Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cell Commun Signal ; 19(1): 83, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34372855

RESUMO

BACKGROUND: The positive transcription elongation factor b (P-TEFb) kinase activity is involved in the process of transcription. Cyclin-dependent kinase 9 (CDK9), a core component of P-TEFb, regulates the process of transcription elongation, which is associated with differentiation and apoptosis in many cancer types. Wogonin, a natural CDK9 inhibitor isolated from Scutellaria baicalensis. This study aimed to investigate the involved molecular mechanisms of wogonin on anti- chronic myeloid leukemia (CML) cells. MATERIALS AND METHODS: mRNA and protein levels were analysed by RT-qPCR and western blot. Flow cytometry was used to assess cell differentiation and apoptosis. Cell transfection, immunofluorescence analysis and co-immunoprecipitation (co-IP) assays were applied to address the potential regulatory mechanism of wogonin. KU-812 cells xenograft NOD/SCID mice model was used to assess and verify the mechanism in vivo. RESULTS: We reported that the anti-CML effects in K562, KU-812 and primary CML cells induced by wogonin were regulated by P-TEFb complex. We also confirmed the relationship between CDK9 and erythroid differentiation via knockdown the expression of CDK9. For further study the mechanism of erythroid differentiation induced by wogonin, co-IP experiments were used to demonstrate that wogonin increased the binding between GATA-1 and FOG-1 but decreased the binding between GATA-1 and RUNX1, which were depended on P-TEFb. Also, wogonin induced apoptosis and decreased the mRNA and protein levels of MCL-1 in KU-812 cells, which is the downstream of P-TEFb. In vivo studies showed wogonin had good anti-tumor effects in KU-812 xenografts NOD/ SCID mice model and decreased the proportion of human CD45+ cells in spleens of mice. We also verified that wogonin exhibited anti-CML effects through modulating P-TEFb activity in vivo. CONCLUSIONS: Our study indicated a special mechanism involving the regulation of P-TEFb kinase activity in CML cells, providing evidences for further application of wogonin in CML clinical treatment. Video Abstract.


Assuntos
Quinase 9 Dependente de Ciclina/genética , Flavanonas/farmacologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Fator B de Elongação Transcricional Positiva/genética , Animais , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Quinase 9 Dependente de Ciclina/antagonistas & inibidores , Fator de Transcrição GATA1/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Camundongos , Terapia de Alvo Molecular , Complexos Multiproteicos/antagonistas & inibidores , Complexos Multiproteicos/genética , Proteínas Nucleares/genética , Fosforilação/efeitos dos fármacos , Fator B de Elongação Transcricional Positiva/antagonistas & inibidores , Fatores de Transcrição/genética , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Chembiochem ; 10(12): 2072-80, 2009 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-19603446

RESUMO

The positive transcription elongation factor (P-TEFb; CDK9/cyclin T1) regulates RNA polymerase II-dependent transcription of cellular and integrated viral genes. It is an essential cofactor for HIV-1 Tat transactivation, and selective inhibition of P-TEFb blocks HIV-1 replication without affecting cellular transcription; this indicates that P-TEFb could be a potential target for developing anti-HIV-1 therapeutics. Flavopiridol, a small molecule CDK inhibitor, blocks HIV-1 Tat transactivation and viral replication by inhibiting P-TEFb kinase activity, but it is highly cytotoxic. In the search for selective and less cytotoxic P-TEFb inhibitors, we prepared a series of flavopiridol analogues and evaluated their kinase inhibitory activity against P-TEFb and CDK2/cyclin A, and tested their cellular antiviral potency and cytotoxicity. We identified several analogues that selectively inhibit P-TEFb kinase activity in vitro and show antiviral potency comparable to that of flavopiridol, but with significantly reduced cytotoxicity. These compounds are valuable molecular probes for understanding P-TEFb-regulated cellular and HIV-1 gene transcription and provide potential anti-HIV-1 therapeutics.


Assuntos
Fármacos Anti-HIV/farmacologia , Flavonoides/farmacologia , HIV-1/efeitos dos fármacos , HIV-1/crescimento & desenvolvimento , Piperidinas/farmacologia , Fator B de Elongação Transcricional Positiva/antagonistas & inibidores , Replicação Viral/efeitos dos fármacos , Fármacos Anti-HIV/síntese química , Fármacos Anti-HIV/química , Proliferação de Células/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Flavonoides/síntese química , Flavonoides/química , Células HeLa , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Piperidinas/síntese química , Piperidinas/química , Fator B de Elongação Transcricional Positiva/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA