Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biol Trace Elem Res ; 201(11): 5368-5378, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36746883

RESUMO

The purpose of this research was to explore the effect of selenium on mercury-mediated apoptosis of follicular granulosa cells in laying hens. Moreover, the ATF6/CHOP pathway was investigated to explore the mechanism in this progress. Hg, Se, and 4-phenyl butyric acid were used alone or in combination to treat the cells. Our results showed that the nuclear in cells became condensate after Hg exposure, while Se addition significantly alleviated this change. Hg exposure significantly induced the apoptosis and the reduction of mitochondrial membrane potential in cells (P < 0.05). Nevertheless, co-treatment of Se significantly inhibited these effects (P < 0.05). Additionally, Hg exposure dramatically elevated the gene expressions of Bax/Bcl-2 (P < 0.05), caspase-3 (P < 0.05), caspase-9 (P < 0.05), protein kinase RNA-like endoplasmic reticulum kinase (P < 0.05), activating transcription factor 6 (P < 0.05), C/EBP homologous protein (CHOP; P < 0.05), inositol-requiring enzyme 1α (P < 0.05), tumor necrosis factor-associated factor 2 (P < 0.05), activating transcription factor 6 (ATF6; P < 0.05), and apoptosis signal-regulating kinase 1 (P < 0.05) in cells, whereas Se addition avoided these changes. The exposure to Hg considerably boosted the expression of ATF6 and CHOP protein (P < 0.05), while Se addition significantly alleviated the above-mentioned enhancements (P < 0.05). In summary, Hg exposure induced apoptosis, which was considerably reduced alleviated by Se addition, which was linked to the ATF6/CHOP pathway in follicular granulosa cells in laying hens.


Assuntos
Selênio , Animais , Feminino , Selênio/farmacologia , Fator 6 Ativador da Transcrição/genética , Fator 6 Ativador da Transcrição/metabolismo , Galinhas/metabolismo , Apoptose , Células da Granulosa , Estresse do Retículo Endoplasmático , Fator de Transcrição CHOP/genética , Fator de Transcrição CHOP/metabolismo , Fator de Transcrição CHOP/farmacologia
2.
Biometals ; 35(4): 699-710, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35513732

RESUMO

Zearalenone (ZEL)-induced apoptosis in different cells is mediated by various molecular mechanisms, including endoplasmic reticulum (ER) stress. Selenium, an inorganic micronutrient, has several cytoprotective properties, but its potential protective action against ZEL-induced apoptosis in trophoblast cells and the precise mechanisms remain unclear. In this study, we investigated the effects of sodium selenite, a predominant chemical form of selenium, on cell viability, apoptosis, and progesterone (P4) production in ZEL-treated goat trophoblast cell line and explored the underlying molecular mechanisms. ZEL treatment repressed cell viability and promoted apoptosis, which was accompanied by an enhancement of the activity of caspase 3, a key executioner of apoptosis. ZEL treatment was involved in the upregulation of malonaldehyde (MDA) levels and was implicated in the reduction of the protein expression of selenoprotein S (SELS), thereby triggering protein expression of ER stress biomarkers (glucose-regulated protein 78 (GRP78) and CCAAT/enhancer-binding protein homologous protein (CHOP)). However, sodium selenite attenuates these adverse effects, including increases in apoptotic rate, caspase 3 activity, MDA, GRP78, and CHOP expression and decreases in SELS expression in cells treated with ZEL or Thapsigargin (Tg, an ER stress agonist). Simultaneously, 4-phenylbutyric acid (4-PBA, an ER stress antagonist) treatment significantly alleviated the ZEL-induced deleterious effects on cells in response to ZEL, similarly to sodium selenite. In addition, sodium selenite supplementation effectively rescued the ZEL-induced decrease in P4 production in ZEL-treated cells. In summary, these findings suggest that ZEL triggers apoptosis in goat trophoblast cells by downregulating SELS expression and activating the ER stress signaling pathway and that sodium selenite protects against these detrimental effects. This study provides novel insights into the benefits of using selenium against ZEL-induced apoptosis and cellular damage.


Assuntos
Selênio , Zearalenona , Animais , Apoptose , Caspase 3 , Estresse do Retículo Endoplasmático/fisiologia , Cabras/metabolismo , Selênio/farmacologia , Selenito de Sódio/farmacologia , Fator de Transcrição CHOP/genética , Fator de Transcrição CHOP/metabolismo , Fator de Transcrição CHOP/farmacologia , Trofoblastos/metabolismo , Zearalenona/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA