Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Adv Biol (Weinh) ; 8(1): e2300315, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37759403

RESUMO

Systemic sclerosis (SSc) is an immune-mediated rheumatic disease that is characterized by fibrosis of the skin and internal organs and vasculopathy with poor prognosis. Dangui Huoxue Preparation (DHP) is a clinically effective traditional Chinese herbal formula for the treatment of SSc in the hospital. This study aims to investigate the therapeutic effects and underlying molecular mechanisms of DHP in the treatment of SSc. SSc mice models are induced by bleomycin (BLM). Tissues of DHP group, normal control group, and positive control drug Sanqi Tongshu Capsule (STC) group are collected for inflammation, fibrosis, and vasculopathy. Also, the human dermal fibroblasts (HDF) stimulated with TGF-ß1 are analyzed for in vitro study. The expression levels of MCP-1, IFN-γ, IL-1ß, IL-10, Fizz1, iNOS, and IL12p40, and the mRNA levels of Col1a1, Col1a2, Col3a1, and Col5a1 are significantly decreased in all DHP groups and STC group compare with those in the BLM group. The main drug of DHP inhibits the proliferation and migration of HDF, reduces Ctgf, Itgb3, Itgb5 expression, and also inhibits the Smad3 pathway. In conclusion, DHP can ameliorate SSc skin inflammation, fibrosis, and vasculopathy, possibly suppressing the TGF-ß1/Smad3 signaling pathway through extracellular and intracellular mechanisms.


Assuntos
Escleroderma Sistêmico , Fator de Crescimento Transformador beta1 , Humanos , Animais , Camundongos , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/efeitos adversos , Modelos Animais de Doenças , Fibrose , Escleroderma Sistêmico/induzido quimicamente , Escleroderma Sistêmico/tratamento farmacológico , Escleroderma Sistêmico/genética , Inflamação/tratamento farmacológico , Inflamação/genética , Bleomicina/toxicidade , Bleomicina/uso terapêutico
2.
Fitoterapia ; 169: 105567, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37315715

RESUMO

Eupatorium lindleyanum DC. has been used as a functional food in China for a long time. However, the antifibrotic activity of total sesquiterpenoids from Eupatorium lindleyanum DC. (TS-EL) is still unknown. In this study, we discovered that TS-EL reduced the increase in α-smooth muscle actin (α-SMA), type I collagen and fibronectin content, the formation of cell filaments and collagen gel contraction in transforming growth factor-ß1-stimulated human lung fibroblasts. Intriguingly, TS-EL did not change the phosphorylation of Smad2/3 and Erk1/2. TS-EL decreased the levels of serum response factor (SRF), a critical transcription factor of α-SMA, and SRF knockdown alleviated the transition of lung myofibroblasts. Furthermore, TS-EL significantly attenuated bleomycin (BLM)-induced lung pathology and collagen deposition and reduced the levels of two profibrotic markers, total lung hydroxyproline and α-SMA. TS-EL also decreased the levels of SRF protein expression in BLM-induced mice. These results suggested that TS-EL attenuates pulmonary fibrosis by inhibiting myofibroblast transition via the downregulation of SRF.


Assuntos
Eupatorium , Fibrose Pulmonar , Camundongos , Humanos , Animais , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo , Bleomicina/efeitos adversos , Bleomicina/metabolismo , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Estrutura Molecular , Pulmão , Fator de Crescimento Transformador beta1/efeitos adversos , Fator de Crescimento Transformador beta1/metabolismo , Fibroblastos , Colágeno/metabolismo , Diferenciação Celular , Camundongos Endogâmicos C57BL
3.
J Food Biochem ; 46(9): e14223, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35586925

RESUMO

In this study, we investigated the protective effects and possible mechanism of epigallocatechin-3-o-gallate (EGCG) combined with organic selenium in transforming growth factor (TGF)-ß1-activated LX-2 cells. After 12 h of starvation, LX-2 cells were treated with 10 ng/ml of recombinant TGF-ß1 and different concentrations of EGCG, L-selenomethionine (L-SeMet), or L-selenomethylcysteine (L-SeMC) for 24 h. We found that 100 and 200 µM EGCG combined with 1 mM L-SeMet or L-SeMC showed a synergistic effect in decreasing the survival rate of activated LX-2 cells. In addition, the combination of 100 mM EGCG and 1 mM L-SeMet or L-SeMC promoted the apoptosis of activated LX-2 cells. Compared with the EGCG treatment group, the combination intervention group had significantly suppressed levels of hepatic stellate cell activation markers including alpha-smooth muscle actin, collagen type I alpha 1, collagen type III alpha 1, 5-hydroxytryptophan (5-HT), and 5-HT receptors 2A and 2B. Moreover, interleukin-10 levels were decreased, while TGF-ß1 levels were increased after TGF-ß1 activation in LX-2 culture medium, whereas the combin1ation intervention reversed this phenomenon. The combination treatment had a more pronounced effect than any single treatment at the same dose. These results demonstrated that the combination of EGCG and organic selenium synergistically improves the TGF-ß1-induced fibrosis of LX-2 cells to some extent by promoting apoptosis and inhibiting cell activation. PRACTICAL APPLICATIONS: Here, we found that the effects of epigallocatechin-3-o-gallate (EGCG) + L-selenomethionine or L-selenomethylcysteine were more pronounced than those of EGCG alone. Future studies should investigate the protective effects of green tea and selenium-enriched green tea against hepatic fibrosis and explore the differences in their molecular mechanisms. The results of this study will be helpful for the development and utilization of selenium-enriched tea for food processing and health supplement production.


Assuntos
Catequina , Selênio , Fator de Crescimento Transformador beta1 , Antioxidantes/farmacologia , Catequina/análogos & derivados , Catequina/farmacologia , Linhagem Celular , Fibrose , Humanos , Selênio/farmacologia , Selenometionina/farmacologia , Chá , Fator de Crescimento Transformador beta1/efeitos adversos
4.
Molecules ; 24(14)2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31311194

RESUMO

Epithelial-to-mesenchymal transition (EMT) is increasingly recognized as contributing to the pathogenesis of idiopathic pulmonary fibrosis. Therefore, novel plant-based natural, active compounds have been sought for the treatment of fibrotic EMT. The aim of the present study was to investigate the inhibitory effects of Astilbe rubra on TGF-ß1-induced EMT in lung alveolar epithelial cells (A549). A. rubra was subjected to extraction using 70% ethanol (ARE), and ethanol extracts of the aerial part and that of the rhizome were further partitioned using various solvents. Protein expression and cell motility were investigated to evaluate the inhibitory effects of ARE on EMT. EMT occurred in A549 cells treated with TGF-ß1, but was prevented by co-treatment with ARE. The dichloromethane fractions showed the strongest inhibitory effect on TGF-ß1-induced EMT. ß-Peltoboykinolic acid was isolated from the dichloromethane fractions of A. rubra by activity-oriented isolation. ß-Peltoboykinolic acid not only attenuated TGF-ß1-induced EMT, but also the overproduction of extracellular matrix components including type I collagen and fibronectin. The Smad pathway activated by TGF-ß1 was inhibited by co-treatment with ß-peltoboykinolic acid. Taken together, these results indicate that ß-peltoboykinolic acid from A. rubra and dichloromethane fractions shows potential as an antifibrotic agent in A549 cells treated with TGF-ß1.


Assuntos
Células Epiteliais Alveolares/citologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Cloreto de Metileno/farmacologia , Saxifragaceae/química , Fator de Crescimento Transformador beta1/efeitos adversos , Células A549 , Células Epiteliais Alveolares/efeitos dos fármacos , Células Epiteliais Alveolares/metabolismo , Movimento Celular/efeitos dos fármacos , Colágeno Tipo I/metabolismo , Fibronectinas/metabolismo , Fibrose , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Cloreto de Metileno/química , Componentes Aéreos da Planta/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Rizoma/química , Transdução de Sinais/efeitos dos fármacos
5.
J Pharmacol Sci ; 140(1): 33-42, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31151763

RESUMO

The present study aimed to investigate the functional components from Bushen Yijing Formula and their inhibition of endothelial-mesenchymal transition (EndMT) and fibrosis in human umbilical vascular endothelial cells (HUVECs). HUVEC fibrosis was induced by treatment of transforming growth factor ß (TGF-ß) as the cellular model. Expression of EndMT biomarker gene and cofactors were determined by quantitative real-time-PCR, western blotting, and immunofluorescence. Angiogenesis capacity of vein endothelial cells was evaluated using tube formation assay. Ursolic acid and drug-contained serum ameliorated EndMT biomarker gene expression changes and angiogenesis capacity suppression induced by TGF-ß treatment. Slug, Snail, and Twist gene expression and phosphorylation of mammalian target of rapamycin (mTOR) and AKT altered by TGF-ß in HUVECs were suppressed by ursolic acid and drug-contained serum. Treatment with the mTOR signaling pathway inhibitor, rapamycin, inhibited the phosphorylation of mTOR and AKT, decreased Snail and Vimentin protein levels, and increased VE-cad protein levels. Overexpression of Snail gene promoted expression of EndMT-related genes and suppressed angiogenesis in HUVECs, which were attenuated by application of ursolic acid and drug-contained serum. Ursolic acid from Bushen Yijing Formula inhibits human umbilical vein endothelial cell EndMT and fibrosis, mediated by AKT/mTOR signaling and Snail gene expression.


Assuntos
Medicamentos de Ervas Chinesas/química , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição da Família Snail/genética , Fator de Crescimento Transformador beta1/efeitos adversos , Triterpenos/farmacologia , Células Cultivadas , Fibrose , Células Endoteliais da Veia Umbilical Humana , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/metabolismo , Triterpenos/isolamento & purificação , Ácido Ursólico
6.
Molecules ; 21(8)2016 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-27527140

RESUMO

Type II endometrial carcinoma typically exhibits aggressive metastasis and results in a poor prognosis. Siegesbeckia orientalis Linne is a traditional Chinese medicinal herb with several medicinal benefits, including the cytotoxicity against various cancers. This study investigates the inhibitory effects of S. orientalis ethanol extract (SOE) on the migration and invasion of endometrial cancer cells, which were stimulated by transforming growth factor ß (TGFß). The inhibitory effects were evaluated by determining wound healing and performing the Boyden chamber assay. This study reveals that SOE can inhibit TGFß1-induced cell wound healing, cell migration, and cell invasion in a dose-dependent manner in RL95-2 and HEC-1A endometrial cancer cells. SOE also reversed the TGFß1-induced epithelial-mesenchymal transition, including the loss of the cell-cell junction and the lamellipodia-like structures. Western blot analysis revealed that SOE inhibited the phosphorylation of ERK1/2, JNK1/2, and Akt, as well as the expression of MMP-9, MMP-2, and u-PA in RL95-2 cells dose-dependently. The results of this investigation suggest that SOE is a potential anti-metastatic agent against human endometrial tumors.


Assuntos
Asteraceae/química , Neoplasias do Endométrio/metabolismo , Etanol/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fator de Crescimento Transformador beta1/efeitos adversos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Neoplasias do Endométrio/tratamento farmacológico , Neoplasias do Endométrio/patologia , Etanol/química , Feminino , Humanos , Invasividade Neoplásica , Extratos Vegetais/química , Extratos Vegetais/farmacologia
7.
J Ethnopharmacol ; 122(1): 35-41, 2009 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-19101622

RESUMO

The medicinal herb, Panax notoginseng, has been used for thousands of years in traditional Chinese medicine and possesses anti-fibrosis properties. Epithelial-myofibroblast transition (EMT) plays an important role in renal tubulointerstitial fibrosis. The present study was designed to examine whether ginsenoside Rg1, a major active component isolated from Panax notoginseng, has an ability to block this phenotypic transition in rat renal tubular epithelial cells (NRK-52E) induced by transforming growth factor-beta1 (TGF-beta1). The morphology of tubular epithelial-myofibroblast transition was observed through light microscope and transmission electron microscopy. alpha-SMA and E-cadherin are two markers of tubular epithelial-myofibroblast transition, their protein expressions were assessed by immunohistochemistry and western blot analysis. Gene expression of alpha-SMA as well as the two major extracellular matrix components collagen I and fibronectin was measured by real-time PCR analysis. Enzyme-linked immunosorbent assay was used to quantitatively detect collagen I and fibronectin in the supernatant. Our results revealed that ginsenoside Rg1 obviously blocked morphologic transformation in NRK-52E induced by TGF-beta1. Meanwhile, ginsenoside Rg1 inhibited the expression of alpha-SMA and the loss of E-cadherin, subsequently decreased the levels of collagen I and fibronectin in a dose-dependent manner. In addition, western blot analysis indicated that ginsenoside Rg1 inhibited the expression of P-ERK1/2 in NRK-52E induced by TGF-beta1. These results suggest that ginsenoside Rg1 can restrain the process of EMT maybe via suppressing the expression of P-ERK1/2 in vitro.


Assuntos
Células Epiteliais/efeitos dos fármacos , Epitélio/patologia , Fibroblastos/efeitos dos fármacos , Ginsenosídeos/farmacologia , Túbulos Renais/citologia , Panax notoginseng , Extratos Vegetais/farmacologia , Actinas/metabolismo , Animais , Caderinas/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Colágeno Tipo I/metabolismo , Fibronectinas/metabolismo , Fibrose , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Panax notoginseng/química , Raízes de Plantas , RNA Mensageiro/metabolismo , Ratos , Fator de Crescimento Transformador beta1/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA