Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Respir Res ; 23(1): 340, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36496404

RESUMO

BACKGROUND: Premature infants, subjected to supplemental oxygen and mechanical ventilation, may develop bronchopulmonary dysplasia, a chronic lung disease characterized by alveolar dysplasia and impaired vascularization. We and others have shown that hyperoxia causes senescence in cultured lung epithelial cells and fibroblasts. Although miR-34a modulates senescence, it is unclear whether it contributes to hyperoxia-induced senescence. We hypothesized that hyperoxia increases miR-34a levels, leading to cellular senescence. METHODS: We exposed mouse lung epithelial (MLE-12) cells and primary human small airway epithelial cells to hyperoxia (95% O2/5% CO2) or air (21% O2/5% CO2) for 24 h. Newborn mice (< 12 h old) were exposed to hyperoxia (> 95% O2) for 3 days and allowed to recover in room air until postnatal day 7. Lung samples from premature human infants requiring mechanical ventilation and control subjects who were not mechanically ventilated were employed. RESULTS: Hyperoxia caused senescence as indicated by loss of nuclear lamin B1, increased p21 gene expression, and senescence-associated secretory phenotype factors. Expression of miR-34a-5p was increased in epithelial cells and newborn mice exposed to hyperoxia, and in premature infants requiring mechanical ventilation. Transfection with a miR-34a-5p inhibitor reduced hyperoxia-induced senescence in MLE-12 cells. Additionally, hyperoxia increased protein levels of the oncogene and tumor-suppressor Krüppel-like factor 4 (KLF4), which were inhibited by a miR-34a-5p inhibitor. Furthermore, KLF4 knockdown by siRNA transfection reduced hyperoxia-induced senescence. CONCLUSION: Hyperoxia increases miR-34a-5p, leading to senescence in lung epithelial cells. This is dictated in part by upregulation of KLF4 signaling. Therefore, inhibiting hyperoxia-induced senescence via miR-34a-5p or KLF4 suppression may provide a novel therapeutic strategy to mitigate the detrimental consequences of hyperoxia in the neonatal lung.


Assuntos
Displasia Broncopulmonar , Hiperóxia , Fator 4 Semelhante a Kruppel , MicroRNAs , Animais , Humanos , Camundongos , Animais Recém-Nascidos , Displasia Broncopulmonar/genética , Displasia Broncopulmonar/tratamento farmacológico , Dióxido de Carbono , Senescência Celular , Células Epiteliais/metabolismo , Hiperóxia/genética , Hiperóxia/metabolismo , Fator 4 Semelhante a Kruppel/genética , Fator 4 Semelhante a Kruppel/metabolismo , Pulmão/metabolismo , MicroRNAs/metabolismo
2.
Iran J Allergy Asthma Immunol ; 20(3): 314-325, 2021 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-34134453

RESUMO

Perturbed expression of microRNAs (miRs) has been reported in different diseases including autoimmune and chronic inflammatory disorders. In this study, we investigated the expression of miR-25-3p and its targets in the central nervous system (CNS) tissue from mice with experimental autoimmune encephalomyelitis (EAE). We also analyzed the expression of miR-25 and its targets in activated macrophages and splenocytes. EAE was induced in 12-week old female C57BL/6 mice; using myelin oligodendrocyte glycoprotein 35-55/complete Freund's adjuvant (MOG35-55/CFA) protocol. The expression of miR-25-3p and its targets, as well as the expression of inflammatory cytokines, were analyzed. We next established primary macrophage cultures as well as splenocyte cultures and evaluated the levels of miR-25-3p and its target genes in these cells following activation with lipopolysaccharide (LPS) and anti-CD3/anti-CD28 antibodies, respectively. MiR-25-3p expression showed a strong positive correlation with the expression of tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1α, and IL-6 pro-inflammatory cytokines. The expression of phosphatase and tensin homolog (Pten) and Krüppel-like factor 4 (Klf4) was significantly reduced at the peak of the disease. Interestingly, Pten and Klf4 expression showed a significant negative correlation with miR-25-3p. Analysis of miR-25-3p expression in LPS-treated primary macrophages revealed significant upregulation in cells treated with 100ng/ml of LPS. This was associated with suppressed levels of miR-25-3p targets in these cells. However, anti-CD3/anti-CD28-stimulated splenocytes failed to show any alterations in miR-25-3p expression compared with vehicle-treated cells. Our results indicate that miR-25-3p expression is likely induced by inflammatory mediators during autoimmune neuroinflammation. This upregulation is associated with decreased levels of Pten and Klf4, genes with known roles in cell cycle regulation and inflammation.


Assuntos
Citocinas/metabolismo , Encefalomielite Autoimune Experimental/enzimologia , Mediadores da Inflamação/metabolismo , Macrófagos/enzimologia , MicroRNAs/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Baço/enzimologia , Linfócitos T/enzimologia , Animais , Autoimunidade , Células Cultivadas , Citocinas/genética , Encefalomielite Autoimune Experimental/induzido quimicamente , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/imunologia , Feminino , Adjuvante de Freund , Regulação da Expressão Gênica , Fator 4 Semelhante a Kruppel/genética , Fator 4 Semelhante a Kruppel/metabolismo , Ativação de Macrófagos , Macrófagos/imunologia , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Glicoproteína Mielina-Oligodendrócito , PTEN Fosfo-Hidrolase/genética , Fragmentos de Peptídeos , Transdução de Sinais , Baço/imunologia , Linfócitos T/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA