RESUMO
Appropriate light intensity is favorable for the photosynthesis, biomass accumulation, key enzyme activity, and secondary metabolite synthesis of medicinal plants. This study aims to explore the influence of light intensity on growth and quality of Panax quinquefolius. To be specific, sand culture experiment was carried out in a greenhouse under the light intensity of 40, 80, 120, and 160 µmol·m~(-2)·s~(-1), respectively. The growth indexes, photosynthetic characteristics, content of 6 ginsenosides of the 3-year-old P. quinquefolius were determined, and the expression of ginsenoside synthesis-related enzyme genes in leaves, main roots, and fibrous roots was determined. The results showed that the P. quinquefolius growing at 80 µmol·m~(-2)·s~(-1) light intensity had the most biomass and the highest net photosynthetic rate. The total biomass of P. quinquefolius treated with 120 µmol·m~(-2)·s~(-1) light intensity was slightly lower than that with 80 µmol·m~(-2)·s~(-1). The root-to-shoot ratio in the treatment with 120 µmol·m~(-2)·s~(-1) light intensity was up to 6.86, higher than those in other treatments(P<0.05),and the ginsenoside content in both aboveground and underground parts of P. quinquefolius in this treatment was the highest, which was possibly associated with the high expression of farnesylpyrophosphate synthase(FPS), squalene synthase(SQS), squalene epoxidase(SQE), oxidosqualene cyclase(OSC), dammarenediol-â ¡ synthase(DS), and P450 genes in leaves and SQE and DS genes in main roots. In addition, light intensities of 120 and 160 µmol·m~(-2)·s~(-1) could promote PPD-type ginsenoside synthesis in leaves by triggering up-regulation of the expression of upstream ginsenoside synthesis genes. The decrease in underground biomass accumulation of the P. quinquefolius grown under weak light(40 µmol·m~(-2)·s~(-1)) and strong light(160 µmol·m~(-2)·s~(-1)) was possibly attributed to the low net photosynthetic rate, stomatal conductance, and transpiration rate in leaves. In the meantime, the low expression of SQS, SQE, OSC, and DS genes in the main roots might led to the decrease in ginsenoside content. However, there was no significant correlation between the ginsenoside content and the expression of synthesis-related genes in the fibrous roots of P. quinquefolius. Therefore, the light intensity of 80 and 120 µmol·m~(-2)·s~(-1) is beneficial to improving yield and quality of P. quinquefolius. The above findings contributed to a theoretical basis for reasonable shading in P. quinquefolius cultivation, which is of great significance for improving the yield and quality of P. quinquefolius through light regulation.
Assuntos
Ginsenosídeos , Panax , Farnesil-Difosfato Farnesiltransferase/metabolismo , Panax/metabolismo , Raízes de Plantas/metabolismo , Areia , Esqualeno Mono-OxigenaseRESUMO
Paris polyphylla Smith var. yunnanensis (Franch.) Hand. - Mazz. is a precious traditional Chinese medicine, and steroidal saponins are its major bioactive constituents possessing extensive biological activities. Squalene synthase (SQS) catalyzes the first dedicated step converting two molecular of farnesyl diphosphate (FDP) into squalene, a key intermediate in the biosynthetic pathway of steroidal saponins. In this study, a squalene synthase gene (PpSQS1) was cloned and functionally characterized from P. polyphylla var. yunnanensis, representing the first identified SQS from the genus Paris. The open reading frame of PpSQS1 is 1239â bp, which encodes a protein of 412 amino acids showing high similarity to those of other plant SQSs. Expression of PpSQS1 in Escherichia coli resulted in production of soluble recombinant proteins. Gas chromatography-mass spectrometry analysis showed that the purified recombinant PpSQS1 protein could produce squalene using FDP as a substrate in the inâ vitro enzymatic assay. qRT-PCR analysis indicated that PpSQS1 was highly expressed in rhizomes, consistent with the dominant accumulation of steroidal saponins there, suggesting that PpSQS1 is likely involved in the biosynthesis of steroidal saponins in the plant. The findings lay a foundation for further investigation on the biosynthesis and regulation of steroidal saponins, and also provide an alternative gene for manipulation of steroid production using synthetic biology.
Assuntos
Farnesil-Difosfato Farnesiltransferase/metabolismo , Melanthiaceae/enzimologia , Clonagem Molecular , Farnesil-Difosfato Farnesiltransferase/genética , Medicina Tradicional Chinesa , Alinhamento de Sequência , Análise de Sequência de ProteínaRESUMO
Farnesyl-diphosphate farnesyltransferase 1 (FDFT1, squalene synthase), a membrane-associated enzyme, synthesizes squalene via condensation of two molecules of farnesyl pyrophosphate. Accumulating evidence has noted that FDFT1 plays a critical role in cancer, particularly in metabolic reprogramming, cell proliferation, and invasion. Based on these advances in our knowledge, FDFT1 could be a potential target for cancer treatment. This review focuses on the contribution of FDFT1 to the hallmarks of cancer, and further, we discuss the applicability of FDFT1 as a cancer prognostic marker and target for anticancer therapy.
Assuntos
Suscetibilidade a Doenças , Farnesil-Difosfato Farnesiltransferase/genética , Neoplasias/etiologia , Neoplasias/metabolismo , Microambiente Tumoral , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Colesterol/metabolismo , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Farnesil-Difosfato Farnesiltransferase/antagonistas & inibidores , Farnesil-Difosfato Farnesiltransferase/metabolismo , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Relação Estrutura-Atividade , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/genéticaRESUMO
Non-alcoholic fatty liver disease (NAFLD) is a progressive and chronic liver disease. No effective drug is currently approved for the treatment of NAFLD. Traditionally it is thought that pathogenesis of NAFLD develops from some imbalance in lipid control, thereby leading to hepatotoxicity and disease development. Squalene synthase (SQS), encoded by FDFT1, is a key regulator in cholesterol synthesis and thus a potential target for the treatment of NAFLD. Here we could identify bavachinin, a component from traditional Chinese medicine Fructus Psoraleae (FP), which apparently protects HepaRG cells from palmitic acid induced death, suppressing lipid accumulation and cholesterol synthesis through inhibition of FDFT1 through the AKT/mTOR/SREBP-2 pathway. Over-expression of FDFT1 abolished bavachinin (BVC) -induced inhibition of cholesterol synthesis. The data presented here suggest that bavachinin acts as a cholesterol synthesis enzyme inhibitor, and might serve as a drug for treating NAFLD in the future.
Assuntos
Anticolesterolemiantes/farmacologia , Colesterol/biossíntese , Farnesil-Difosfato Farnesiltransferase/antagonistas & inibidores , Flavonoides/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Transformada , Farnesil-Difosfato Farnesiltransferase/metabolismo , Humanos , Lipogênese/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/enzimologia , Fígado/lesões , Ácido Palmítico/efeitos adversos , Transdução de Sinais/efeitos dos fármacos , Transcriptoma/efeitos dos fármacosRESUMO
Tea contains high quantities and diverse types of triterpenoids, particularly in the form of saponins. However, little is yet known about the molecular basis of triterpenoid biosynthesis in tea plant. Here we report on isolation and functional analysis of squalene synthase (SQS) gene from tea plant (Camellia sinensis var. sinensis), which controls the biosynthesis of triterpenoids precursor. First, a full-length cDNA of squalene synthase, designated CsSQS, was isolated from tea plant. The protein is highly homologous to SQSs from other plants. Using CsSQS-reporter assays, CsSQS was demonstrated to be endoplasmic reticulum membrane-bound. The coding region of CsSQS excluding transmemberane sequence was expressed in Escherichia coli. Recombinant CsSQS catalyzed the formation of squalene using farnesyl-pyrophosphate (FPP) as substrate with NADPH and Mg2+. In tea plant leaves, CsSQS expression was significantly induced by both herbivore and mechanical damages. Consistent with the stronger induction of CsSQS expression by mechanical damage than herbivory, tea plants injured mechanically released squalene as a volatile compound, which however was not detected from herbivore-damaged tea plants. Furthermore, it was found that the flowers of another tea plant cultivar Camellia sinensis var. assamica contain higher concentrations of squalene than the cultivar sinensis, indicating variations among tea plant varieties. With the identification and molecular characterization of squalene synthase in tea plant, next, we can ask the questions about the roles of squalene as a volatile product as well as a precursor for triterpenoids, which may promote product development from diverse tea materials and mining of excellent tea germplasm resources.
Assuntos
Camellia sinensis/enzimologia , Farnesil-Difosfato Farnesiltransferase/genética , Farnesil-Difosfato Farnesiltransferase/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Camellia sinensis/genética , Camellia sinensis/fisiologia , Clonagem Molecular , Retículo Endoplasmático/metabolismo , Farnesil-Difosfato Farnesiltransferase/química , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Herbivoria , Filogenia , Proteínas de Plantas/química , Plantas Geneticamente Modificadas , Esqualeno/análise , Esqualeno/metabolismo , Estresse Fisiológico , Nicotiana/genética , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/metabolismoRESUMO
Squalene synthase (SQS) is a potential target for hyperlipidemia treatment. To identify novel chemical scaffolds of SQS inhibitors, we generated 3D-QSAR pharmacophore models using HypoGen. The best quantitative pharmacophore model, Hypo 1, was selected for virtual screening using two chemical databases, Specs and Traditional Chinese Medicine database (TCM). The best-mapped hit compounds were then subjected to filtering by Lipinski's rule of five and docking studies to refine the hits. Finally, five compounds were selected from the top-ranked hit compounds for SQS inhibitory assay in vitro. Three of these compounds could inhibit SQS in vitro, and should be further evaluated pre-clinically as a treatment for hyperlipidemia.
Assuntos
Inibidores Enzimáticos/metabolismo , Farnesil-Difosfato Farnesiltransferase/antagonistas & inibidores , Farnesil-Difosfato Farnesiltransferase/metabolismo , Domínio Catalítico , Conjuntos de Dados como Assunto , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/química , Farnesil-Difosfato Farnesiltransferase/química , Simulação de Acoplamento Molecular , Estrutura Molecular , Ligação Proteica , Relação Quantitativa Estrutura-AtividadeRESUMO
Dryopteris fragrans (L.) Schott is a traditional herbal medicine containing medicinal sterols and triterpenoids. Squalene synthase (SQS) is the first crucial enzyme in the biosynthesis pathway of sterols and triterpenoids. The full-length cDNA named DfSQS1 was isolated by RACE. It was predicted that DfSQS1 contained an open reading frame (ORF) of 1239 bp coding 412 amino acid residues with molecular weight of 46.6â¯kDa. It had 18 potential phosphorylation sites, 1 potential N-glycosylation site and 2 transmembrane domains. In neighbor-joining (NJ) phylogenetic tree, DfSQS1 was away from branch of gymnosperms and angiosperms. One hydrophobic domain at the C-terminal of DfSQS1 was deleted to express soluble recombinant enzyme. The truncated DfSQS1 (tDfSQS1) was expressed in Escherichia coli BL21 (DE3). Then, tDfSQS1 was obtained and incubated with farnesyl diphosphate (FPP) to identify its enzymatic activity. The result demontrated that squalene, the product of enzyme catalyzed reaction, was detected by HPLC. Quantitative real-time PCR (qRT-PCR) analysis revealed that the transcription level of DfSQS1 in D. fragrans was the highest in roots, followed by leaves and rhizomes. This work is the first report on cloning, characteration and expression of SQS from D. fragrans. It will be helpful to understand the regulatory role of SQS on the biosynthesis of triterpenoids in the fern.
Assuntos
Dryopteris/genética , Farnesil-Difosfato Farnesiltransferase/genética , Proteínas de Plantas/genética , Sequência de Aminoácidos , Clonagem Molecular/métodos , Dryopteris/química , Dryopteris/metabolismo , Farnesil-Difosfato Farnesiltransferase/química , Farnesil-Difosfato Farnesiltransferase/metabolismo , Genes de Plantas , Modelos Moleculares , Fases de Leitura Aberta , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismoRESUMO
Squalene synthase of Alisma orientale catalyzes farnesyl diphosphate (FPP) to form squalene, which is the key regulatory enzyme of the carbon source flow to protostane triterpenes biosynthesis. For further research on the function and expression of AoSS gene, the open reading frame (ORF) of squalene synthase gene (accession no. JX866770) from A. orientale was subcloned into a prokaryotic expression vector pCzn1 and induced the expression of AoSS gene in Escherichia coli BL21(Roseta). The fusion protein was mainly in the form of inclusion bodies and purified to obtain high purity protein. By verifying its functionality through vitro enzymatic reaction, the results showed that the catalytic protein had the catalytic activity of FPP into squalene. In order to research the expression of AoSS in A. orientale, the purified protein was used to immunized rabbits to prepare polyclonal antibody which was then purified, the titer of the antibody was greater than 1â¶51 200 by ELISA detection, and displayed good specificity by Western blotting. The prepared antibody was used for immunoassay of AoSS in different organs of A. orientale, and the results showed that the AoSS expression level was the highest in tubers, followed by leaves, and lowest in root. Successful construction of prokaryotic expression vector, validation of gene functions and establishment of rapid immunoassay lay the foundation for further researches on the function and regulation of AoSS gene, and also provide scientific basis on the application of the protostane triterpenes of A. orientale in the field of synthetic biology.
Assuntos
Alisma/enzimologia , Farnesil-Difosfato Farnesiltransferase/metabolismo , Sequência de Aminoácidos , Animais , Clonagem Molecular , Farnesil-Difosfato Farnesiltransferase/genética , Folhas de Planta/química , Raízes de Plantas/química , Tubérculos/química , Coelhos , Proteínas Recombinantes de Fusão/biossíntese , EsqualenoRESUMO
Apoptosis is an essential physiological process that controls many important biological functions. However, apoptosis signaling in relation to secondary metabolite biosynthesis in plants and fungi remains a mystery. The fungus Ganoderma lucidum is a popular herbal medicine worldwide, but the biosynthetic regulation of its active ingredients (ganoderic acids, GAs) is poorly understood. We investigated the role of 3',5'-cyclic adenosine monophosphate (cAMP) signaling in fungal apoptosis and GA biosynthesis in G. lucidum. Two phosphodiesterase inhibitors (caffeine and 3-isobutyl-1-methylxanthine, IBMX) and an adenylate cyclase activator (sodium fluoride, NaF) were used to increase intracellular cAMP levels. Fungal apoptosis was identified by terminal deoxynucleotidyl transferase mediated dUTP nick end labeling (TUNEL) assay and a condensed nuclear morphology. Our results showed that GA production and fungal apoptosis were induced when the mycelium was treated with NaF, caffeine, or cAMP/IBMX. Downregulation of squalene synthase and lanosterol synthase gene expression by cAMP was detected in the presence of these chemicals, which indicates that these two genes are not critical for GA induction. Transcriptome analysis indicated that mitochondria might play an important role in cAMP-induced apoptosis and GA biosynthesis. To the best of our knowledge, this is the first report to reveal that cAMP signaling induces apoptosis and secondary metabolite production in fungi.
Assuntos
AMP Cíclico/metabolismo , Inibidores de Fosfodiesterase/farmacologia , Reishi/efeitos dos fármacos , Fluoreto de Sódio/farmacologia , Triterpenos/metabolismo , 1-Metil-3-Isobutilxantina/farmacologia , Apoptose , Vias Biossintéticas/efeitos dos fármacos , Cafeína/farmacologia , Farnesil-Difosfato Farnesiltransferase/genética , Farnesil-Difosfato Farnesiltransferase/metabolismo , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Transferases Intramoleculares/genética , Transferases Intramoleculares/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Reishi/citologia , Reishi/genética , Reishi/metabolismo , Transdução de Sinais/efeitos dos fármacosRESUMO
Panax notoginseng (Burk.) F. H. Chen, which is a used traditional Chinese medicine known as Sanqi or Tianqi in China, is widely studied for its ability to accumulate the triterpene saponins. Squalene synthase (SS: EC 2.5.1.21) catalyzes the first enzymatic step from the central isoprenoid pathway toward sterol and triterpenoid biosynthesis. In this study, SS from P. notoginseng was cloned and investigated followed by its recombinant expression and preliminary enzyme activity. The nucleotide sequence of the ORF contains 1 248 nucleotides and encodes 415 amino acid residues with molecular weight of 47.16kDa and pI of 6.50. Bioinformatics analysis revealed that the deduced PnSS protein had a high similarity with other plant squalene synthases. To obtain soluble recombinant enzymes, 29 hydrophobic amino acids were deleted from the carboxy terminus and expressed as GST-Tag fusion protein in Escherichia coli BL21 (DE3). Approximately 66.46kDa recombinant protein was checked on SDS-PAGE and Western Blot analysis. Preliminary activity of the resultant bacterial crude extract was analyzed by gas chromatograph-mass spectrometer (GC-MS). The identification and function of PnSS is important for further studies of the triterpene saponins biosynthesis in P. notoginseng.
Assuntos
Farnesil-Difosfato Farnesiltransferase/química , Farnesil-Difosfato Farnesiltransferase/metabolismo , Panax notoginseng/enzimologia , Panax notoginseng/genética , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , Farnesil-Difosfato Farnesiltransferase/genética , Farnesil-Difosfato Farnesiltransferase/isolamento & purificação , Humanos , Modelos Moleculares , Filogenia , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismoRESUMO
Squalene synthase catalyzes the condensation of 2 molecules of farnesyl diphosphate to produce squalene, the first committed precursor for sterol, brassinosteroid, and triterpene biosynthesis. A squalene synthase gene, designated IoSQS, was isolated from Inonotus obliquus, a medicinal mushroom that produces a plethora of bioactive triterpenes. IoSQS complementary DNA was found to contain an open reading frame of 1476 bp, encoding a protein of 491 amino acids with a calculated molecular mass of 55.85 kDa. The IoSQS genomic DNA sequence consisted of 1813 bp and contained 4 exons and 3 introns. The restriction fragment polymorphisms revealed by Southern blot analysis suggested that IoSQS was a single-copy gene. Promoter analysis indicated that the 5' upstream region of IoSQS possessed various potential elements associated with physiological and environmental factors. The expression pattern of IoSQS in different stages and under methyl jasmonate treatment correlated with the accumulation of total triterpenoids and was consistent with the predicted results of the IoSQS promoter region. The N-terminal 466 residues of the hydrophilic sequence were expressed as a His-tagged protein in Escherichia coli, and the resultant bacterial crude extract was incubated with farnesyl diphosphate and NADPH. Squalene was detected in vitro in reaction mixture by high-performance liquid chromatography analysis. These results suggest that the IoSQS enzyme is involved in squalene production in I. obliquus.
Assuntos
Agaricales/enzimologia , Agaricales/genética , Clonagem Molecular , Farnesil-Difosfato Farnesiltransferase/metabolismo , Agaricales/metabolismo , Sequência de Bases , Southern Blotting , DNA Complementar/genética , DNA Fúngico/genética , Escherichia coli/metabolismo , Farnesil-Difosfato Farnesiltransferase/genética , Regulação Enzimológica da Expressão Gênica , Regulação Fúngica da Expressão Gênica , FilogeniaRESUMO
Magnolia officinalis Rehder et Wilson is a traditional Chinese herbal medicine that is used to treat various diseases such as neurosis, anxiety, and stroke. The main secondary metabolites in magnolia bark are phenolic compounds and terpenoids. Squalene synthase plays a significant role in catalyzing two farnesyl diphosphate molecules to form squalene, the first precursor of triterpenoid, phytosterol, and cholesterol biosynthesis. In this study, a full-length cDNA of squalene synthase was cloned from M. officinalis and designated MoSQS (GenBank accession no. KT223496). The gene contains a 1240-bp open reading frame and it encodes a protein with 409 amino acids. Bioinformatic and phylogenetic analysis clearly suggested that MoSQS shared high similarity with squalene synthases among other plants. Prokaryotic expression showed that a transmembrane domain-deleted (385-409 aa) MoSQS mutant (MoSQSΔTM) could be expressed in its soluble form in Escherichia coli Transetta (DE3). GC-MS analysis showed that squalene was detected in an in vitro reaction mixture. These results indicated that MoSQSΔTM was functional, thereby establishing an important foundation for the study of triterpenoid biosynthesis in M. officinalis.
Assuntos
Clonagem Molecular , Farnesil-Difosfato Farnesiltransferase/metabolismo , Magnolia/enzimologia , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Escherichia coli/genética , Farnesil-Difosfato Farnesiltransferase/genética , Cromatografia Gasosa-Espectrometria de Massas , Expressão Gênica , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de SequênciaRESUMO
According to the designed specific primers of gene fragment based on the Salvia miltiorrhiza transcriptome data, a full-length cDNA sequence of SQS2 from S. miltiorrhiza f. alba was cloned by the method of reverse transcription polymerase chain reaction (RT-PCR). The SmSQS2 cDNA sequence was obtained, this sequence is named SmSQS2 and its GenBank registration number is KM244731. The full length of SmSQS2 cDNA was 1245 bp, encoding 414 amino acids including 5'UTR 115 bp and 3'UTR 237 bp. Sequence alignment and phylogenetic analysis demonstrated that SmSQS2 had relative close relationship to the SQS2 of S. miltiorrhiza. The induction of E. coli [pET28-SQS2] in different temperature, induction time, IPTG concentrations and density of inducing host bacterium (A600) were performed, Shaking the culture at 30 degrees C until the A600 is approximately 0.6 and add IPTG to final concentration of 0.2 mmol x L(-1), and then the optimal expression of SmSQS2 recombinant protein were accumulated after the induction time of 20 h. The research provided important base for the study of sterol and terpene biosynthesis of SQS2 in S. miltiorrhiza f. alba.
Assuntos
Clonagem Molecular , Farnesil-Difosfato Farnesiltransferase/genética , Proteínas de Plantas/genética , Salvia miltiorrhiza/enzimologia , Farnesil-Difosfato Farnesiltransferase/química , Farnesil-Difosfato Farnesiltransferase/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Salvia miltiorrhiza/química , Salvia miltiorrhiza/classificação , Salvia miltiorrhiza/genética , Alinhamento de SequênciaRESUMO
Culinary-medicinal mushrooms are able to lower blood cholesterol levels in animal models by different mechanisms. They might impair the endogenous cholesterol synthesis and exogenous cholesterol absorption during digestion. Mushroom extracts, obtained using pressurized water extractions (PWE) from Agaricus bisporus basidiomes, supplemented or not supplemented with selenium, were applied to HepG2 cell cultures to study the expression of 19 genes related to cholesterol homeostasis by low-density arrays (LDA). Only the PWE fractions obtained at 25°C showed 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) inhibitory activity. Besides the enzymatic inhibition, PWE extracts may downregulate some of the key genes involved in the cholesterol homeostasis, such as the squalene synthase gene (FDFT1), since its mRNA expression falls by one third of its initial value. In summary, A. bisporus extracts may also modulate biological cholesterol levels by molecular mechanisms further than the enzymatic way previously reported.
Assuntos
Agaricus , Produtos Biológicos/farmacologia , Colesterol/metabolismo , Farnesil-Difosfato Farnesiltransferase/genética , Expressão Gênica/efeitos dos fármacos , Hidroximetilglutaril-CoA Redutases/metabolismo , Selênio/farmacologia , Acil Coenzima A/metabolismo , Agaricales , Agaricus/química , Farnesil-Difosfato Farnesiltransferase/metabolismo , Células Hep G2 , Homeostase , Humanos , Hidroximetilglutaril-CoA Redutases/genética , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , RNA Mensageiro/metabolismoRESUMO
Solanaceae is an important family with several plants of medicinal importance. These medicinal plants have distinctive pathways for secondary metabolite biosynthesis. In most of the plants, two important compounds, dimethylallyl diphosphate and isopentenyl diphosphate, synthesize isoprenoid or terpenoids. Squalene synthase (SQS) is a key enzyme of the biosynthesis of isoprenoid (farnesyl pyrophosphate (FPP) â squalene). Withania somnifera (ashwagandha), an important medicinal plant of family solanaceae produces withanolides. Withanolides are secondary metabolites synthesized through isoprenoid pathway. In this study, 13 SQS protein sequences from the plants of solanacae family and Arabidopsis thaliana were analyzed. The conserved domains in corresponding sequences were searched. The multiple sequence alignment of conserved domains revealed the important motifs and identified the residue substitution in each motif. Our result further indicated that residue substitution in motifs might not lead to functional variation, although it may affect the binding affinity of Mg(++), FPP and NAD(P)H. In addition, the homology modelling of SQS enzyme of W. somnifera was done for the prediction of three-dimensional structure. Molecular docking study of considered substrates with WsSQS was performed and the docked structure were analyzed further. The docked structures showed binding affinity for motif 2 of WsSQS. Our analysis revealed that 29 residues of motif 2 might be important for catalytic/functional activity of SQS enzyme of W. somnifera. This study may provide an understanding of metabolic pathways responsible for the production of secondary metabolites. The motifs may play a key role in regulating the pathway towards enhanced production of metabolites.
Assuntos
Sítios de Ligação/genética , Vias Biossintéticas/genética , Farnesil-Difosfato Farnesiltransferase/genética , Farnesil-Difosfato Farnesiltransferase/metabolismo , Filogenia , Withania/enzimologia , Sequência de Aminoácidos , Arabidopsis/enzimologia , Sequência de Bases , Análise por Conglomerados , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Estrutura Molecular , Alinhamento de Sequência , Análise de Sequência de DNARESUMO
Glycyrrhiza uralensis Fisch. ex DC is widely used in traditional Chinese medicine (TCM). Among its various active components, glycyrrhizic acid is believed to be the marker component. Squalene synthase (SQS) and beta-amyrin synthase (beta-AS) are key enzymes in the biosynthetic pathway of glycyrrhizic acid in G uralensis. To reveal the effects of co-expression of SQS1 and beta-AS genes on this pathway, 7 yeast expression vectors harboring different SQS1 variants and beta-AS were constructed and expressed in Saccharomyces cerevisiae as fusion proteins. TLC and GC-MS results showed that co-expression of SQS1 and beta-AS enhanced the accumulation of beta-amyrin. The effects of SQS12 were more obvious than the other two SQS1 variants. This study is significant for further investigations concerned with exploring the biosynthesis of glycyrrhizic acid in vitro and strengthening the efficacy of G. uralensis by means of increasing the content of glycyrrhizic acid.
Assuntos
Farnesil-Difosfato Farnesiltransferase/metabolismo , Glycyrrhiza uralensis/genética , Transferases Intramoleculares/metabolismo , Ácido Oleanólico/análogos & derivados , Farnesil-Difosfato Farnesiltransferase/genética , Ácido Oleanólico/metabolismo , Proteínas de Plantas/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/metabolismoRESUMO
Diosgenin is a steroid derived from cholesterol in plants and used as a typical initial intermediate for synthesis of numerous steroidal drugs in the world. Commercially, this compound is extracted mainly from the rhizomes or tubers of some Dioscorea species. Squalene synthase (SQS: EC 2.5.1.21) catalyzes the condensation of two molecules of farnesyl diphosphate to form squalene, the first committed step for biosynthesis of plant sterols including cholesterol, and is thought to play an important role in diosgenin biosynthesis. A full-length cDNA of a putative squalene synthase gene was cloned from D. zingiberensis and designated as DzSQS (Genbank Accession Number KC960673). DzSQS was contained an open reading frame of 1,230 bp encoding a polypeptide of 409 amino acids with a predicted molecular weight of 46 kDa and an isoelectric point of 6.2. The deduced amino acid sequence of DzSQS shared over 70 % sequence identity with those of SQSs from other plants. The truncated DzSQS in which 24 amino acids were deleted from the carboxy terminus was expressed in Escherichia coli, and the resultant bacterial crude extract was incubated with farnesyl diphosphate and NADPH. GC-MS analysis showed that squalene was detected in the in vitro reaction mixture. Quantitative real-time PCR analysis revealed that DzSQS was expressed from highest to lowest order in mature leaves, newly-formed rhizomes, young leaves, young stems, and two-year-old rhizomes of D. zingiberensis.
Assuntos
Dioscorea/genética , Farnesil-Difosfato Farnesiltransferase/genética , Proteínas de Plantas/genética , Sequência de Aminoácidos , Clonagem Molecular , Dioscorea/enzimologia , Farnesil-Difosfato Farnesiltransferase/química , Farnesil-Difosfato Farnesiltransferase/metabolismo , Regulação Enzimológica da Expressão Gênica , Dados de Sequência Molecular , Especificidade de Órgãos , Folhas de Planta/genética , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Caules de Planta/genética , Plantas Medicinais/enzimologia , Plantas Medicinais/genética , Fosfatos de Poli-Isoprenil/metabolismo , Rizoma/genética , Sesquiterpenos/metabolismoRESUMO
Trypanosomatid parasites are the causative agents of many neglected tropical diseases and there is currently considerable interest in targeting endogenous sterol biosynthesis in these organisms as a route to the development of novel anti-infective drugs. Here, we report the first x-ray crystallographic structures of the enzyme squalene synthase (SQS) from a trypanosomatid parasite, Trypanosoma cruzi, the causative agent of Chagas disease. We obtained five structures of T. cruzi SQS and eight structures of human SQS with four classes of inhibitors: the substrate-analog S-thiolo-farnesyl diphosphate, the quinuclidines E5700 and ER119884, several lipophilic bisphosphonates, and the thiocyanate WC-9, with the structures of the two very potent quinuclidines suggesting strategies for selective inhibitor development. We also show that the lipophilic bisphosphonates have low nM activity against T. cruzi and inhibit endogenous sterol biosynthesis and that E5700 acts synergistically with the azole drug, posaconazole. The determination of the structures of trypanosomatid and human SQS enzymes with a diverse set of inhibitors active in cells provides insights into SQS inhibition, of interest in the context of the development of drugs against Chagas disease.
Assuntos
Doença de Chagas/tratamento farmacológico , Inibidores Enzimáticos/uso terapêutico , Farnesil-Difosfato Farnesiltransferase/antagonistas & inibidores , Terapia de Alvo Molecular/métodos , Tripanossomicidas/uso terapêutico , Animais , Chlorocebus aethiops , Cristalografia por Raios X , Difosfonatos/química , Difosfonatos/metabolismo , Difosfonatos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Farnesil-Difosfato Farnesiltransferase/química , Farnesil-Difosfato Farnesiltransferase/metabolismo , Humanos , Modelos Moleculares , Fosfatos de Poli-Isoprenil/química , Fosfatos de Poli-Isoprenil/metabolismo , Ligação Proteica , Quinuclidinas/química , Quinuclidinas/metabolismo , Quinuclidinas/farmacologia , Sesquiterpenos/química , Sesquiterpenos/metabolismo , Tripanossomicidas/química , Tripanossomicidas/metabolismo , Tripanossomicidas/farmacologia , Trypanosoma cruzi/enzimologia , Células VeroRESUMO
PNS (Panax notoginseng saponins) is the main medical bioactive component in Panax notoginseng. The medical value of PNS cannot be extended because of its low production. With the deep study of saponins biosynthetic pathway, the control of PNS biosynthesis through metabolic engineering has gradually become possible. In this study, the Squalene synthase (SS) over-expression vector was established. By the way of agrobacterium-mediated method, the vector was transfered and integrated into the Panax notoginseng genome. The result of the PCR detection and the saponin content detection shows that over-expression SS is able to produce high level of Panax notoginseng saponins, and confirms the regulatory function of SS in the biosynthesis of ginsenosides in Panax notoginseng. It provides a theoretical basis and technical basis for the construction of PNS homologous or heterologous efficient expression system in the future.
Assuntos
Agrobacterium tumefaciens , Farnesil-Difosfato Farnesiltransferase/genética , Panax notoginseng , Saponinas/metabolismo , Sequência de Aminoácidos , Linhagem Celular , Clonagem Molecular , DNA Complementar/genética , Farnesil-Difosfato Farnesiltransferase/metabolismo , Técnicas de Transferência de Genes , Vetores Genéticos/genética , Panax notoginseng/química , Panax notoginseng/citologia , Panax notoginseng/genética , Panax notoginseng/microbiologia , Plantas Geneticamente Modificadas/química , Plantas Geneticamente Modificadas/citologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/microbiologia , Plantas Medicinais/química , Plantas Medicinais/citologia , Plantas Medicinais/genética , Plantas Medicinais/microbiologia , Transformação GenéticaRESUMO
In this work, the effect of N,N'-dicyclohexylcarbodiimide (DCCD) on ginsenoside biosynthesis in suspension cultures of Panax ginseng cells was investigated. The optimal concentration and timing of DCCD addition were found to be 10 µM and on day 4 of cultivation. Under this condition, the maximal content of total ginsenosides increased to 3.0-fold that of untreated control, and the contents of Rg-group (Rg1 and Re) ginsenosides and Rb1 were 2.5- and 8.9-fold higher, respectively, which coincided with elevated activities of protopanaxatriol biosynthetic enzyme protopanaxadiol 6-hydroxylase and UDPG-ginsenoside Rd glucosyltransferase that converts Rd to Rb1. In addition, DCCD treatment induced the activity of defense response enzyme, phenylalanine ammonia lyase. To gain a better understanding of the molecular processes underlying the elicitation, we examined nitric oxide (NO) content and expression levels of the triterpene biosynthetic genes encoding squalene synthase (sqs), squalene epoxidase (se), and dammarenediol-II synthase (ds). It was found that DCCD up-regulated NO generation and transcription levels of sqs, se and ds. Interestingly, these effects of DCCD were compromised by an NO biosynthetic inhibitor, while an NO donor alone recapitulated the elicitation effect of DCCD on ginsenoside biosynthesis. These results suggest that DCCD may induce the ginsenoside biosynthesis via NO signaling in the P. ginseng cells. The information obtained might also be helpful to hyperproduction of valuable secondary metabolites in other plant cell cultures.