antibacterianos/imunologia , Anticorpos Monoclonais/imunologia , Aderência Bacteriana , Proteínas da Membrana Bacteriana Externa/imunologia , Linhagem Celular , Chlorocebus aethiops , Citosol/microbiologia , Células Endoteliais/imunologia , Macrófagos/imunologia , Camundongos , Proteínas Opsonizantes/metabolismo , Fagossomos/microbiologia , Receptores Fc/metabolismo , Infecções por Rickettsia/imunologia , Rickettsia conorii/efeitos dos fármacos , Rickettsia conorii/crescimento & desenvolvimento , Rickettsia conorii/fisiologia , Células Vero
11.
Mol Biol Cell ; 14(8): 3366-77, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12925769

RESUMO

Many mycobacteria are intramacrophage pathogens that reside within nonacidified phagosomes that fuse with early endosomes but do not mature to phagolysosomes. The mechanism by which mycobacteria block this maturation process remains elusive. To gain insight into whether fusion with early endosomes is required for mycobacteria-mediated inhibition of phagosome maturation, we investigated how perturbing the GTPase cycles of Rab5 and Rab7, GTPases that regulate early and late endosome fusion, respectively, would affect phagosome maturation. Retroviral transduction of the constitutively activated forms of both GTPases into primary murine macrophages had no effect on Mycobacterium avium retention in an early endosomal compartment. Interestingly, expression of dominant negative Rab5, Rab5(S34N), but not dominant negative Rab7, resulted in a significant increase in colocalization of M. avium with markers of late endosomes/lysosomes and increased mycobacterial killing. This colocalization was specific to mycobacteria since Rab5(S34N) expressing cells showed diminished trafficking of endocytic tracers to lysosomes. We further demonstrated that maturation of M. avium phagosomes was halted in Rab5(S34N) expressing macrophages supplemented with exogenous iron. These findings suggest that fusion with early endosomes is required for mycobacterial retention in early phagosomal compartments and that an inadequate supply of iron is one factor in mycobacteria's inability to prevent the normal maturation process in Rab5(S34N)-expressing macrophages.


Assuntos
Células da Medula Óssea/metabolismo , Ferro/metabolismo , Macrófagos/citologia , Mycobacterium avium/metabolismo , Fagossomos/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo , Animais , Células da Medula Óssea/microbiologia , Células Cultivadas , Clonagem Molecular , Endossomos/metabolismo , Endossomos/microbiologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Mutação/genética , Fagossomos/microbiologia , Vesículas Transportadoras , Proteínas rab de Ligação ao GTP/genética , Proteínas rab5 de Ligação ao GTP/genética
12.
Curr Opin Microbiol ; 3(4): 349-53, 2000 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-10972492

RESUMO

The antimalarial drug chloroquine accumulates inside the macrophage phagolysosome by ion trapping where it exerts potent antifungal activity against Histoplasma capsulatum and Cryptococcus neoformans by distinct mechanisms. Chloroquine inhibits growth of H. capsulatum by pH-dependent iron deprivation, whereas it is directly toxic to C. neoformans. Clearly, clinical studies are required to document the potential therapeutic efficacy of chloroquine or related congeners as adjuvant therapy in fungal disease. Moreover, the diversity of pathogenic microorganisms inhibited and/or killed by chloroquine makes this drug an attractive candidate for prophylactic therapy.


Assuntos
Antifúngicos/farmacologia , Cloroquina/farmacologia , Cryptococcus neoformans/efeitos dos fármacos , Histoplasma/efeitos dos fármacos , Fagossomos/efeitos dos fármacos , Animais , Criptococose/tratamento farmacológico , Criptococose/microbiologia , Histoplasmose/tratamento farmacológico , Histoplasmose/microbiologia , Humanos , Concentração de Íons de Hidrogênio , Ferro/metabolismo , Camundongos , Fagossomos/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA