Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
Mais filtros

Medicinas Complementares
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Phytomedicine ; 128: 155386, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38522317

RESUMO

BACKGROUND: Maternal immune activation (MIA) is a significant factor inducing to autism spectrum disorder (ASD) in offspring. The fundamental principle underlying MIA is that inflammation during pregnancy impedes fetal brain development and triggers behavioural alterations in offspring. The intricate pathogenesis of ASD renders drug treatment effects unsatisfactory. Traditional Chinese medicine has strong potential due to its multiple therapeutic targets. Yigansan, composed of seven herbs, is one of the few that has been proven to be effective in treating neuro-psychiatric disorders among numerous traditional Chinese medicine compounds, but its therapeutic effect on ASD remains unknown. HYPOTHESIS: Yigansan improves MIA-induced ASD-like behaviours in offspring by regulating the IL-17 signalling pathway. METHODS: Pregnant C57BL/6J mice were intraperitoneally injected with poly(I:C) to construct MIA models and offspring ASD models. Network analysis identified that the IL-17A/TRAF6/MMP9 pathway is a crucial pathway, and molecular docking confirmed the binding affinity between the monomer of Yigansan and target proteins. qRT-PCR and Western blot were used to detect the expression levels of inflammatory factors and pathway proteins, immunofluorescence was used to detect the distribution of IL-17A, and behavioural tests were used to evaluate the ASD-like behaviours of offspring. RESULTS: We demonstrated that Yigansan can effectively alleviate MIA-induced neuroinflammation of adult offspring by regulating the IL-17A/TRAF6/MMP9 pathway, and the expression of IL-17A was reduced in the prefrontal cortex. Importantly, ASD-like behaviours have been significantly improved. Moreover, we identified that quercetin is the effective monomer for Yigansan to exert therapeutic effects. CONCLUSION: Overall, this study was firstly to corroborate the positive therapeutic effect of Yigansan in the treatment of ASD. We elucidated the relevant molecular mechanism and regulatory pathway involved, determined the optimal therapeutic dose and effective monomer, providing new solutions for the challenges of drug therapy for ASD.


Assuntos
Transtorno do Espectro Autista , Medicamentos de Ervas Chinesas , Interleucina-17 , Metaloproteinase 9 da Matriz , Camundongos Endogâmicos C57BL , Transdução de Sinais , Fator 6 Associado a Receptor de TNF , Animais , Interleucina-17/metabolismo , Feminino , Gravidez , Fator 6 Associado a Receptor de TNF/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Camundongos , Transdução de Sinais/efeitos dos fármacos , Transtorno do Espectro Autista/tratamento farmacológico , Transtorno do Espectro Autista/induzido quimicamente , Modelos Animais de Doenças , Simulação de Acoplamento Molecular , Poli I-C/farmacologia , Masculino , Efeitos Tardios da Exposição Pré-Natal
2.
Phytomedicine ; 128: 155518, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38552431

RESUMO

BACKGROUND: Gastrodia elata (Orchidaceae) is a medicinal plant used in traditional Chinese medicine. The rhizomes contain numerous active components, of which Gastrodin (p-hydroxymethylphenyl-B-D-glucopyranoside) forms the basis of the traditional medicine Gastrodiae Rhizoma. Gastrodin is also found in other medicinal plants and has neuroprotective, antioxidant, and anti-inflammatory effects. Neuroinflammation plays a crucial role in neurodegeneration. Research indicates that consuming meals and drinks containing Gastrodiaelata can enhance cognitive functioning and memory in elderly patients. The mechanisms relevant to the problem have not been completely understood. PURPOSE: The aim was to examine the in vivo and in vitro anti-neuroinflammatory effects of Gastrodin. STUDY DESIGN: The neuroprotective effects of Gastrodin on the TLR4/TRAF6/NF-κB pathway and Stat3 phosphorylation in LPS-treated C57BL/6 mice and BV-2 cells were investigated. METHODS: 1. C57BL/6 mice were assigned to model, gastrodin, donepezil, and control groups (n = 10 per group). The Gastrodin group received 100 mg/kg/d for five days, and the Dopenezil group 1.3 mg/kg/d. A neuroinflammation model was established by administering intraperitoneal injections of 2 mg/kg LPS to all groups, excluding the control. To induce microglial activation in Gastrodin-treated mouse microglial BV-2 cells, 1 µg/ml LPS was introduced for 24 h Morris water mazes were utilized to evaluate learning and spatial memory. Expression and subcellular localization of TLR4/TRAF6/NF-κB axis-related proteins and p-Stat3, Iba-1, GFAP, iNOS, and CD206 were assessed by immunofluorescence, western blots, and ELISA. qRT-PCR was performed to determine and measure IL-1ß, TNF-α, cell migration, and phagocytosis. Overexpression of TRAF6 was induced by transfection, and the effect of Gastrodin on IL-1ß and p-NF-κB p65 levels was assessed. RESULTS: 1. In mice, gastrodin treatment mitigated LPS-induced deficits in learning and spatial memory, as well as reducing neuroinflammation in the hippocampus, expression of TLR4/TRAF6/NF-κB pathway proteins, activation of microglia and astrocytes, and phosphorylation of Stat3. 2. Gastrodin pretreatment improved LPS-induced inflammation in vitro, reducing expression of TLR4/TRAF6/NF-κB-associated proteins and p-Stat3, inducing microglial transformation from M1 to M2, and inhibiting migration and phagocytosis. Overexpression of TRAF6 inhibited the Gastrodin-induced effects. CONCLUSION: Gastrodin suppresses neuroinflammation and microglial activation by modifying the TLR4/TRAF6/NF-κB pathway and Stat3 phosphorylation.


Assuntos
Doença de Alzheimer , Álcoois Benzílicos , Modelos Animais de Doenças , Glucosídeos , Camundongos Endogâmicos C57BL , Microglia , NF-kappa B , Doenças Neuroinflamatórias , Fator 6 Associado a Receptor de TNF , Receptor 4 Toll-Like , Animais , Receptor 4 Toll-Like/metabolismo , Álcoois Benzílicos/farmacologia , Glucosídeos/farmacologia , Fator 6 Associado a Receptor de TNF/metabolismo , Microglia/efeitos dos fármacos , Microglia/metabolismo , NF-kappa B/metabolismo , Doença de Alzheimer/tratamento farmacológico , Camundongos , Doenças Neuroinflamatórias/tratamento farmacológico , Masculino , Fármacos Neuroprotetores/farmacologia , Gastrodia/química , Transdução de Sinais/efeitos dos fármacos , Lipopolissacarídeos , Fator de Transcrição STAT3/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Linhagem Celular , Fosforilação/efeitos dos fármacos , Anti-Inflamatórios/farmacologia
3.
J Ethnopharmacol ; 325: 117897, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38336180

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Bushen Quhan Zhiwang decoction (BQZD), a formula in traditional Chinese medicine (TCM), effectively delays bone destruction in rheumatoid arthritis (RA) patients. However, its chemical constituents, absorbed components, and metabolites remain unrevealed, and its mechanism in treating bone destruction in RA needs further investigation. AIM OF THE STUDY: Our objective is to identify the chemical constituents, absorbed components, and metabolites of BQZD and explore the potential mechanisms of BQZD in treating bone destruction in RA. MATERIALS AND METHODS: This study systematically identified the chemical constituents, absorbed components, and metabolites of BQZD using ultra-performance liquid chromatography with Q-Exactive Orbitrap mass spectrometry combined with parallel reaction monitoring. The absorbed components and metabolites were subjected to network pharmacology analysis to predict the potential mechanisms of BQZD in treating bone destruction in RA. The in vivo anti-osteoclastogenic and underlying mechanism were further verified in collagen-induced arthritis (CIA) rats. RESULTS: A total of 182 compounds were identified in BQZD, 27 of which were absorbed into plasma and organs and 42 metabolites were identified in plasma and organs. The KEGG analysis revealed that MAPK signaling pathway was highly prioritized. BQZD treatment attenuated paw swelling and the arthritis index; suppressed synovial hyperplasia, bone destruction, and osteoclast differentiation; and inhibited the levels of TNF-α, IL-1ß, and IL-6 in CIA rats. Mechanically, BQZD significantly decreased the protein expression levels of TRAF6, NFATc1, p-JNK, and p-p38, which might be related to 9 absorbed components and 1 metabolite. CONCLUSION: This study revealed the key active components and metabolites of BQZD. BQZD exhibits bone-protective effects via TRAF6/p38/JNK MAPK pathway, which may be associated with 9 absorbed components and 1 metabolite.


Assuntos
Artrite Experimental , Artrite Reumatoide , Medicamentos de Ervas Chinesas , Humanos , Ratos , Animais , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Farmacologia em Rede , Fator 6 Associado a Receptor de TNF , Artrite Reumatoide/tratamento farmacológico , Medicina Tradicional Chinesa , Artrite Experimental/tratamento farmacológico
4.
J Ethnopharmacol ; 319(Pt 3): 117306, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37839770

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Echinacea purpurea (L.) Moench (EP) is a perennial herbaceous flowering plant with immunomodulatory effects. However, the immunomodulatory effects of EP on broilers after vaccination are still unclear. AIM OF THE STUDY: The aim is to study the effect of EP and Echinacea purpurea (L.) Moench extracts(EE) on avian influenza virus (AIV) immunity, and further explore the potential mechanism of immune regulation. MATERIALS AND METHODS: Broilers were fed with feed additives containing 2% EP or 0.5% EE, and vaccinated against avian influenza. The samples were collected on the 7th, 21st, and 35th day after vaccination, and the feed conversion ratio (FCR) was calculated. Blood antibody titer, jejunal sIgA content, tight junction protein, gene and protein expression of TLR4-MAPK signaling pathway were also detected. RESULTS: The results showed that vaccination could cause immune stress, weight loss, increase sIgA content, and up-regulate the expression of tight junction proteins, including zonula occludens-1 (ZO-1), Occludin, and Claudin-1, as well as the genes of Toll-like receptor 4 (TLR4), myeloid differentiation primary response 88 (MyD88), receptor-associated factor 6 (TRAF6), activator protein 1 (AP-1) protein gene expression on TLR4-mitogen-activated protein kinase (MAPK) signaling pathway, and the protein expression of MyD88, extracellular regulated protein kinases (ERK), and c-Jun N-terminal kinase (JNK). EP and EE could increase the body weight of broilers, further improve antibody titers, decrease FCR, increase sIgA levels, up-regulate the expression of tight junction proteins, including ZO-1, Occludin, and Claudin-1, as well as the genes of TLR4, MyD88, TRAF6, and AP-1 and the protein expression of MyD88, ERK, and JNK in the TLR4-MAPK signaling pathway. CONCLUSION: In conclusion, EP and EE can increase the broiler's production performance and improve vaccine immune effect through the TLR4-MAPK signaling pathway.


Assuntos
Echinacea , Vacinas contra Influenza , Influenza Aviária , Animais , Galinhas , Receptor 4 Toll-Like/genética , Claudina-1 , Fator 88 de Diferenciação Mieloide , Ocludina , Fator 6 Associado a Receptor de TNF , Fator de Transcrição AP-1 , Imunização , Vacinação , Proteínas Adaptadoras de Transdução de Sinal , Proteínas Quinases Ativadas por Mitógeno , Imunoglobulina A Secretora
5.
J Tradit Chin Med ; 43(6): 1103-1109, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37946472

RESUMO

OBJECTIVE: To observe the effect of electroacupuncture (EA) stimulating Zusanli (ST36), Sanyinjiao (SP6) on inhibition of osteoclastogenesis and the role of the adenosine A2A receptor (A2AR) and the p38α Mitogen-Activated Protein Kinase (MAPK) signaling pathway in mediating this effect. METHODS: Mice with collagen induced arthritis (CIA) received different treatments. Immunohistochemistry and western blotting were used to determine the levels of multiple signaling molecules in these joints [receptor activator of nuclear transcription factor-κB (NF-κB) ligand (RANKL), receptor activator of NF-κB (RANK), tumor necrosis factor receptor associated factor 6 (TRAF6), p38α, NF-κB, and nuclear factor of activated T cells C1 (NFATc1)]. Osteoclasts were identified using tartrate-resistant acid phosphatase (TRAP) staining. RESULTS: The immunohistochemistry results indicated upregulation of p38α, NF-κB, and NFATc1 in the CIA-control and CIA-EA-SCH58261 groups, but reduced levels in the CIA-EA group. Western blotting indicated upregulation of RANKL, RANK, TRAF6, p38α, NF-κB, and NFATc1 in the CIA-control and CIA-EA-SCH58261 groups, but reduced expression in the CIA-EA group. Osteoclasts were more abundant in the CIA-control and CIA-EA-SCH58261 groups than in the CIA-EA group. CONCLUSIONS: EA treatment enhanced the A2AR activity and inhibited osteoclast formation by inhibition of RANKL, RANK, TRAF6, p38α, NF-κB, and NFATc1. SCH58261 reversed the effect of EA. These results suggest that EA regulated p38α-MAPK signaling by increasing A2AR activity, which inhibited osteoclastogenesis.


Assuntos
Artrite Experimental , Eletroacupuntura , Proteína Quinase 14 Ativada por Mitógeno , Animais , Camundongos , Osteogênese , NF-kappa B/genética , NF-kappa B/metabolismo , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Receptor A2A de Adenosina/metabolismo , Fator 6 Associado a Receptor de TNF/genética , Diferenciação Celular , Transdução de Sinais , Ligante RANK/genética , Ligante RANK/metabolismo
6.
J Nat Med ; 77(4): 898-915, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37598111

RESUMO

In diabetic patients, diabetic cardiomyopathy (DCM) is one of the most common causes of death. The inflammatory response is essential in the pathogenesis of DCM. Rhein, an anthraquinone compound, is extracted from the herb rhubarb, demonstrating various biological activities. However, it is unclear whether rhein has an anti-inflammatory effect in treating DCM. In our research, we investigated the anti-inflammatory properties as well as its possible mechanism. According to the findings in vitro, rhein could to exert an anti-inflammatory effect by reducing the production of NO, TNF-α, PGE2, iNOS, and COX-2 in RAW264.7 cells that had been stimulated with advanced glycosylation end products (AGEs). In addition, rhein alleviated H9C2 cells inflammation injury stimulated by AGEs/macrophage conditioned medium (CM). In vivo have depicted that continuous gavage of rhein could improve cardiac function and pathological changes. Moreover, it could inhibit the accumulation of AGEs and infiltration of inflammatory factors inside the heart of rats having DCM. Mechanism study showed rhein could suppress IKKß and IκB phosphorylation via down-regulating TRAF6 expression to inhibit NF-κB pathway in AGEs/CM-induced H9C2 cells. Moreover, the anti-inflammation effect of rhein was realized through down-regulation phosphorylation of JNK MAPK. Furthermore, we found JNK MAPK could crosstalk with NF-κB pathway by regulating IκB phosphorylation without affecting IKKß activity. And hence, the protective mechanism of rhein may involve the inhibiting of the TRAF6-NF/κB pathway, the JNK MAPK pathway, and the crosstalk between the two pathways. These results suggested that rhein may be a promising drug candidate in anti-inflammation and inflammation-related DCM therapy.


Assuntos
Diabetes Mellitus , Cardiomiopatias Diabéticas , Animais , Ratos , Cardiomiopatias Diabéticas/tratamento farmacológico , NF-kappa B , Quinase I-kappa B , Fator 6 Associado a Receptor de TNF , Antraquinonas/farmacologia , Antraquinonas/uso terapêutico , Proteínas Serina-Treonina Quinases , Produtos Finais de Glicação Avançada
7.
Microb Pathog ; 182: 106244, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37423495

RESUMO

PURPOSE: Ulcerative colitis is an inflammation-related disease with a high recurrence risk. Oxysophocarpine (OSC) is a traditional Chinese medicine isolated from legumes and exerts vital functions on many human diseases. However, the OSC's role in ulcerative colitis has not been fully elucidated. This research aimed to investigate the OSC's impact on ulcerative colitis and its mechanisms. METHODS: A mouse model of ulcerative colitis was induced by dextran sulphate sodium (DSS). The effect of OSC on ulcerative colitis was examined using Disease Activity Index detection, hematoxylin-eosin (HE) staining, and enzyme-linked immunosorbent assay (ELISA). Meanwhile, the mechanism of OSC in ulcerative colitis was assessed by immunohistochemistry assay, Western blot, HE staining, and ELISA. RESULTS: For the OSC's function in ulcerative colitis, OSC increased the mice weight, decreased Disease Activity Index scores, and alleviated colitis cell infiltration and epithelial cell destruction in DSS-induced ulcerative colitis. Also, OSC mitigated oxidative stress (decreased PGE2, MPO levels, and increased SOD levels) and inflammation (decreased IL-6, TNF-α and IL-1ß levels) in DSS-induced ulcerative colitis. For the OSC's mechanism in ulcerative colitis, OSC inhibited the level of tumor necrosis factor receptor-associated Factor 6 (TRAF6) and the phosphorylation of nuclear factor-κB (NF-κB). TRAF6 overexpression abolished the effect of OSC on DSS-induced colon injury and its associated oxidative stress and inflammatory properties in ulcerative colitis. CONCLUSION: OSC decreased the TRAF6 level to reduce oxidative stress and inflammatory factors secretion in mice with DSS induced-ulcerative colitis.


Assuntos
Alcaloides , Colite Ulcerativa , Fator 6 Associado a Receptor de TNF , Animais , Humanos , Camundongos , Alcaloides/farmacologia , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/metabolismo , Colo/patologia , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Inflamação/patologia , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Estresse Oxidativo
8.
Fish Shellfish Immunol ; 139: 108921, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37385461

RESUMO

This study aimed to evaluate the effects of dietary supplementation with Bacillus velezensis R-71003 combined with sodium gluconate on antioxidant capacity, immune response and resistance against Aeromonas hydrophila in common carp. In addition, the biocontrol potential of the secondary metabolites of B. velezensis R-71003 was also evaluated to analyze the possible mechanism of B. velezensis R-71003 against A. hydrophila. The results indicated that the antibacterial crude extract of B. velezensis R-71003 can destroy the cell wall of A. hydrophila. Moreover, the results showed that dietary B. velezensis R-71003 could promote antioxidant capacity, which significantly increased the activities of CAT and SOD and decreased the content of MDA. Additionally, B. velezensis R-71003 supplementation significantly enhanced the immunity of common carp, as measured by the mRNA expression levels of cytokine-related genes (TNF-α, TGF-ß, IL-1ß and IL-10). In addition, dietary B. velezensis R-71003 exhibited an upregulation of IL-10 and a downregulation of IL-1ß, coupled with higher survival rates when challenged with A. hydrophila compared to the positive group. Furthermore, compared to prechallenge, the mRNA expression levels of TLR-4, MyD88, IRAK1, TRAF6, TRIF and NF-κB in the head kidney of common carp were significantly increased after challenge. The fish fed the B. velezensis R-71003 diet showed lower expression of TLR-4, MyD88, IRAK1, TRAF6, TRIF and NF-κB after the challenge than those fed the control diet. Thus, this study revealed that B. velezensis R-71003 can improve the resistance of common carp to pathogenic bacteria by destroying bacterial cell walls and improving fish immunity by activating the TLR4 signaling pathway. Importantly, this study indicated that sodium gluconate has a positive effect on B. velezensis R-71003 in enhancing the anti-infection ability of common carp. The results of this study will lay the foundation for the application of B. velezensis R-71003 in combination with sodium gluconate as an alternative to antibiotics in aquaculture.


Assuntos
Carpas , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Animais , Antioxidantes/metabolismo , Suplementos Nutricionais , Interleucina-10/metabolismo , Aeromonas hydrophila/fisiologia , NF-kappa B/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo , Receptor 4 Toll-Like , Resistência à Doença , Dieta/veterinária , RNA Mensageiro , Carpas/metabolismo , Proteínas Adaptadoras de Transporte Vesicular , Ração Animal/análise
9.
Pharm Biol ; 61(1): 897-906, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37288729

RESUMO

CONTEXT: Plantamajoside (PMS) possesses rich pharmacological characteristics that have been applied to remedy dozens of diseases. However, the understanding of PMS in sepsis remains insufficient. OBJECTIVE: Role of PMS in sepsis-regulated organ dysfunction and potential mechanisms were investigated. MATERIALS AND METHODS: Thirty C57BL/6 male mice were adaptive fed for three days and used to establish acute sepsis model by caecal ligation and perforation (CLP). These experimental mice were divided into Sham, CLP, CLP + 25 mg PMS/kg body weight (PMS/kg), CLP + 50 mg PMS/kg and CLP + 100 mg PMS/kg (n = 6). The pathological and apoptotic changes of lung, liver and heart tissues were observed via HE and TUNEL staining. The injury-related factors of lung, liver and heart were detected by corresponding kits. ELISA and qRT-PCR were applied to assess IL-6/TNF-α/IL-1ß levels. Apoptosis-related and TRAF6/NF-κB-related proteins were determined using Western blotting. RESULTS: All doses of PMS enhanced the survival rates in the sepsis-induced mouse model. PMS remitted sepsis-mediated lung, liver and heart injury through prohibiting MPO/BALF (70.4%/85.6%), AST/ALT (74.7%/62.7%) and CK-MB/CK (62.3%/68.9%) levels. Moreover, the apoptosis index (lung 61.9%, liver 50.2%, heart 55.7% reduction) and IL-6/TNF-α/IL-1ß levels were suppressed by PMS. Furthermore, PMS lowered TRAF6 and p-NF-κB p65 levels, whereas TRAF6 overexpression reversed the protective influences of PMS in organ injury, apoptosis and inflammation triggered by sepsis. DISCUSSION AND CONCLUSIONS: PMS suppressed sepsis-induced organ dysfunction by regulating the TRAF6/NF-κB axis, and PMS treatment may be considered as a novel strategy for sepsis-caused damage in future.


Assuntos
NF-kappa B , Sepse , Camundongos , Masculino , Animais , NF-kappa B/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Insuficiência de Múltiplos Órgãos/tratamento farmacológico , Insuficiência de Múltiplos Órgãos/etiologia , Insuficiência de Múltiplos Órgãos/prevenção & controle , Camundongos Endogâmicos C57BL , Sepse/complicações , Sepse/tratamento farmacológico
10.
J Ethnopharmacol ; 317: 116764, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37315650

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Vetiver (Chrysopogon zizanioides) is indigenous to India where it is traditionally used to relief rheumatisms, lumbagos and sprains. Vetiver anti-inflammatory activity has not been previously investigated, and its specific interactions with body inflammation cascade remain largely unknown. AIM OF THE STUDY: The present work was performed to validate the ethnobotanical use of the plant and compare the anti-inflammatory activities of the ethanolic extracts of the most traditionally used part (aerial part) to that of the root. Furthermore, we attempt to reveal the molecular mechanism of this anti-inflammatory activity in correlation to the chemical composition of C. zizanioides aerial (CA) and root parts (CR). MATERIALS AND METHODS: Ultraperformance liquid chromatography coupled to high resolution mass spectrometry (UHPLC/HRMS) was used for comprehensive analysis of both CA and CR. The anti-inflammatory effect of both extracts was evaluated in complete Freund's adjuvant (CFA)-induced RA model in Wistar rats. RESULTS: Phenolic metabolites were predominant in CA and 42 were identified for the first time, while only 13 were identified in CR. Meanwhile, triterpenes and sesquiterpenes were confined to the root extract. In CFA arthritis model, CA showed better anti-inflammatory activity than CR marked by an increase in serum level of IL-10 with simultaneous decrease in pro-inflammatory markers; IL-6, ACPA and TNF-α and was evident in histopathological examination. This anti-inflammatory effect was accompanied by down-regulation of JAK2/STAT3/SOCs3, ERK1/ERK2, TRAF6/c-FOS/NFATC1, TRAF6/NF-κB/NFATC1 and RANKL pathways which were all upregulated after CFA injection. These pathways were modulated to larger extent by CA, except for ERK1/ERK2 which was downregulated more effectively by CR. This differential effect between CA and CR can be explained by the variability in their phytoconstituents profile. CONCLUSION: In agreement with the ethnobotanical preference, CA extract was more effective than CR extract in reducing the symptoms of RA probably due to its enrichment with flavonoids, lignans, and flavolignans. Both CA and CR reduced the production of inflammatory cytokines through modulating various biological signaling pathways. These findings support the traditional use of vetiver leaves as a remedy for RA and suggest that the use of the whole plant may offer advantage by synergistically affecting more inflammatory pathways.


Assuntos
Artrite Experimental , Artrite Reumatoide , Ratos , Animais , Adjuvante de Freund , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Ratos Wistar , Fator 6 Associado a Receptor de TNF/metabolismo , Artrite Experimental/induzido quimicamente , Artrite Experimental/tratamento farmacológico , Artrite Experimental/metabolismo , Artrite Reumatoide/induzido quimicamente , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/patologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Citocinas/metabolismo , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Componentes Aéreos da Planta
11.
J Ethnopharmacol ; 315: 116641, 2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37236379

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Oldenlandia umbellata L., belonging to the Rubiaceae family, is an annual plant possessing anti-inflammatory and antipyretic, anti-nociceptive, anti-bacterial, anti-helminthic, antioxidant and hepatoprotective activities and used in traditional medicine to treat inflammation and respiratory diseases. AIM OF THE STUDY: The present study aims to evaluate the anti-osteoporotic effect of Methanolic extract of O.umbellata in MG-63 cells and RANKL-stimulated RAW 264.7 cells. MATERIALS AND METHODS: The methanolic extract from the aerial parts of O.umbellata was subjected to metabolite profiling. The anti-osteoporotic effect of MOU was assessed in MG-63 cells and RANKL-stimulated RAW 264.7 cells. In MG-63 cells, the proliferative effect of MOU was evaluated using MTT assay, ALP assay, Alizarin red staining, ELISA and western blot. Similarly, the anti-osteoclastogenic effect of MOU was assessed in RANKL-stimulated RAW 264.7 cells via MTT, TRAP staining and western blot. RESULTS: LC-MS metabolite profiling showed the presence of 59 phytoconstituents including scandoside, scandoside methyl ester, deacetylasperuloside, asperulosidic acid, and cedrelopsin in MOU. In MG-63 cells, MOU has increased the proliferation of osteoblast cells and ALP activity, thereby increasing bone mineralization. ELISA results showed increased levels of osteogenic markers such as osteocalcin and osteopontin in the culture media. Western blot analysis showed inhibition of GSK3ß protein expression and increased the expression levels of ß-catenin, Runx-2, col 1 and osterix, promoting osteoblast differentiation. In RANKL-stimulated RAW 264.7 cells, MOU did not elicit any significant cytotoxicity; instead, it suppressed the osteoclastogenesis reducing the osteoclast number. MOU has reduced TRAP activity in a dose-dependent manner. MOU inhibited the TRAF6, NFATc1, c-Jun, C-fos and cathepsin K expression, thereby inhibiting osteoclast formation. CONCLUSION: In conclusion, MOU promoted osteoblast differentiation via inhibiting GSK3ß and activating Wnt/ß catenin signalling and its transcription factors, including ß catenin, Runx2 and Osterix. Similarly, MOU inhibited osteoclast formation by inhibiting the expression of TRAF6, NFATc1, c-Jun, C-fos and cathepsin K in RANK-RANKL signalling. Finally, it can be emphasised that O.umbellata is a potential source of therapeutic leads for the treatment of osteoporosis.


Assuntos
Osteogênese , beta Catenina , Camundongos , Animais , Células RAW 264.7 , beta Catenina/metabolismo , Catepsina K/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo , Osteoclastos , Diferenciação Celular , Osteoblastos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Via de Sinalização Wnt , Proliferação de Células , Ligante RANK/metabolismo , Fatores de Transcrição NFATC/metabolismo
12.
Int Immunopharmacol ; 120: 110290, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37216800

RESUMO

BACKGROUND: Alzheimer's disease (AD) is a common neurodegenerative disease and a momentous cause of dementia in the elderly. Sennoside A (SA) is an anthraquinone compound and possesses decisive protective functions in various human diseases. The purpose of this research was to elucidate the protective effect of SA against AD and investigate its mechanism. METHODS: Male APPswe/PS1dE9 (APP/PS1) transgenic mice with a C57BL/6J background were chosen as AD model. Age-matched nontransgenic littermates (C57BL/6 mice) were negative controls. SA's functions in AD in vivo were estimated by cognitive function analysis, Western blot, hematoxylin-eosin staining, TUNEL staining, Nissl staining, detection of Fe2+ levels, glutathione and malondialdehyde contents, and quantitative real-time PCR. Also, SA's functions in AD in LPS-induced BV2 cells were examined using Cell Counting Kit-8 assay, flow cytometry, quantitative real-time PCR, Western blot, enzyme-linked immunosorbent assay, and analysis of reactive oxygen species levels. Meanwhile, SA's mechanisms in AD were assessed by several molecular experiments. RESULTS: Functionally, SA mitigated cognitive function, hippocampal neuronal apoptosis, ferroptosis, oxidative stress, and inflammation in AD mice. Furthermore, SA reduced BV2 cell apoptosis, ferroptosis, oxidative stress, and inflammation induced by LPS. Rescue assay revealed that SA abolished the high expressions of TRAF6 and p-P65 (NF-κB pathway-related proteins) induced by AD, and this impact was reversed after TRAF6 overexpression. Conversely, this impact was further enhanced after TRAF6 knockdown. CONCLUSIONS: SA relieved ferroptosis, inflammation and cognitive impairment in aging mice with AD through decreasing TRAF6.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Ferroptose , Doenças Neurodegenerativas , Idoso , Animais , Humanos , Masculino , Camundongos , Envelhecimento , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Disfunção Cognitiva/metabolismo , Modelos Animais de Doenças , Inflamação , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Senosídeos , Fator 6 Associado a Receptor de TNF/metabolismo
13.
Curr Comput Aided Drug Des ; 19(6): 451-464, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36740793

RESUMO

BACKGROUND: Buyang Huanwu Decoction (BHD) is used to regulate blood circulation and clear collaterals and is widely used in coronary heart disease. However, the active compounds and the mechanism of BHD used to treat restenosis are less understood. OBJECTIVE: The study aimed to explore the potential mechanism of Buyang Huanwu decoction BHD for the treatment of restenosis using network pharmacology and molecular docking experiments. METHODS: The bioactive components of BHD and their corresponding targets were retrieved from the Traditional Chinese Medicine Systems Pharmacology (TCMSP) and Encyclopaedia of Traditional Chinese Medicine (ETCM) databases as well as literature. Restenosisassociated therapeutic genes were identified from the OMIM, Drugbank, GEO, and Dis- GeNET databases. Genes related to the vascular smooth muscle cell (VSMC) phenotype were obtained from the gene ontology (GO) database and literature. The core target genes for the drug-disease-VSMC phenotype were identified using the Venn tool and Cytoscape software. Moreover, the "drug-component-target-pathway" network was constructed and analyzed, and pathway enrichment analysis was performed. The connection between the main active components and core targets was analyzed using the AutoDock tool, and PyMOL was used to visualize the results. RESULTS: The "compound-target-disease" network included 80 active ingredients and 599 overlapping targets. Among the bioactive components, quercetin, ligustrazine, ligustilide, hydroxysafflor yellow A, and dihydrocapsaicin had high degree values, and the core targets included TP53, MYC, APP, UBC, JUN, EP300, TGFB1, UBB, SP1, MAPK1, SMAD2, CTNNB1, FOXO3, PIN1, EGR1, TCF4, FOS, SMAD3, and CREBBP. A total of 365 items were obtained from the GO functional enrichment analysis (p < 0.05), whereas the enrichment analysis of the KEGG pathway identified 30 signaling pathways (p < 0.05), which involved the TGF-ß signaling pathway, Wnt signaling pathway, TRAF6-mediated induction of NF-κB and MAPK pathway, TLR7/8 cascade, and others. The molecular docking results revealed quercetin, luteolin, and ligustilide to have good affinity with the core targets MYC and TP53. CONCLUSION: The active ingredients in BHD might act on TP53, MYC, APP, UBC, JUN, and other targets through its active components (such as quercetin, ligustrazine, ligustilide, hydroxysafflor yellow A, and dihydrocapsaicin). This action of BHD may be transmitted via the involvement of multiple signaling pathways, including the TGF-ß signaling pathway, Wnt signaling pathway, TRAF6-mediated induction of NF-κB and MAPK pathway, and TLR7/8 cascade, to treat restenosis by inhibiting the phenotype switching and proliferation of VSMC.


Assuntos
NF-kappa B , Farmacologia em Rede , Simulação de Acoplamento Molecular , Músculo Liso Vascular , Quercetina/farmacologia , Fator 6 Associado a Receptor de TNF , Receptor 7 Toll-Like , Proliferação de Células , Fator de Crescimento Transformador beta
14.
Anat Rec (Hoboken) ; 306(12): 2927-2938, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-34713984

RESUMO

Functional dyspepsia (FD) is a common functional gastrointestinal disorder with high morbidity. Electroacupuncture (EA) has been applied to treat FD for a long time. The aim of this study was to investigate the effects of EA and its mechanism about intestinal mucosal barrier in rodent model of FD. Male Sprague-Dawley rats were randomly divided into the control group and the model group. Then, the rats in model group were established to the FD model by multifactor interventions. In Experiment 1, qualified FD-like rats were randomly divided into three groups: FD, EA, and acupuncture (AP) groups. The interventions of EA and AP lasted 14 days, food intake, and body weight were recorded every 5 days. In Experiment 2, qualified FD-like rats were randomly divided into five groups: FD, EA, AP, EA + TAK242, and TAK242 groups. The interventions of EA and AP lasted 14 days, while TAK242 injection continued for 6 days. The rats were sacrificed for the measurement of serum Interleukin- 6 (IL-6) and Tumor necrosis factor-α (TNF-α) assayed by ELISA. Western blotting was used to assess the expression of TLR4, Myd88, NF-κB p65, p-NF-κB p65, TRAF6, ZO-1, and occludin in the duodenum. The transmission electron microscope was used to observe the ultrastructure of intestinal epithelial cells. Compared with the rats in the group FD, the rats in EA group had significantly increase of body weight, food intake, and protein expressions of ZO-1 and occludin, while expressions of TLR4, Myd88, NF-κB p65, p-NF-κB p65, TRAF6 in the duodenum and IL-6, and TNF-α in serum were decreased. The EA + TAK242 treatment had similar effects to the EA treatment but with increased potency; compared with EA, AP showed similar but reduced effects. Our data demonstrated that EA is more effective than AP in improving intestine mucosal barrier. The possible mechanisms of EA may involve the TLR4/NF-κB p65 pathway.


Assuntos
Dispepsia , Eletroacupuntura , Ratos , Masculino , Animais , NF-kappa B/metabolismo , Ratos Sprague-Dawley , Receptor 4 Toll-Like/metabolismo , Dispepsia/terapia , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Ocludina/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo , Peso Corporal
15.
Int Urol Nephrol ; 55(2): 437-448, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35986866

RESUMO

PURPOSE: Sepsis is a systemic life-threatening inflammatory disease, which leads to septic acute kidney injury (AKI). Circular RNAs (circRNAs) are involved in septic AKI. Herein, we aimed to expound the action of circ_0020339 in septic AKI. The dysregulation of plasma circRNAs between patients with septic non-AKI and patients with septic AKI were screened by circRNA chip. METHODS: The dysregulation of circ_0020339, microRNA (miR)-17-5p, and inositol polyphosphate multi kinase (IPMK) mRNA was detected by quantitative real-time polymerase chain reaction (qRT-PCR). Cell viability and apoptosis were measured by cell counting kit-8 (CCK-8) and flow cytometry, respectively. The release of serum creatinine (SCr), tissue inhibitor metalloproteinase-2 (TIMP-2), insulin-like growth factor binding protein-7 (IGFBP7), tumor necrosis factor (TNF)α and interleukin (IL)-1ß was evaluated by enzyme-linked immunosorbent assay (ELISA). Bioinformatic analysis, dual-luciferase reporter assay and miRNA pull down assay were used to confirm the interaction between miR-17-5p and circ_0020339 or IPMK 3'untranslated region (UTR). Protein level of IPMK, TNF receptor-associated factor 6 (TRAF6), phosphorylated AKT (p-AKT)/total (t)-AKT, p-nuclear factor kappa-B (NF-κB) kinase (p-IKK)/t-IKK, p-inhibitor of NF-κB (p-IκB)α/t-IκBα, and p-p65/t-p65 were conducted by western blot. RESULTS: Circ_0020339 was upregulated in the plasma of patients with septic AKI as well as LPS-treated HK2 cells and C57BL/6 mice relative to the corresponding counterparts. Functionally, circ_0020339 was positively correlated with markers of renal functional injury and inflammation in patients with septic AKI; si-circ_0020339 facilitated cell proliferation, while restrained cell apoptosis and inflammation in LPS-triggered HK2 cells; meanwhile, si-circ_0020339 restrained survival rate, renal functional injury and inflammation in LPS-triggered C57BL/6 mice. Furthermore, circ_0020339 and IPMK 3'UTR shared the same complementary sites with miR-17-5p. CONCLUSION: si-circ_0020339 attenuated LPS-induced cell damage by targeting miR-17-5p/IPMK axis and inactivation of TRAF6/p-AKT/p-IKK/p-IκBα/p-p65. Altogether, plasma circ_0020339 serves as a novel diagnostic marker of patients with septic AKI.


Assuntos
Injúria Renal Aguda , MicroRNAs , Camundongos , Animais , Camundongos Endogâmicos C57BL , Inibidor de NF-kappaB alfa , Lipopolissacarídeos , Metaloproteinase 2 da Matriz , NF-kappa B , Proteínas Proto-Oncogênicas c-akt , RNA Circular/genética , Fator 6 Associado a Receptor de TNF , Injúria Renal Aguda/genética , Apoptose/genética , Biomarcadores , MicroRNAs/genética
16.
Fish Shellfish Immunol ; 131: 323-341, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36228879

RESUMO

Artemisia vulgaris (A. vulgaris) is a traditional Chinese medicine widely distributed in China and contains many bioactive compounds with pharmacological effects. However, the anti-inflammatory effects and mechanism of essential oil from A. vulgaris on enteritis in fish are still unclear. In this study, in order to elucidate the underlying mechanism of essential oil from A. vulgaris on zebrafish enteritis, zebrafish were used for establishing animal models to observe the histopathological changes of intestines, determine the activities of immune-related enzymes and oxidative stress indicators, and the mRNA expression of genes in MyD88/TRAF6/NF-KB signaling pathways. The results showed that different doses of A. vulgaris essential oil could effectively alleviate zebrafish enteritis in a dose- and time-dependent manner by improving the intestinal histopathological damage, decreasing the intestinal oxidative stress, repairing the intestinal immune ability, changing the expression levels of IL-1ß, IL-10 and genes in MyD88/TRAF6/NF-κB pathway. In addition, co-treatment with oxazolone and MyD88 inhibitor could alleviate the morphological damage, the induction of oxidative stress, and the levels of immune-related enzymes and the mRNA expression of genes in MyD88/TRAF6/NF-κB signaling pathway. Moreover, essential oil from A. vulgaris had more significantly therapeutic effects on enteritis of male zebrafish than that of female zebrafish. This result will clarify the therapeutic effect and anti-inflammatory mechanism of essential oil from A. vulgaris on zebrafish enteritis, and provide a theoretical basis for further research on the rationality of A. vulgaris to replace feed antibiotics.


Assuntos
Artemisia , Enterite , Óleos Voláteis , Masculino , Feminino , Animais , Peixe-Zebra/genética , NF-kappa B/genética , NF-kappa B/metabolismo , Artemisia/genética , Artemisia/metabolismo , Óleos Voláteis/farmacologia , Fator 88 de Diferenciação Mieloide/metabolismo , Fator 6 Associado a Receptor de TNF/genética , Fator 6 Associado a Receptor de TNF/metabolismo , Enterite/tratamento farmacológico , Enterite/veterinária , Enterite/genética , Estresse Oxidativo , Anti-Inflamatórios/farmacologia , RNA Mensageiro/metabolismo
17.
Nutrients ; 14(19)2022 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-36235631

RESUMO

Monotropein (Mon) is a kind of iridoid glycoside plant secondary metabolite primarily present in some edible and medicinal plants. The aim of this study was to investigate the effect of Mon on lipopolysaccharide (LPS)-induced inflammatory bone loss in mice and osteoclasts (OCs) derived from bone marrow-derived macrophages (BMMs), and explore the mechanisms underlying the effect of Mon on LPS-induced osteoclastogenesis. It was found that Mon markedly attenuated deterioration of the bone micro-architecture, enhanced tissue mineral content (TMC) and bone volume/total volume (BV/TV), reduced structure model index (SMI) and trabecular separation/spacing (Tb.Sp) in the bone tissue and decreased the activities of tartrate resistant acid phosphatase-5b (TRACP-5b), receptor activator NF-κB (RANK), and receptor activator NF-κB ligand (RANKL) as well as the serum levels of interleukin 6 (IL-6) and interleukin 1ß (IL-1ß) in LPS-treated mice. In addition, Mon treatment reduced the number of TRAP positive OCs in the bone tissue of LPS-treated mice and also exerted a stronger inhibitory effect on formation, differentiation, and F-actin ring construction of OCs derived from BMMs. Mon significantly inhibited the expression of the nuclear factor of activated T-cells c1 (NFATc1) and the immediate early gene (C-Fos) and nuclear translocation of NFATc1 in LPS-treated OCs, thereby inhibiting the expression of matrix metalloproteinase-9 (MMP-9), cathepsin K (CtsK), and TRAP. Mon significantly inhibited the expression of TRAF6, phosphorylation of P65, and degradation of IKBα, thus inhibiting the activation of NF-κB pathway in LPS-induced inflammatory mice and OCs derived from BMMs, and also inhibited LPS-induced phosphorylation of protein kinase B (Akt) and Glycogen synthase kinase 3ß (GSK-3ß) in OCs derived from BMMs. In conclusion, these results suggested that Mon could effectively inhibit osteoclastogenesis both in vitro and in vivo and therefore may prove to be potential option for prevention and treatment of osteoclastic bone resorption-related diseases.


Assuntos
Reabsorção Óssea , Osteoclastos , Actinas/metabolismo , Animais , Reabsorção Óssea/metabolismo , Catepsina K/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Glicosídeos Iridoides/farmacologia , Iridoides , Ligantes , Lipopolissacarídeos/efeitos adversos , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , NF-kappa B/metabolismo , Fatores de Transcrição NFATC , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo , Fosfatase Ácida Resistente a Tartarato/metabolismo
18.
Phytomedicine ; 106: 154399, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36057143

RESUMO

BACKGROUND: 6-acetylacteoside (6-AA) is a phenylethanoid glycoside isolated from Cistanche deserticola which had been previously proven to possess anti-osteoporotic activity previously. Currently, it is still unknown whether 6-AA plays a crucial role on the anti-osteoporotic effects of C. deserticola. PURPOSE: To elucidate the therapeutic effect and mechanism of 6-AA on osteoporosis by employing an ovariectomized mouse model in vivo and RAW264.7 cells in vitro. METHODS: Sixty female ICR mice were randomly assigned into six groups: sham-operated control group (SHAM, vehicle), ovariectomized model group (OVX, vehicle), positive group (EV, 1 mg/kg/day of estradiol valerate), low dosage (10 mg/kg/day of 6-AA), medium dosage (20 mg/kg/day of 6-AA) and high dosage (40 mg/kg/day of 6-AA) treatment groups. All substances were administered daily by intragastric gavage. After 12 weeks of intervention, trabecular bone microarchitecture was estimated and bone biomechanics were determined. Bone formation and resorption factors were determined by using the corresponding Elisa kits. The related proteins and metabolites were estimated by using western-blot and metabolomics techniques. RESULTS: OVX mice demonstrated significant atrophy of the uterine and vagina, declined biomechanical parameters such as flexural strength and maximum load, deteriorated trabecular bone microarchitecture such as decreased BMD, BMC, TMC, TMD, BVF, Tb. N, and Tb. Th and increased Tb. Sp, as well as increased bone resorption factors such as TRAP, cathepsin K, and DPD, all after 12 weeks of ovariectomy operation. Following administration of 6-AA to OVX mice, parameters related to the bone microarchitecture, bone resorption activities as well as biomechanical properties were all significantly improved. Meanwhile, the levels of NF-κB, NFATc1, RANK, RANKL and TRAF6 were significantly downregulated, while OPG, PI3K and AKT were upregulated after 6-AA intervention. This indicates that, 6-AA could prevent bone resorption by regulating the RANKL/RANK/OPG mediated NF-κB and PI3K/AKT pathways. Furthermore, 26 different metabolites corresponding to 25 metabolic pathways were identified, and 5 of which were related to the formation of osteoporosis. Interestingly, 23 abnormal metabolites were recovered after 6-AA treatment. CONCLUSION: Our results revealed the significant anti-osteoporotic effects of 6-AA on ovariectomized mice which were probably exerted via suppression of osteoclast formation and bone resorption.


Assuntos
Reabsorção Óssea , Osteoporose , Animais , Feminino , Camundongos , Densidade Óssea , Reabsorção Óssea/tratamento farmacológico , Reabsorção Óssea/metabolismo , Catepsina K/metabolismo , Estradiol/farmacologia , Glicosídeos/farmacologia , Glicosídeos/uso terapêutico , Camundongos Endogâmicos ICR , NF-kappa B/metabolismo , Osteoporose/tratamento farmacológico , Osteoporose/etiologia , Osteoporose/metabolismo , Ovariectomia/efeitos adversos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ligante RANK/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo
19.
Fish Shellfish Immunol ; 130: 79-85, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36087818

RESUMO

Mammalian evolutionary conserved signaling intermediate in Toll pathways (ECSIT) is an important intracellular protein that involves in innate immunity, embryogenesis, and assembly or stability of the mitochondrial complex I. In the present study, the ECSIT was characterized in soiny mullet (Liza haematocheila). The full-length cDNA of mullet ECSIT was 1860 bp, encoding 449 amino acids. Mullet ECSIT shared 60.4%∼78.2% sequence identities with its teleost counterparts. Two conserved protein domains, ECSIT domain and C-terminal domain, were found in mullet ECSIT. Realtime qPCR analysis revealed that mullet ECSIT was distributed in all examined tissues with high expressions in spleen, head kidney (HK) and gill. Further analysis showed that mullet ECSIT in spleen was up-regulated from 6 h to 48 h after Streptococcus dysgalactiae infection. In addition, the co-immunoprecipitation (co-IP) assay confirmed that mullet ECSIT could interact with tumor necrosis factor receptor-associated factor 6 (TRAF6). Molecular docking revealed that the polar interaction and hydrophobic interaction play crucial roles in the forming of ECSIT-TRAF6 complex. The resides of mullet ECSIT that involved in the interaction between ECSIT and TRAF6 were Arg107, Glu113, Phe114, Glu124, Lys120 and Lys121, which mainly located in the ECSIT domain. Our results demonstrated that mullet ECSIT involved in the immune defense against bacterial and regulation of TLRs signaling pathway by interaction with TRAF6. To the best of our knowledge, this is the first report on ECSIT of soiny mullet, which deepen the understanding of ECSIT and its functions in the immune response of teleosts.


Assuntos
Smegmamorpha , Infecções Estreptocócicas , Aminoácidos/metabolismo , Animais , DNA Complementar/genética , Imunidade Inata/genética , Mamíferos/genética , Mamíferos/metabolismo , Simulação de Acoplamento Molecular , Filogenia , Transdução de Sinais , Infecções Estreptocócicas/veterinária , Fator 6 Associado a Receptor de TNF/genética
20.
Phytomedicine ; 104: 154304, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35793596

RESUMO

BACKGROUND: Oxidative stress played a key role in the development of bone brittleness and is an important pathogenic factor of senile osteoporosis. A variety of animal and plant-derived peptides have been shown to have significant anti-osteoporosis effects in vivo and in vitro. PURPOSE: In this study, we aim to explore the possible mechanism of wheat germ peptide ADWGGPLPH on senile osteoporosis. STUDY DESIGN: Naturally, aged rats were used as animal models of senile osteoporosis. METHODS: Wheat germ peptide ADWGGPLPH was administered from 9-months-old to 21-months-old, and the effect of ADWGGPLPH on preventing senile osteoporosis was evaluated by measuring serum biochemical indexes, bone histomorphometry, bone biomechanics, and other indexes to elucidate the mechanism of ADWGGPLPH in delaying senile osteoporosis by detecting the expression of osteoporosis-related proteins. RESULTS: The results showed that ADWGGPLPH could effectively reduce the level of oxidative stress and improve the microstructure and bone mineral density in senile osteoporosis rats. In addition, ADWGGPLPH could improve the proliferation and differentiation activity of osteoblasts and effectively inhibit osteoclasts' differentiation by regulating the OPG/RANKL/RANK/TRAF6 pathway. CONCLUSION: ADWGGPLPH from wheat germ exhibited a notably effect on senile osteoporosis and has a high potential in the development of the nutrient regimen to against senile osteoporosis.


Assuntos
Osteoporose , Fator 6 Associado a Receptor de TNF , Animais , Densidade Óssea , Nutrientes , Osteoclastos , Osteoporose/metabolismo , Osteoprotegerina/metabolismo , Ligante RANK/metabolismo , Ratos , Transdução de Sinais , Fator 6 Associado a Receptor de TNF/metabolismo , Triticum/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA