Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
Mais filtros

Medicinas Complementares
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int. j. morphol ; 42(3): 876-890, jun. 2024. ilus, tab
Artigo em Inglês | LILACS | ID: biblio-1564627

RESUMO

SUMMARY: Stroke is the leading cause of acquired physical disability in adults and second leading cause of mortality throughout the world. Treatment strategies to curb the effects of stroke would be of great benefit. Pongamia pinnata is a recent attraction in medicine, owing to its abundant medicinal benefits with minimal side effects. The present study aimed to examine acute and subacute effect of Pongamia pinnata leaf extract on transient cerebral hypoperfusion and reperfusion (tCHR) in Wistar rats. 24 adult Wistar rats (12 each for acute and subacute study) were divided in to four groups each viz normal control group, tCHR + NS group, tCHR + 200mg/kg bw and tCHR + 400mg/kg bw groups. Cerebral ischemia induction was carried out by bilateral common carotid artery occlusion and reperfusion. Ethanolic extract of Pongamia pinnata leaves were orally administered for 7 days and 21 days after the surgical procedure for acute and subacute study respectively. Behavioural analysis, histological assessment, and estimation of mRNA levels of HIF-1, GDNF, BDNF and NF-kB were performed. In both acute and subacute study, there was significant improvement in the beam walking assay, neuronal count, decreased neuronal damage in histological sections and higher mRNA expression of BDNF and GDNF in the treatment groups. There was no significant difference in the expression of HIF1 and NF-kB. Thus, Pongamia pinnata has excellent neurorestorative property reversing many of the effects of ischemic stroke induced by tCHR in rats with the underlying mechanism being an improvement in the expression of neurotrophic factors GDNF and BDNF.


El ataque cerebrovascular es la principal causa de discapacidad física adquirida en adultos y la segunda causa de mortalidad en todo el mundo. Las estrategias de tratamiento para frenar los efectos del ataque cerebrovascular serían de gran beneficio. Pongamia pinnata es una atracción reciente en la medicina, debido a sus abundantes beneficios medicinales con mínimos efectos secundarios. El presente estudio tuvo como objetivo examinar el efecto agudo y subagudo del extracto de hoja de Pongamia pinnata sobre la hipoperfusión y reperfusión cerebral transitoria (tCHR) en ratas Wistar. Se dividieron 24 ratas Wistar adultas (12 cada una para el estudio agudo y subagudo) en cuatro grupos, el grupo control normal, el grupo tCHR + NS, los grupos tCHR + 200 mg/kg de peso corporal y tCHR + 400 mg/kg de peso corporal. La inducción de la isquemia cerebral se llevó a cabo mediante oclusión y reperfusión bilateral de la arteria carótida común. El extracto etanólico de hojas de Pongamia pinnata se administró por vía oral durante 7 días y 21 días después del procedimiento quirúrgico para estudio agudo y subagudo respectivamente. Se realizaron análisis de comportamiento, evaluación histológica y estimación de los niveles de ARNm de HIF-1, GDNF, BDNF y NF-kB. Tanto en el estudio agudo como en el subagudo, hubo una mejora significativa en el ensayo de desplazamiento del haz, el recuento neuronal, una disminución del daño neuronal en las secciones histológicas y una mayor expresión de ARNm de BDNF y GDNF en los grupos con tratamiento. No hubo diferencias significativas en la expresión de HIF1 y NF-kB. Por lo tanto, Pongamia pinnata tiene una excelente propiedad neurorestauradora que revierte muchos de los efectos del ataque cerebrovascular isquémico inducido por tCHR en ratas, siendo el mecanismo subyacente una mejora en la expresión de los factores neurotróficos GDNF y BDNF.


Assuntos
Animais , Ratos , Extratos Vegetais/administração & dosagem , Acidente Vascular Cerebral/tratamento farmacológico , Millettia/química , Extratos Vegetais/farmacologia , Córtex Cerebral/efeitos dos fármacos , Isquemia Encefálica/tratamento farmacológico , Administração Oral , NF-kappa B , Ratos Wistar , Fator Neurotrófico Derivado do Encéfalo/genética , Modelos Animais de Doenças , Fator 1 Induzível por Hipóxia/genética , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Crescimento Neural/administração & dosagem
2.
Medicine (Baltimore) ; 103(6): e36968, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38335377

RESUMO

We intend to explore potential mechanisms of Tripterygium wilfordii Hook.f (TwHF) induced kidney injury (KI) using the methods of network toxicology and molecular docking. We determined TwHF potential compounds with its targets and KI targets, obtained the TwHF induced KI targets after intersecting targets of TwHF and KI. Then we conducted protein-protein interaction (PPI) network, gene expression analysis, gene ontology (GO) function and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis to explore the mechanism of TwHF-induced KI. Finally we conducted molecular docking to verify the core toxic compounds and the targets. We obtained 12 TwHF toxic compounds and 62 TwHF-induced KI targets. PPI network, gene expression analysis and GO function enrichment analysis unveiled the key biological process and suggested the mechanism of TwHF-induced KI might be associated with inflammation, immune response, hypoxia as well as oxidative stress. KEGG pathway enrichment analysis indicated PI3K-Akt signaling pathway, HIF-1 signaling pathway and TNF signaling pathway were key signaling pathways of TwHF induced KI. Molecular docking showed that the binding energy of core targets and toxic compounds was all less than -6.5 kcal/mol that verified the screening ability of network pharmacology and provided evidence for modifying TwHF toxic compounds structure. Through the study, we unveiled the mechanism of TwHF induce KI that TwHF might activate PI3K-Akt signaling pathway as well as TNF signaling pathway to progress renal inflammation, mediate hypoxia via HIF-1 signaling pathway to accelerate inflammatory processes, and also provided a theoretical basis for modifying TwHF toxic compounds structure as well as supported the follow-up research.


Assuntos
Medicamentos de Ervas Chinesas , Fosfatidilinositol 3-Quinases , Humanos , Hipóxia , Fator 1 Induzível por Hipóxia , Inflamação , Rim , Simulação de Acoplamento Molecular , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Tripterygium , Fator de Necrose Tumoral alfa/metabolismo
3.
Phytomedicine ; 125: 155290, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38308918

RESUMO

BACKGROUND: In our previous study, we provided evidence that Astragalus mongholicus Bunge(AM) and its extracts possess a protective capability against radiation-induced damage, potentially mediated through the reduction of reactive oxygen species (ROS) and nitric oxide (NO). However, we were pleasantly surprised to discover during our experimentation that AM not only offers protection against radiation damage but also exhibits a radiation sensitization effect. This effect may be attributed to a specific small molecule present in AM known as ononin. Currently, radiation sensitizers are predominantly found in nitrazole drugs and nanomaterials, with no existing reports on the radiation sensitization properties of ononin, nor its underlying mechanism. PURPOSE: This study aims to investigate the sensitization effect of the small molecule ononin derived from AM on lung cancer radiotherapy, elucidating its specific molecular mechanism of action. Additionally, the safety profile of combining astragalus small molecule ononin with radiation therapy will be evaluated. METHODS: The effective concentration of ononin was determined through cell survival experiments, and the impact of ononin combined with varying doses of radiation on lung cancer cells was observed using CCK-8 and cell cloning experiments. The apoptotic effect of ononin combined with radiation on lung cancer cells was assessed using Hochester staining, flow cytometry, and WB assay. Additionally, WB and immunofluorescence analysis were conducted to investigate the influence of ononin on HIF-1α/VEGF pathway. Furthermore, Molecular Dynamics Simulation was employed to validate the targeted binding ability of ononin and HIF-1α. A lung cancer cell line was established to investigate the effects of knockdown and overexpression of HIF-1α. Subsequently, the experiment was repeated using tumor bearing nude mice and C57BL/6 mouse models in an in vivo study. Tumor volume was measured using a vernier caliper, while HE, immunohistochemistry, and immunofluorescence techniques were employed to observe the effects of ononin combined with radiation on tumor morphology, proliferation, and apoptosis. Additionally, Immunofluorescence was employed to examine the impact of ononin on HIF-1α/VEGF pathway in vivo, and its effect on liver function in mice was assessed through biochemistry analysis. RESULTS: At a concentration of 25 µM, ononin did not affect the proliferation of lung epithelial cells but inhibited the survival of lung cancer cells. In vitro experiments demonstrated that the combination of ononin and radiation could effectively inhibit the growth of lung cancer cells, induce apoptosis, and suppress the excessive activation of the Hypoxia inducible factor 1 alpha/Vascular endothelial growth factor pathway. In vivo experiments showed that the combination of ononin and radiation reduced the size and proliferation of lung cancer tumors, promoted cancer cell apoptosis, mitigated abnormal activation of the Hypoxia inducible factor 1 alpha pathway, and protected against liver function damage. CONCLUSION: This study provides evidence that the combination of AM and its small molecule ononin can enhance the sensitivity of lung cancer to radiation. Additionally, it has been observed that this combination can specifically target HIF-1α and exert its effects. Notably, ononin exhibits the unique ability to protect liver function from damage while simultaneously enhancing the tumor-killing effects of radiation, thereby demonstrating a synergistic and detoxifying role in tumor radiotherapy. These findings contribute to the establishment of a solid basis for the development of novel radiation sensitizers derived from traditional Chinese medicine.


Assuntos
Glucosídeos , Isoflavonas , Neoplasias Pulmonares , Radiossensibilizantes , Camundongos , Animais , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/radioterapia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Camundongos Nus , Linhagem Celular Tumoral , Camundongos Endogâmicos C57BL , Fatores de Crescimento do Endotélio Vascular/metabolismo , Tolerância a Radiação , Radiossensibilizantes/farmacologia , Fator 1 Induzível por Hipóxia , Subunidade alfa do Fator 1 Induzível por Hipóxia
4.
Am J Chin Med ; 51(3): 761-777, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36867109

RESUMO

Hypoxia-inducible factor-1 (HIF-1) is an [Formula: see text]/[Formula: see text] heterodimeric transcription factor. In normal mammalian cells, HIF-1[Formula: see text] is hydroxylated and degraded upon biosynthesis. However, HIF-1[Formula: see text] is frequently expressed in cancer and adds to cancer malignancy. In this study, we investigated whether green tea-derived epigallocatechin-3-gallate (EGCG) decreased HIF-1[Formula: see text] in pancreatic cancer cells. After MiaPaCa-2 and PANC-1 pancreatic cancer cells were exposed to EGCG in vitro, we performed a Western blot to determine native and hydroxylated HIF-1[Formula: see text], which was in turn used to assess HIF-1[Formula: see text] production. In order to assess HIF-1[Formula: see text] stability, we determined the HIF-1[Formula: see text] after MiaPaCa-2 and PANC-1 cells were switched from hypoxia to normoxia. We found that EGCG decreased both production and stability of HIF-1[Formula: see text]. Further, the EGCG-induced decrease in HIF-1[Formula: see text] reduced intracellular glucose transporter-1 and glycolytic enzymes and attenuated glycolysis, ATP production, and cell growth. Because EGCG is known to inhibit cancer-induced insulin receptor (IR) and insulin-like growth factor-1 receptor (IGF1R), we created three MiaPaCa-2 sublines whose IR, IGF1R, and HIF-1[Formula: see text] were decreased using RNA interference. From wild-type MiaPaCa-2 cells and these sublines, we found evidence that suggested that the EGCG-induced inhibition of HIF-1[Formula: see text] was both dependent on and independent of IR and IGF1R. In vivo, we transplanted wild-type MiaPaCa-2 cells in athymic mice and treated the mice with EGCG or vehicle. When the resulting tumors were analyzed, we found that EGCG decreased tumor-induced HIF-1[Formula: see text] and tumor growth. In conclusion, EGCG decreased HIF-1[Formula: see text] in pancreatic cancer cells and sabotaged the cells. The anticancer effects of EGCG were both dependent on and independent of IR and IGF1R.


Assuntos
Fator 1 Induzível por Hipóxia , Neoplasias Pancreáticas , Animais , Camundongos , Fator 1 Induzível por Hipóxia/genética , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Hipóxia , Mamíferos , Neoplasias Pancreáticas
5.
Molecules ; 27(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36234758

RESUMO

Hepatocellular carcinoma (HCC) is one of the most common malignant liver tumors with high mortality. Chronic hepatitis B and C viruses, aflatoxins, and alcohol are among the most common causes of hepatocellular carcinoma. The limited reported data and multiple spectra of pathophysiological mechanisms of HCC make it a challenging task and a serious economic burden in health care management. Solanum surattense (S. surattense) is the herbal plant used in many regions of Asia to treat many disorders including various types of cancer. Previous in vitro studies revealed the medicinal importance of S. surattense against hepatocellular carcinoma. However, the exact molecular mechanism of S. surattense against HCC still remains unclear. In vitro and in silico experiments were performed to find the molecular mechanism of S. surattense against HCC. In this study, the network pharmacology approach was used, through which multi-targeted mechanisms of S. surattense were explored against HCC. Active ingredients and potential targets of S. surattense found in HCC were figured out. Furthermore, the molecular docking technique was employed for the validation of the successful activity of bioactive constituents against potential genes of HCC. The present study investigated the active "constituent-target-pathway" networks and determined the tumor necrosis factor (TNF), epidermal growth factor receptor (EGFR), mammalian target of rapamycin (mTOR), Bcl-2-like protein 1(BCL2L1), estrogen receptor (ER), GTPase HRas, hypoxia-inducible factor 1-alpha (HIF1-α), Harvey Rat sarcoma virus, also known as transforming protein p21 (HRAS), and AKT Serine/Threonine Kinase 1 (AKT1), and found that the genes were influenced by active ingredients of S. surattense. In vitro analysis was also performed to check the anti-cancerous activity of S. surattense on human liver cells. The result showed that S. surattense appeared to act on HCC via modulating different molecular functions, many biological processes, and potential targets implicated in 11 different pathways. Furthermore, molecular docking was employed to validate the successful activity of the active compounds against potential targets. The results showed that quercetin was successfully docked to inhibit the potential targets of HCC. This study indicates that active constituents of S. surattense and their therapeutic targets are responsible for their pharmacological activities and possible molecular mechanisms for treating HCC. Lastly, it is concluded that active compounds of S. surattense act on potential genes along with their influencing pathways to give a network analysis in system pharmacology, which has a vital role in the development and utilization of drugs. The current study lays a framework for further experimental research and widens the clinical usage of S. surattense.


Assuntos
Aflatoxinas , Carcinoma Hepatocelular , Medicamentos de Ervas Chinesas , Neoplasias Hepáticas , Solanum , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Medicamentos de Ervas Chinesas/farmacologia , Receptores ErbB , Humanos , Fator 1 Induzível por Hipóxia/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Simulação de Acoplamento Molecular , Proteínas Proto-Oncogênicas c-akt , Proteínas Proto-Oncogênicas c-bcl-2 , Proteínas Proto-Oncogênicas p21(ras) , Quercetina/uso terapêutico , Receptores de Estrogênio , Serina , Serina-Treonina Quinases TOR , Fatores de Necrose Tumoral
6.
Biosens Bioelectron ; 218: 114747, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36198238

RESUMO

Thoracic aortic aneurysm (TAA), in which arteries enlarge asymptomatically over time until dissection or rupture occurs, is a serious health risk. The mainstay of TAA treatment remains surgical repair due to the lack of effective drugs. The complex etiology and pathogenesis of TAA, including hemodynamic alterations and genetic factors, lead to inaccuracies in preclinical models for drug screening. Previously, our group designed an aorta smooth muscle-on-a-chip to emulate human aorta physiology and pathophysiology and screened three promising therapeutic drugs targeting mitochondrial dynamics in TAA. On this foundation, we updated the one-channel chip to an eighteen-well chip platform with four polydimethylsiloxane layers. Benefiting from this high-throughput chip, we rapidly screened multiple drugs simultaneously using distinct cell lines in vitro. In addition, we observed the abnormal activation of hypoxia-inducible factor 1-alpha (HIF-1alpha) in aortas from TAA patients by Western blot and bioinformatics analyses. Intriguingly, this phenomenon was replicated only when smooth muscle cells (SMCs) were strained on the chip. We then screened seven specific HIF-1alpha inhibitors and selected the two most effective drugs (2-methoxyestradiol and digoxin) by quantitative PCR and colorimetric methods. The results demonstrated that these two drugs can improve respiratory chain function and rescue the SMC contractile phenotype, showing applicability for the clinical treatment of TAA. This high-throughput aorta smooth muscle-on-a-chip will become a potential preclinical model for TAA drug screening.


Assuntos
Aneurisma da Aorta Torácica , Técnicas Biossensoriais , Humanos , Aneurisma da Aorta Torácica/tratamento farmacológico , Aneurisma da Aorta Torácica/genética , Aneurisma da Aorta Torácica/metabolismo , 2-Metoxiestradiol/metabolismo , Avaliação Pré-Clínica de Medicamentos , Dispositivos Lab-On-A-Chip , Aorta/metabolismo , Aorta/patologia , Digoxina , Dimetilpolisiloxanos , Fator 1 Induzível por Hipóxia/metabolismo , Músculo Liso/metabolismo , Músculo Liso/patologia
7.
Front Endocrinol (Lausanne) ; 13: 998971, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36147560

RESUMO

Objective: To explore whether the modified Qing' e Pills (MQEP) exerts anti-osteoporotic effects and prevents bone loss by enhancing angiogenesis. Methods: Network pharmacology was used to assess whether MQEP has a pro-angiogenic capacity and to predict its potential targets. Human umbilical vein endothelial cells were treated with glucocorticoids and MQEP to assess cell viability. The expression of angiotensin II type 1 receptor, angiotensin II type 2 receptor, and angiotensin converting enzyme, which are associated with the activation of the renin-angiotensin-aldosterone system, and the expression of vascular endothelial growth factor and hypoxia-inducible factor 1 alpha, which are associated with the formation of type H blood vessels, were examined by western blot and RT-qPCR. Thereafter, the glucocorticoid-induced osteoporosis model was established and intervened with MQEP. Femur scanning was performed with micro-computed tomography; trabecular spacing, trabecular thickness, and trabecular number were observed and calculated; the expression of nuclear factor-kappa B ligand and osteoprotegerin was detected by ELISA, and the ratio was calculated to evaluate the degree of bone resorption. Finally, type H blood vessels that were highly coupled to osteogenic cells were identified by immunohistochemistry staining and flow cytometry. Results: This is the first study to reveal and confirm that MQEP could prevent bone loss in glucocorticoid-induced osteoporosis by promoting the expression of hypoxia-inducible factor 1 alpha and vascular endothelial growth factor, which are highly associated with type H blood vessel formation. In vitro experiments confirmed that MQEP could effectively promote the proliferation of vascular endothelial cells and alleviate glucocorticoids-induced activation of the renin-angiotensin-aldosterone system, thereby reducing vascular injury. Conclusion: MQEP exerts anti-osteoporosis effects and prevents bone loss by alleviating vascular injury caused by renin-angiotensin-aldosterone system activation and promoting type H blood vessel formation.


Assuntos
Doenças Ósseas Metabólicas , Osteoporose , Lesões do Sistema Vascular , Células Endoteliais/metabolismo , Glucocorticoides/efeitos adversos , Humanos , Fator 1 Induzível por Hipóxia/metabolismo , Ligantes , Osteoporose/induzido quimicamente , Osteoporose/tratamento farmacológico , Osteoporose/prevenção & controle , Osteoprotegerina/metabolismo , Peptidil Dipeptidase A/metabolismo , Receptor Tipo 1 de Angiotensina/metabolismo , Receptor Tipo 2 de Angiotensina/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Microtomografia por Raio-X
8.
Am J Chin Med ; 50(7): 1869-1885, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36121714

RESUMO

Pressure overload is a major risk factor for various cardiovascular diseases. Disorders of the endothelium are involved in the pathological mechanisms of pressure, and maintaining endothelial function is a practical strategy to alleviate pressure overload-induced cardiac injury. In this study, we provided evidence that salvianolic acid, the active component of Danshen, a traditional Chinese herb medicine, preserved pressure overload-induced cardiac dysfunction via protecting endothelium. Male C57BL/6J mice were imposed with transverse aortic constriction to mimic pressure overload and treated with salvianolic acid (200[Formula: see text]mg/kg/day) or vehicle for 6 weeks. The hemodynamic and cardiac functional parameters were detected by the cardiac catheter and transthoracic echocardiography. The pathological measurements were conducted by heart hematoxylin-eosin, wheat germ agglutinin staining, Masson's trichrome staining, and immunofluorescence staining. Endothelial cell (EC) proliferation was estimated using the Cell Counting Kit-8, EC migration was evaluated by scratched assay, and EC integrity was observed by electron microscope. Salvianolic acid notably inhibited cardiac chamber enlargement, restrained cardiac contractile dysfunction, and repressed cardiac fibrosis caused by chronic pressure overload. Salvianolic acid maintained endothelial tight junction integrity by boosting the expression of CD31. Furthermore, the endothelial protective effect of salvianolic acid against pressure overload is dependent on the activation of hypoxia-inducible factor 1[Formula: see text], which consequently activated heat shock factor 1 and promoted CD31 expression. Our study uncovered that salvianolic acid protected cardiac ECs against pressure overload via a HIF1[Formula: see text]/HSF1/CD31 pathway, indicating a potential appliance of salvianolic acid in hypertensive heart disease.


Assuntos
Cardiomegalia , Fator 1 Induzível por Hipóxia , Animais , Masculino , Camundongos , Cardiomegalia/etiologia , Endotélio/metabolismo , Endotélio/patologia , Fatores de Transcrição de Choque Térmico/metabolismo , Fator 1 Induzível por Hipóxia/metabolismo , Camundongos Endogâmicos C57BL , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo
9.
Biochim Biophys Acta Mol Basis Dis ; 1868(11): 166520, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35985446

RESUMO

Despite the efficacy of trastuzumab in treating HER2-positive breast cancer patients, a significant proportion of patients relapse after treatment. The role of C-X-C chemokine receptor type 4 (CXCR4) in trastuzumab resistance was studied only in cell lines and the underlying mechanisms remain largely unclear. This study investigated the role of CXCR4 in trastuzumab resistance in breast cancer patients and explored the possible underlying mechanisms. The study was performed retrospectively on tissue samples from 62 breast cancer patients including 42 who were treated with trastuzumab and chemotherapy and 20 who received chemotherapy alone in adjuvant setting. Expression levels of CXCR4 and its regulators hypoxia-inducible factor 1-alpha (HIF-1α), tristetraprolin (TTP), human antigen R (HuR), itchy E3 ubiquitin protein ligase (ITCH), miR-302a and miR-494 were determined and their associations with tumor recurrence and disease-free survival were analyzed. In trastuzumab-treated patients, high CXCR4 expression was associated with recurrence and was an independent predictor of progression risk after therapy. CXCR4 correlated positively with its transcriptional regulator, HIF-1α, and negatively with its post-translational regulator, ITCH. HIF-1α, HuR and ITCH were significantly associated with clinical outcome. In chemotherapy-treated patients, neither CXCR4 nor any of its regulators were associated with recurrence or predicted disease progression risk after chemotherapy. In conclusion, this study suggests a potential role for CXCR4 in recurrence after trastuzumab-based therapy in human breast cancer that could be mediated, at least in part, by hypoxia and/or decreased ubiquitination. These findings highlight the potential utility of CXCR4 as a promising target for enhancing trastuzumab therapeutic outcome.


Assuntos
Neoplasias da Mama , MicroRNAs , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Feminino , Humanos , Fator 1 Induzível por Hipóxia , MicroRNAs/genética , MicroRNAs/uso terapêutico , Receptores CXCR4/genética , Estudos Retrospectivos , Trastuzumab/farmacologia , Trastuzumab/uso terapêutico , Tristetraprolina/uso terapêutico , Ubiquitina-Proteína Ligases/genética
10.
Am J Chin Med ; 50(3): 799-815, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35300568

RESUMO

Stroke has become a major cause of death and disability worldwide. The cellular recycling pathway autophagy has been implicated in ischemia-induced neuronal changes, but whether autophagy plays a beneficial or detrimental role is controversial. Hydroxysafflor Yellow A (HSYA), a popular herbal medicine, is an extract of Carthamus tinctorius and is used to treat ischemic stroke (IS) in China. HSYA has been shown to prevent cardiovascular and cerebral ischemia/reperfusion injury in animal models. However, the specific active ingredients and molecular mechanisms of HSYA in IS remain unclear. Here, we investigated the effect of HSYA treatment on autophagy in a rat model of IS. IS was induced in rats by middle cerebral artery occlusion. Rats were treated once daily for 3 days with saline, HYSA, or the neuroprotective agent Edaravone. Neurobehavioral testing was performed on days 1, 2, and 3 post-surgery. Brains were removed on day 3 post-surgery for histological evaluation of infarct area, morphology, and for qRT-PCR and western blot analysis of the expression of the autophagy factor LC3 and the signaling molecules HIF-1[Formula: see text], BNIP3, and Notch1. Molecular docking studies were performed in silico to predict potential interactions between HSYA and LC3, HIF-1[Formula: see text], BNIP3, and Notch1 proteins. The result showed that HSYA treatment markedly alleviated IS-induced neurobehavioral deficits and reduced brain infarct area and tissue damage. HSYA also significantly reduced hippocampal expression levels of LC3, HIF-1[Formula: see text], BNIP3, and Notch1. The beneficial effect of HSYA was generally superior to that of Edaravone. Molecular modeling suggested that HSYA may bind strongly to HIF-1[Formula: see text], BNIP3, and Notch1 but weakly to LC3. In conclusion, HSYA inhibits post-IS autophagy induction in the brain, possibly by suppressing HIF-1[Formula: see text], BNIP3 and Notch1. HSYA may have utility as a post-IS neuroprotective agent.


Assuntos
Isquemia Encefálica , Chalcona , AVC Isquêmico , Fármacos Neuroprotetores , Animais , Autofagia , Isquemia Encefálica/patologia , Chalcona/análogos & derivados , Chalcona/farmacologia , Chalcona/uso terapêutico , Edaravone/farmacologia , Fator 1 Induzível por Hipóxia , AVC Isquêmico/tratamento farmacológico , Proteínas de Membrana/genética , Proteínas Mitocondriais/farmacologia , Simulação de Acoplamento Molecular , Fármacos Neuroprotetores/farmacologia , Quinonas/farmacologia , Ratos , Receptor Notch1/genética
11.
Int J Mol Sci ; 22(21)2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34768906

RESUMO

Plenty of research has revealed virus induced alternations in metabolic pathways, which is known as metabolic reprogramming. Studies focusing on COVID-19 have uncovered significant changes in metabolism, resulting in the perspective that COVID-19 is a metabolic disease. Reprogramming of amino acid, glucose, cholesterol and fatty acid is distinctive characteristic of COVID-19 infection. These metabolic changes in COVID-19 have a critical role not only in producing energy and virus constituent elements, but also in regulating immune response, offering new insights into COVID-19 pathophysiology. Remarkably, metabolic reprogramming provides great opportunities for developing novel biomarkers and therapeutic agents for COVID-19 infection. Such novel agents are expected to be effective adjuvant therapies. In this review, we integrate present studies about major metabolic reprogramming in COVID-19, as well as the possibility of targeting reprogrammed metabolism to combat virus infection.


Assuntos
COVID-19/metabolismo , COVID-19/virologia , Redes e Vias Metabólicas , Aminoácidos/metabolismo , Colesterol/metabolismo , Ácidos Graxos/metabolismo , Glucose/metabolismo , Humanos , Fator 1 Induzível por Hipóxia/metabolismo
12.
Chin J Nat Med ; 19(7): 521-527, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34247775

RESUMO

Hypoxia-inducible factor 1 (HIF-1), as a main transcriptional regulator of metabolic adaptation to changes in the oxygen environment, participates in many physiological and pathological processes in the body, and is closely related to the pathogenesis of many diseases. This review outlines the mechanisms of HIF-1 activation, its signaling pathways, natural inhibitors, and its roles in diseases. This article can provide new insights in the diagnosis and treatment of human diseases, and recent progress on the development of HIF-1 inhibitors.


Assuntos
Fator 1 Induzível por Hipóxia , Transdução de Sinais , Doença , Humanos , Fator 1 Induzível por Hipóxia/fisiologia , Oxigênio
13.
Front Endocrinol (Lausanne) ; 12: 650284, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33763034

RESUMO

The earliest hypoxia-inducible factor (HIF) function was to respond to hypoxia or hypoxic conditions as a transcription factor. Recent studies have expanded our understanding of HIF, and a large amount of evidence indicates that HIF has an essential effect on central regulation of metabolism. The central nervous system's response to glucose, inflammation, and hormones' main influence on systemic metabolism are all regulated by HIF to varying degrees. In the hypothalamus, HIF mostly plays a role in inhibiting energy uptake and promoting energy expenditure, which depends not only on the single effect of HIF or a single part of the hypothalamus. In this paper, we summarize the recent progress in the central regulation of metabolism, describe in detail the role of HIF in various functions of the hypothalamus and related molecular mechanisms, and reveal that HIF is deeply involved in hypothalamic-mediated metabolic regulation.


Assuntos
Regulação da Expressão Gênica , Hipotálamo/metabolismo , Fator 1 Induzível por Hipóxia/metabolismo , Pró-Opiomelanocortina/metabolismo , Animais , Apetite , Drosophila melanogaster , Metabolismo Energético , Glucose/metabolismo , Homeostase , Humanos , Inflamação , NF-kappa B/metabolismo , Obesidade/metabolismo , Obesidade/prevenção & controle , Fosforilação , Espécies Reativas de Oxigênio
14.
Bioorg Chem ; 109: 104740, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33626453

RESUMO

Six new non-classical cardenolides (1-6), and seventeen known ones (7-23) were isolated from Calotropis gigantea. All cardenolides showed inhibitory effect on hypoxia inducible factor-1 (HIF-1) transcriptional activity with IC50 of 8.85 nM-16.69 µM except 5 and 7. The novel 19-dihydrocalotoxin (1) exhibited a comparable HIF-1 inhibitory activity (IC50 of 139.57 nM) to digoxin (IC50 of 145.77 nM), a well-studied HIF-1 inhibitor, and 11, 12, 14, 16 and 19 presented 1.4-15.4 folds stronger HIF-1 inhibition than digoxin. 1 and 11 showed a dose-dependent inhibition on HIF-1α protein, which led to their HIF-1 suppressing effects. Compared with LO2 and H9c2 normal cell lines, both 1 and 11 showed selective cytotoxicity against various cancer cell lines including HCT116, HeLa, HepG2, A549, MCF-7, A2780 and MDA-MB-231. Moreover, a comprehensive structure-activity relationship was concluded for these non-classical cardenolides as HIF-1 inhibitors, which may shed some light on the rational design and development of cardenolide-based anticancer drugs.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Calotropis/química , Cardenolídeos/farmacologia , Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Extratos Vegetais/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Cardenolídeos/química , Cardenolídeos/isolamento & purificação , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Conformação Molecular , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Relação Estrutura-Atividade
15.
Physiol Res ; 70(S3): S261-S273, 2021 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-35099246

RESUMO

Chronic wound is a serious medical issue due to its high prevalence and complications; hyperbaric oxygen therapy (HBOT) is also considered in comprehensive treatment. Clinical trials, including large meta-analyses bring inconsistent results about HBOT efficacy. This review is summarizing the possible effect of HBOT on the healing of chronic wound models at the cellular level. HBOT undoubtedly escalates the production of reactive oxygen and nitrogen radicals (ROS and RNS), which underlie both the therapeutic and toxic effects of HBOT on certain tissues. HBOT paradoxically elevates the concentration of Hypoxia inducible factor (HIF) 1 by diverting the HIF-1 degradation to pathways that are independent of the oxygen concentration. Elevated HIF-1 stimulates the production of different growth factors, boosting the healing process. HBOT supports synthesis of Heat shock proteins (HSP), which are serving as chaperones of HIF-1. HBOT has antimicrobial effect, increases the effectiveness of some antibiotics, stimulates fibroblasts growth, collagen synthesis and suppresses the activity of proteolytic enzymes like matrix metalloproteinases. All effects of HBOT were investigated on cell cultures and animal models, the limitation of their translation is discussed at the end of this review.


Assuntos
Oxigenoterapia Hiperbárica , Cicatrização , Ferimentos e Lesões/terapia , Animais , Proteínas de Choque Térmico/metabolismo , Humanos , Fator 1 Induzível por Hipóxia/metabolismo , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Resultado do Tratamento , Ferimentos e Lesões/metabolismo , Ferimentos e Lesões/patologia
16.
Acupunct Med ; 39(4): 367-375, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-32811184

RESUMO

OBJECTIVE: Electroacupuncture (EA) pretreatment appears useful in the treatment of chronic myocardial ischemia (CMI). The goal of this study was to investigate the effect of EA preconditioning on the regulation of hypoxia-inducible factor (HIF)-1α and vascular endothelial growth factor (VEGF) proteins in a CMI model of vascular regeneration. METHODS: A CMI model was established by subcutaneous injection of isoprinosine hydrochloride (ISO) for 14 days in 45 Wistar rats, which had been randomly divided into a model group (n = 15), a CMI group pretreated with sham EA for 21 days (CMI + Sham group, n = 15) and a CMI group pretreated with verum EA for 21 days (CMI + EA, n = 15) prior to modeling. An additional 15 Wistar rats received 0.9% sodium chloride via intraperitoneal injection for 14 consecutive days (control group). Serum levels of VEGF and HIF-1α were measured by ELISA, while protein expression of VEGF and HIF-1α in the area of myocardial infarction was measured by Western blotting. The area of myocardial infarction and fibrosis of the myocardial tissue in the study groups were visualized by hematoxylin-eosin (HE) staining and Masson staining, respectively. RESULTS: EA pretreatment improved cardiac function by regulating left ventricular end-diastolic diameter and left ventricular end-systolic diameter, left ventricular ejection fraction and the ST segment voltage of the electrocardiogram. EA pretreatment promoted vascular regeneration by increasing serum levels of VEGF and HIF-1α and by increasing protein expression of HIF-1α and VEGF in the infarcted region of the myocardium, leading to a reduction in the area of myocardial infarction on HE staining and reduction of myocardial fibrosis on Masson staining. CONCLUSION: EA pretreatment promotes protein expression of HIF-1α and VEGF in areas of ischemic myocardium, which may represent useful biomarkers for coronary collateral establishment and offer potential targets for therapeutic angiogenesis in patients with CMI.


Assuntos
Eletroacupuntura , Fator 1 Induzível por Hipóxia/metabolismo , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/terapia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Pontos de Acupuntura , Animais , Doença Crônica , Modelos Animais de Doenças , Humanos , Fator 1 Induzível por Hipóxia/genética , Masculino , Isquemia Miocárdica/genética , Isquemia Miocárdica/fisiopatologia , Neovascularização Fisiológica , Ratos , Ratos Wistar , Fator A de Crescimento do Endotélio Vascular/genética
17.
BMC Complement Med Ther ; 20(1): 298, 2020 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-33023593

RESUMO

BACKGROUND: Diabetic retinopathy (DR) is a common and serious microvascular complication of diabetes. Taohong Siwu decoction (THSWD), a famous traditional Chinese medicine (TCM) prescription, has been proved to have a good clinical effect on DR, whereas its molecular mechanism remains unclear. Our study aimed to uncover the core targets and signaling pathways of THSWD against DR. METHODS: First, the active ingredients of THSWD were searched from Traditional Chinese Medicine Systems Pharmacology (TCMSP) Database. Second, the targets of active ingredients were identified from ChemMapper and PharmMapper databases. Third, DR associated targets were searched from DisGeNET, DrugBank and Therapeutic Target Database (TTD). Subsequently, the common targets of active ingredients and DR were found and analyzed in STRING database. DAVID database and ClueGo plug-in software were used to carry out the gene ontology (GO) and KEGG enrichment analysis. The core signaling pathway network of "herb-ingredient-target" was constructed by the Cytoscape software. Finally, the key genes of THSWD against DR were validated by quantitative real-time PCR (qRT-PCR). RESULTS: A total of 2340 targets of 61 active ingredients in THSWD were obtained. Simultaneously, a total of 263 DR-associated targets were also obtained. Then, 67 common targets were found by overlapping them, and 23 core targets were identified from protein-protein interaction (PPI) network. Response to hypoxia was found as the top GO term of biological process, and HIF-1 signaling pathway was found as the top KEGG pathway. Among the key genes in HIF-1 pathway, the mRNA expression levels of VEGFA, SERPINE1 and NOS2 were significantly down-regulated by THSWD (P < 0.05), and NOS3 and HMOX1 were significantly up-regulated (P < 0.05). CONCLUSION: THSWD had a protective effect on DR via regulating HIF-1 signaling pathway and other important pathways. This study might provide a theoretical basis for the application of THSWD and the development of new drugs for the treatment of DR.


Assuntos
Retinopatia Diabética/tratamento farmacológico , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Fator 1 Induzível por Hipóxia/metabolismo , Linhagem Celular , Ontologia Genética , Humanos , Mapas de Interação de Proteínas
18.
Int J Chron Obstruct Pulmon Dis ; 15: 1997-2004, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32921997

RESUMO

Background: Chronic obstructive pulmonary disease (COPD) is a chronic airway inflammatory disease characterized by irreversible airflow obstruction. Pathogenic mechanisms underlying COPD remain largely unknown. Objective: The current study was designed to explore serum concentration of hypoxia-inducible factor 1α (HIF-1α) in stable COPD patients and the potential effect of Lycium barbarum polysaccharides (LBP) on HIF-1α protein expression. Methods: Serum HIF-1α was quantified by ELISA in 102 stable COPD patients before and after 2-week orally taken LBP (100 mL/time, twice daily, 5-15 mg/mL). Correlation of serum LBP and lung function (FEV1%) or blood gas (PO2 and PCO2) was also analyzed. As a control, 105 healthy subjects were also enrolled into this study. Results: Serum concentration of HIF-1α was significantly higher in the stable COPD patients (37.34 ± 7.20 pg/mL) than that in the healthy subjects (29.55 ± 9.66 pg/mL, P<0.001). Oral administration of LBP (5 mg/mL, 100 mL, twice daily for 2 weeks) not only relieved COPD symptoms but also significantly reduced serum HIF-1α concentration (36.94 ± 9.23 vs 30.49 ± 6.42 pg/mL, P<0.05). In addition, level of serum HIF-1α concentration was significantly correlated with PCO2 (r = 0.283, P<0.001), but negatively and significantly correlated with PO2 (r = -0.490, P=0.005) or FEV1%(r = -0.420, P=0.018). Conclusion: These findings suggested that activation of HIF-1 signaling pathway may be involved in the pathophysiology of COPD and that stabilization of serum HIF-1α concentration by LBP might benefit the stable COPD patients.


Assuntos
Medicamentos de Ervas Chinesas , Doença Pulmonar Obstrutiva Crônica , Medicamentos de Ervas Chinesas/farmacologia , Humanos , Fator 1 Induzível por Hipóxia , Subunidade alfa do Fator 1 Induzível por Hipóxia , Pulmão , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico
19.
Biochim Biophys Acta Mol Basis Dis ; 1866(10): 165842, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32446740

RESUMO

Wilson's disease is an autosomal recessive disease characterized by excess copper accumulated in the liver and brain. It is caused by mutations in the copper transporter gene ATP7B. However, based on the poor understanding of the transcriptional program involved in the pathogenesis of Wilson's disease and the lack of more safe and efficient therapies, the identification of novel pathways and the establishment of complementary model systems of Wilson's disease are urgently needed. Herein, we generated two zebrafish atp7b-mutant lines using the CRISPR/Cas9 editing system, and the mutants developed hepatic and behavioral deficits similar to those observed in humans with Wilson's disease. Interestingly, we found that atp7b-deficient zebrafish embryos developed liver steatosis under low-dose Cu exposure, and behavioral deficits appeared under high-dose Cu exposure. Analyses of publicly available transcriptomic data from ATP7B-knockout HepG2 cells demonstrated that the HIF-1 signaling pathway is downregulated in ATP7B-knockout HepG2 cells compared with wildtype cells following Cu exposure. The HIF-1 signaling pathway was also downregulated in our atp7b-deficient zebrafish mutants following Cu exposure. Furthermore, we demonstrate that activation of the HIF-1 signaling pathway with the chemical compound FG-4592 or DMOG ameliorates liver steatosis and reduces accumulated Cu levels in zebrafish atp7b deficiency models. These findings introduce a novel prospect that modulation of the HIF-1 signaling pathway should be explored as a novel strategy to reduce copper toxicity in Wilson's disease patients.


Assuntos
ATPases Transportadoras de Cobre/genética , Fígado Gorduroso/metabolismo , Degeneração Hepatolenticular/genética , Degeneração Hepatolenticular/metabolismo , Fator 1 Induzível por Hipóxia/metabolismo , Fígado/metabolismo , Transdução de Sinais/fisiologia , Proteínas de Peixe-Zebra/genética , Animais , Sistemas CRISPR-Cas , Cobre/metabolismo , Cobre/toxicidade , Modelos Animais de Doenças , Fígado Gorduroso/genética , Fígado Gorduroso/patologia , Feminino , Técnicas de Inativação de Genes , Células Hep G2 , Hepatócitos/metabolismo , Humanos , Fígado/patologia , Masculino , Mutação , Peixe-Zebra
20.
Nutrition ; 72: 110656, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31901710

RESUMO

OBJECTIVE: The aim of this study was to investigate the effects of cholecalciferol supplementation on serum levels of angiogenic parameters in patients with breast cancer (BC) who were treated with tamoxifen. METHODS: This was a pilot-based, randomized, triple-blind, placebo-controlled clinical trial with 52 patients with BC randomly assigned to either an intervention group receiving weekly 50 000 IU cholecalciferol or a placebo group for 8 wk. At baseline and at end of study, serum levels of angiogenic growth factors such as vascular endothelial growth factor (VEGF)-A, angiopoietin (Ang)-2, hypoxia-inducible factor (Hif)-1, and high-sensitivity C-reactive protein were measured by enzyme-linked immunosorbent assay. Every 4 wk, a completed 3-d, 24-h dietary record and daily sunlight exposure checklist were collected and anthropometric variables were measured. RESULTS: The ultimate number of participants in each arm was 22 for analyses. For premenopausal women, cholecalciferol supplementation resulted in a significant decrease in serum levels of Ang-2 and VEGF-A after 8 wk of treatment (P < 0.05). In the absence of vascular invasion, supplementation led to a significant decrease in Ang-2 levels compared with the placebo group (P < 0.05). Supplementation caused significant increases in Hif-1 in patients diagnosed with the infiltration of tumors into vascular or lymphatic vessels (P < 0.05). CONCLUSION: Cholecalciferol supplementation achieved sufficient efficacy among patients with BC taking tamoxifen and could be effective in the reduction of angiogenic biomarkers particularly dependent on the infiltration status of the tumor to vessels. Further studies with larger subgroups should be investigated.


Assuntos
Angiopoietina-2/sangue , Neoplasias da Mama/sangue , Colecalciferol/administração & dosagem , Suplementos Nutricionais , Fator A de Crescimento do Endotélio Vascular/sangue , Vitaminas/administração & dosagem , Adulto , Antineoplásicos Hormonais , Biomarcadores/sangue , Neoplasias da Mama/terapia , Método Duplo-Cego , Feminino , Humanos , Fator 1 Induzível por Hipóxia/sangue , Pessoa de Meia-Idade , Projetos Piloto , Pós-Menopausa/sangue , Pré-Menopausa/sangue , Projetos de Pesquisa , Tamoxifeno/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA