Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
Mais filtros

Medicinas Complementares
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Bioorg Chem ; 129: 106178, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36220002

RESUMO

Neuroinflammation is a leading cause for neurological disorders. Carbazole alkaloids, isolated from the medicinal plants of Murraya species (Rutaceae), have exhibited wide pharmacological activities particularly for neuroinflammation. However, its underlying cellular targets and molecular mechanisms still remain unclear. In current study, we found that murrayafoline A (MA), a carbazole alkaloid obtained from Murraya tetramera, potently inhibited the production of neuroinflammation mediators, such as nitric oxide (NO), TNF-α, IL-6 and IL-1ß in LPS-induced BV-2 microglial cells. Then, we performed thermal proteome profiling (TPP) strategy to identify Specificity protein 1 (Sp1) as a potential cellular target of MA. Moreover, we performed surface plasmon resonance (SPR), cellular thermal shift assay (CETSA) and drug affinity responsive target stability (DRATS) assays to confirm the direct interaction between MA and Sp1. Furthermore, we downregulated Sp1 expression in BV2 cells using siRNA transfection, and observed that Sp1 knockdown significantly antagonized MA-mediated inhibition of neuroinflammation mediator production. Meanwhile, Sp1 knockdown also markedly reversed MA-mediated inactivation of IKKß/NF-κB and p38/JNK MAPKs pathways. Finally, in vivo studies revealed that MA significantly suppressed the expression of Iba-1, TNF-α, and IL-6, while increased the number of Nissl bodies in the brains of LPS-induced mice. Taken together, our study demonstrated that MA exerted obvious anti-neuroinflammation effect by directly targeting Sp1, thereby inhibiting NF-κB and MAPK signaling pathways. Our findings also provided a promising direction of pharmacological targeting Sp1 for anti-neuroinflammation therapeutics as well as novel agent development.


Assuntos
Alcaloides , Anti-Inflamatórios , Carbazóis , Murraya , Doenças Neuroinflamatórias , Fator de Transcrição Sp1 , Animais , Camundongos , Alcaloides/farmacologia , Alcaloides/uso terapêutico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Carbazóis/metabolismo , Carbazóis/uso terapêutico , Interleucina-6/metabolismo , Lipopolissacarídeos , Microglia/efeitos dos fármacos , Murraya/química , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fator de Transcrição Sp1/metabolismo , Doenças Neuroinflamatórias/tratamento farmacológico
2.
Cell Biol Toxicol ; 38(4): 679-697, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35072892

RESUMO

Colorectal cancer (CRC) is regarded as one of the commonest cancer types around the world. Due to the poor understanding on the causes of CRC formation and progression, this study sets out to investigate the physiological mechanisms by which Astragalus mongholicus Bunge-Curcuma aromatica Salisb. (ARCR) regulates CRC growth and metastasis, and the role in which M2 macrophage polarization plays in this process. An orthotopic-transplant model of CRC was established to evaluate the influence of ARCR on the polarization of M2 macrophage and the growth and metastasis of tumors. Next, the binding affinity among Sp1, ZFAS1, miR-153-5p, and CCR5 was identified using multiple assays. Finally, after co-culture of bone marrow-derived macrophages (BMDM) with CRC cell line CT26.WT, the cell proliferative, invasive, and migrated abilities were assessed in gain- or loss-of-function experiments. ARCR inhibited the infiltration of M2 macrophages into tumor microenvironment to suppress the CRC growth and metastasis in vivo. Additionally, ARCR inhibited the transcription of ZFAS1 by reducing Sp1 expression to repress M2 macrophage polarization. Moreover, ZFAS1 competitively binds to miR-153-3p to upregulate the CCR5 expression. Finally, ARCR suppressed the polarization of M2 macrophages to inhibit the tumor growth and tumor metastasis in CRC by mediating the Sp1/ZFAS1/miR-153-3p/CCR5 regulatory axis. Collectively, ARCR appears to suppress the CRC cell growth and metastasis by suppressing M2 macrophage polarization via Sp1/ZFAS1/miR-153-3p/CCR5 regulatory axis. 1. ARCR suppress the CRC cell growth and metastasis 2. ZFAS1 promotes CCR5 expression by competitively binding to miR-153-3p. 3. Sp1 promotes M2 macrophage polarization by activating ZFAS1 via miR-153-3p/CCR5. 4. The study unveiled a protective target against CRC.


Assuntos
Neoplasias Colorretais , Ativação de Macrófagos , Preparações de Plantas , Astragalus propinquus/química , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Neoplasias Colorretais/patologia , Curcuma/química , Humanos , Macrófagos/metabolismo , Macrófagos/patologia , MicroRNAs/genética , Invasividade Neoplásica , Preparações de Plantas/farmacologia , RNA Longo não Codificante/genética , Receptores CCR5/metabolismo , Fator de Transcrição Sp1/metabolismo , Microambiente Tumoral
4.
Toxicol Appl Pharmacol ; 433: 115774, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34699867

RESUMO

Supplements containing pharmacological concentrations of biotin are commercially available. The mechanisms by which biotin at pharmacological concentrations exerts its action have been the subject of multiple investigations, particularly for biotin's medicinal potential and wide use for cosmetic purposes. Several studies have reported that biotin supplementation increases cell proliferation; however, the mechanisms involved in this effect have not yet been characterized. In a previous study, we found that a biotin-supplemented diet increased spermatogonia proliferation. The present study was focused on investigating the molecular mechanisms involved in biotin-induced testis cell proliferation. Male BALB/cAnNHsd mice were fed a control or a biotin-supplemented diet (1.76 or 97.7 mg biotin/kg diet) for eight weeks. Compared with the control group, the biotin-supplemented mice presented augmented protein abundance of the c-kit-receptor and pERK1/2Tyr204 and pAKTSer473, the active forms of ERK/AKT proliferation signaling pathways. No changes were observed in the testis expression of the stem cell factor and in the serum levels of the follicle-stimulating hormone. Analysis of mRNA abundance found an increase in cyclins Ccnd3, Ccne1, Ccna2; Kinases Cdk4, Cdk2; and E2F; and Sp1 & Sp3 transcription factors. Decreased expression of cyclin-dependent kinase inhibitor 1a (p21) was observed but not of Cdkn2a inhibitor (p16). The results of the present study identifies, for the first time, the mechanisms associated with biotin supplementation-induced cell proliferation, which raises concerns about the effects of biotin on male reproductive health because of its capacity to cause hyperplasia, especially because this vitamin is available in large amounts without regulation.


Assuntos
Biotina/toxicidade , Proliferação de Células/efeitos dos fármacos , Suplementos Nutricionais/toxicidade , Hormônio Foliculoestimulante/sangue , Espermatogônias/efeitos dos fármacos , Fator de Células-Tronco/metabolismo , Testículo/efeitos dos fármacos , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-kit/genética , Proteínas Proto-Oncogênicas c-kit/metabolismo , Transdução de Sinais , Fator de Transcrição Sp1/genética , Fator de Transcrição Sp1/metabolismo , Fator de Transcrição Sp3/genética , Fator de Transcrição Sp3/metabolismo , Espermatogônias/metabolismo , Espermatogônias/patologia , Testículo/metabolismo , Testículo/patologia
5.
Phytomedicine ; 90: 153642, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34265701

RESUMO

BACKGROUND: Metastasis caused a decline in the 5-years survival rate of osteosarcoma. Therefore, developing new targeted therapeutics for osteosarcoma treatment is imperative. Dihydromyricetin (DHM) has several physiological functions: it counteracts inflammation, oxidation, and antitumor properties. However, the effects of DHM on osteosarcoma and its underlying mechanisms are still not well understood. PURPOSE: In this study, we investigated the antimetastatic properties of DHM in human osteosarcoma U-2 OS and HOS cells. METHODS: The effects of DHM (0, 25, 50, 75, and 100 µM) on cell viability, migration, and invasion were examined. Western blotting, RT-PCR, and quantitative real-time PCR (QPCR) were determined urokinase plasminogen activator (uPA) expression. The expression of transcriptional factor SP-1 and NF-κB was determined by using immunofluorescence assay, chromatin immunoprecipitation assay, and site-directed mutagenesis luciferase reporter. RESULTS: We observed that DHM suppresses cell migration and invasion in osteosarcoma cell lines. In addition, DHM inhibits metastasis by downregulating urokinase plasminogen activator (uPA) expression. Moreover, real-time polymerase chain reaction and promoter activity assays revealed that DHM decreased uPA expression at transcription levels. Furthermore, the inhibition of uPA expression was associated with the suppression of SP-1 and NF-κB, which bind to the uPA promoter. Regardless of blocking or inducing the extracellular signal-regulated kinase (ERK) pathway, we verified that the DHM-related suppression of uPA and cell metastasis occurred through the p-ERK pathway. CONCLUSION: We are the first study to propose that DHM suppresses osteosarcoma metastasis through the ERK pathway and through the suppression of SP-1 and NF-κB to inhibit downstream uPA expression. DHM is a potential therapeutic agent for antimetastatic therapy against osteosarcoma.


Assuntos
Neoplasias Ósseas , Flavonóis/farmacologia , Metástase Neoplásica/tratamento farmacológico , Osteossarcoma , Ativador de Plasminogênio Tipo Uroquinase/antagonistas & inibidores , Neoplasias Ósseas/tratamento farmacológico , Linhagem Celular Tumoral , Movimento Celular , Humanos , NF-kappa B/metabolismo , Invasividade Neoplásica , Osteossarcoma/tratamento farmacológico , Fator de Transcrição Sp1/metabolismo
6.
Toxicol Appl Pharmacol ; 425: 115606, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34087332

RESUMO

Triptolide (TP), a primary bioactive ingredient isolated from the traditional Chinese herbal medicine Tripterygium wilfordii Hook. F. (TWHF), has attracted great interest for its therapeutic biological activities in inflammation and autoimmune disease. However, its clinical use is limited by severe testicular toxicity, and the underlying mechanism has not been elucidated. Our preliminary evidence demonstrated that TP disrupted glucose metabolism and caused testicular toxicity. During spermatogenesis, Sertoli cells (SCs) provide lactate as an energy source to germ cells by glycolysis. The transcription factors GATA-binding protein 4 (GATA4) and specificity protein 1 (Sp1) can regulate glycolysis. Based on this evidence, we speculate that TP causes abnormal glycolysis in SCs by influencing the expression of the transcription factors GATA4 and Sp1. The mechanism of TP-induced testicular toxicity was investigated in vitro and in vivo. The data indicated that TP decreased glucose consumption, lactate production, and the mRNA levels of glycolysis-related transporters and enzymes. TP also downregulated the protein expression of the transcription factors GATA4 and Sp1, as well as the glycolytic enzyme phosphofructokinase platelet (PFKP). Phosphorylated GATA4 and nuclear GATA4 protein levels were reduced in a dose- and time-dependent manner after TP incubation. Similar effects were observed in shGata4-treated TM4 cells and BALB/c mice administered 0.4 mg/kg TP for 28 days, and glycolysis was also inhibited. Gata4 knockdown downregulated Sp1 and PFKP expression. Furthermore, the Sp1 inhibitor plicamycin inhibited PFKP protein levels in TM4 cells. In conclusion, TP inhibited GATA4-mediated glycolysis by suppressing Sp1-dependent PFKP expression in SCs and caused testicular toxicity.


Assuntos
Diterpenos/farmacologia , Fator de Transcrição GATA4/metabolismo , Glicólise/efeitos dos fármacos , Fenantrenos/farmacologia , Fosfofrutoquinase-1 Tipo C/metabolismo , Células de Sertoli/efeitos dos fármacos , Fator de Transcrição Sp1/metabolismo , Animais , Linhagem Celular , Proliferação de Células , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo , Compostos de Epóxi/farmacologia , Fator de Transcrição GATA4/efeitos dos fármacos , Fator de Transcrição GATA4/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Fosfofrutoquinase-1 Tipo C/efeitos dos fármacos , Fosfofrutoquinase-1 Tipo C/genética , Células de Sertoli/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição Sp1/efeitos dos fármacos , Fator de Transcrição Sp1/genética
7.
Inflammation ; 44(4): 1643-1661, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33730343

RESUMO

The present study was aimed to investigate the phototherapy effect with low-level laser on human bronchial epithelial cells activated by cigarette smoke extract (CSE). Phototherapy has been reported to actuate positively for controlling the generation/release of anti-inflammatory and pro-inflammatory mediators from different cellular type activated by distinct stimuli. It is not known whether the IL-8 and IL-10 release from CSE-stimulated human bronchial epithelium (BEAS) cells can be influenced by phototherapy. Human bronchial epithelial cell (BEAS) line was cultured in a medium with CSE and irradiated (660 nm) at 9 J. Apoptosis index was standardized with Annexin V and the cellular viability was evaluated by MTT. IL-8, IL-10, cAMP, and NF-κB were measured by ELISA as well as the Sp1, JNK, ERK1/2, and p38MAPK. Phototherapy effect was studied in the presence of mithramycin or the inhibitors of JNK or ERK. The IL-8, cAMP, NF-κB, JNK, p38, and ERK1/2 were downregulated by phototherapy. Both the JNK and the ERK inhibitors potentiated the phototherapy effect on IL-8 as well as on cAMP secretion from BEAS. On the contrary, IL-10 and Sp1 were upregulated by phototherapy. The mithramycin blocked the phototherapy effect on IL-10. The results suggest that phototherapy has a dual effect on BEAS cells because it downregulates the IL-8 secretion by interfering with CSE-mediated signaling pathways, and oppositely upregulates the IL-10 secretion through of Sp1 transcription factor. The manuscript provides evidence that the phototherapy can interfere with MAPK signaling via cAMP in order to attenuate the IL-8 secretion from CSE-stimulated BEAS. In addition, the present study showed that phototherapy effect is driven to downregulation of the both the IL-8 and the ROS secretion and at the same time the upregulation of IL-10 secretion. Besides it, the increase of Sp-1 transcription factor was crucial for laser effect in upregulating the IL-10 secretion. The dexamethasone corticoid produces a significant inhibitory effect on IL-8 as well as ROS secretion, but on the other hand, the corticoid blocked the IL-10 secretion. Taking it into consideration, it is reasonable to suggest that the beneficial effect of laser therapy on lung diseases involves its action on unbalance between pro-inflammatory and anti-inflammatory mediators secreted by human bronchial epithelial cells through different signaling pathway.


Assuntos
Citocinas/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Nicotiana/efeitos adversos , Fototerapia/métodos , Mucosa Respiratória/metabolismo , Fumaça/efeitos adversos , Fator de Transcrição Sp1/metabolismo , Brônquios/efeitos dos fármacos , Brônquios/metabolismo , Linhagem Celular , Fumar Cigarros/efeitos adversos , Fumar Cigarros/terapia , Humanos , Mucosa Respiratória/efeitos dos fármacos
8.
Carcinogenesis ; 42(3): 344-356, 2021 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-33146712

RESUMO

Recently, we identified that the atypical protein kinase C isoform ι (PKCι) enhances the expression of Yes-associated protein 1 (YAP1) to promote the tumorigenesis of pancreatic adenocarcinoma harboring mutant KRAS (mu-KRAS). To advance our understanding about underlying mechanisms, we analyze the transcription of YAP1 in pancreatic cancer cells and reveal that transcription factor specificity protein 1 (Sp1) is upregulated by PKCι and subsequently binds to multiple sites in YAP1 promoter to drive the transactivation of YAP1 in pancreatic cancer cells carrying mu-KRAS. The bioinformatics analysis further substantiates that the expression of PKCι, Sp1 and YAP1 is correlated and associated with the stages and prognosis of pancreatic tumors. Moreover, our apoptotic detection data demonstrate that combination of PKCι and Sp1 inhibitors at subtoxic doses displays synergistic effects on inducing apoptosis and reversing the immunosuppression of pancreatic cancer cells, establishing the combination of PKCι and Sp1 inhibitors as a promising novel therapeutic approach, or an adjuvant strategy to potentiate the antitumor effects of other immunotherapeutic agents in pancreatic cancer treatment.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Isoenzimas/metabolismo , Neoplasias Pancreáticas/genética , Proteína Quinase C/metabolismo , Fator de Transcrição Sp1/genética , Fatores de Transcrição/genética , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Apoptose/efeitos dos fármacos , Apoptose/genética , Apoptose/imunologia , Carcinogênese/efeitos dos fármacos , Carcinogênese/genética , Carcinogênese/imunologia , Linhagem Celular Tumoral , Biologia Computacional , Conjuntos de Dados como Assunto , Sinergismo Farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/imunologia , Humanos , Isoenzimas/antagonistas & inibidores , Mutação , Pâncreas/imunologia , Pâncreas/patologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/patologia , Prognóstico , Regiões Promotoras Genéticas/genética , Proteína Quinase C/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/genética , RNA-Seq , Fator de Transcrição Sp1/antagonistas & inibidores , Fator de Transcrição Sp1/metabolismo , Ativação Transcricional/efeitos dos fármacos , Ativação Transcricional/imunologia , Evasão Tumoral/efeitos dos fármacos , Evasão Tumoral/genética , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/imunologia , Proteínas de Sinalização YAP
9.
Phytother Res ; 34(1): 201-213, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31823440

RESUMO

Nasopharyngeal carcinoma (NPC) is a common head and neck malignancy with higher incidence in Southern China and Southeast Asia. Solamargine (SM), a steroidal alkaloid glycoside, has been shown to have anticancer properties. However, the underlying mechanism involved remains undetermined. In this study, we showed that SM inhibited the growth of NPC cells. Mechanistically, we found that solamargine decreased lncRNA colon cancer-associated transcript-1 (CCAT1) and increased miR7-5p expression. There was a reciprocal interaction of CCAT1 and miR7-5p. In addition, SM inhibited the expression of SP1 protein and promoter activity, which was strengthened by miR7-5p mimics and inhibited by overexpressed CCAT1. MiR7-5p could bind to 3'-UTR of SP1 and attenuated SP1 gene expression. Exogenously expressed SP1 feedback resisted SM-increased miR7-5p expression and more importantly reversed SM-inhibited growth of NPC cells. Finally, SM inhibited NPC tumor growth in vivo. Collectively, our results show that SM inhibits the growth of NPC cells through reciprocal regulation of CCAT1 and miR7-5p, followed by inhibition of SP1 gene expression in vitro and in vivo. The interregulation and correlation among CCAT1, miR7-5p and SP1, and the feedback regulatory loop unveil the novel molecular mechanism underlying the overall responses of SM in anti-NPC.


Assuntos
Neoplasias do Colo/genética , Regulação Neoplásica da Expressão Gênica/genética , MicroRNAs/metabolismo , Carcinoma Nasofaríngeo/genética , Alcaloides de Solanáceas/metabolismo , Fator de Transcrição Sp1/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células , China , Modelos Animais de Doenças , Humanos , Camundongos , Transfecção
10.
Diab Vasc Dis Res ; 17(1): 1479164119878427, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31726874

RESUMO

Thiamine prevents high glucose-induced damage in microvasculature, and progression of retinopathy and nephropathy in diabetic animals. Impaired thiamine availability causes renal damage in diabetic patients. Two single-nucleotide polymorphisms in SLC19A3 locus encoding for thiamine transporter 2 are associated with absent/minimal diabetic retinopathy and nephropathy despite long-term type 1 diabetes. We investigated the involvement of thiamine transporter 1 and thiamine transporter 2, and their transcription factor specificity protein 1, in high glucose-induced damage and altered thiamine availability in cells of the inner blood-retinal barrier. Human endothelial cells, pericytes and Müller cells were exposed to hyperglycaemic-like conditions and/or thiamine deficiency/over-supplementation in single/co-cultures. Expression and localization of thiamine transporter 1, thiamine transporter 2 and transcription factor specificity protein 1 were evaluated together with intracellular thiamine concentration, transketolase activity and permeability to thiamine. The effects of thiamine depletion on cell function (viability, apoptosis and migration) were also addressed. Thiamine transporter 2 and transcription factor specificity protein 1 expression were modulated by hyperglycaemic-like conditions. Transketolase activity, intracellular thiamine and permeability to thiamine were decreased in cells cultured in thiamine deficiency, and in pericytes in hyperglycaemic-like conditions. Thiamine depletion reduced cell viability and proliferation, while thiamine over-supplementation compensated for thiamine transporter 2 reduction by restoring thiamine uptake and transketolase activity. High glucose and reduced thiamine determine impairment in thiamine transport inside retinal cells and through the inner blood-retinal barrier. Thiamine transporter 2 modulation in our cell models suggests its major role in thiamine transport in retinal cells and its involvement in high glucose-induced damage and impaired thiamine availability.


Assuntos
Retinopatia Diabética/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Ependimogliais/efeitos dos fármacos , Glucose/toxicidade , Proteínas de Membrana Transportadoras/metabolismo , Pericitos/efeitos dos fármacos , Vasos Retinianos/efeitos dos fármacos , Tiamina/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Microambiente Celular , Técnicas de Cocultura , Retinopatia Diabética/genética , Retinopatia Diabética/patologia , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Células Ependimogliais/metabolismo , Células Ependimogliais/patologia , Humanos , Proteínas de Membrana Transportadoras/genética , Pericitos/metabolismo , Pericitos/patologia , Vasos Retinianos/metabolismo , Vasos Retinianos/patologia , Fator de Transcrição Sp1/genética , Fator de Transcrição Sp1/metabolismo , Transcetolase/metabolismo
11.
Biomed Pharmacother ; 121: 109632, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31707347

RESUMO

The Chinese herbal prescription Xiaoji decoction (XJD) has been used as an adjuvant treatment of cancer for decades. However, the molecular mechanisms underlying XJD enhancement of the efficiency of chemotherapy were undetermined. In this study, we observed that combination of XJD and cisplatin (DDP) showed a greater inhibition on growth and induced a high magnitude of apoptosis in non-small cell lung cancer (NSCLC) cells. We also found that XJD decreased lncRNA PVT1 and increased miR181a-5p expressions. There was a reciprocal interaction between PVT1 and miR181a-5p. XJD decreased SP1 protein, which were overcame by overexpressed PVT1 and inhibitors of miR181a-5p. Overexpressed SP1 reversed the inhibitory effect of XJD on cell growth. Importantly, XJD and DDP exhibited synergy on regulation of PVT1, miR181a-5p, and SP1 expressions. The similar results were observed in one in vivo model. In conclusions, XJD inhibits NSCLC cell growth via reciprocal interaction of PVT1 and miR181a-5p followed by reducing SP1 expression. XJD and DDP exhibit synergy. This study provides a novel mechanism by which XJD enhances the anti-cancer effect of DDP in NSCLC cells.


Assuntos
Cisplatino/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , Fator de Transcrição Sp1/metabolismo , Células A549 , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/metabolismo
12.
Cell ; 177(5): 1262-1279.e25, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-31056284

RESUMO

Ferroptosis, a non-apoptotic form of programmed cell death, is triggered by oxidative stress in cancer, heat stress in plants, and hemorrhagic stroke. A homeostatic transcriptional response to ferroptotic stimuli is unknown. We show that neurons respond to ferroptotic stimuli by induction of selenoproteins, including antioxidant glutathione peroxidase 4 (GPX4). Pharmacological selenium (Se) augments GPX4 and other genes in this transcriptional program, the selenome, via coordinated activation of the transcription factors TFAP2c and Sp1 to protect neurons. Remarkably, a single dose of Se delivered into the brain drives antioxidant GPX4 expression, protects neurons, and improves behavior in a hemorrhagic stroke model. Altogether, we show that pharmacological Se supplementation effectively inhibits GPX4-dependent ferroptotic death as well as cell death induced by excitotoxicity or ER stress, which are GPX4 independent. Systemic administration of a brain-penetrant selenopeptide activates homeostatic transcription to inhibit cell death and improves function when delivered after hemorrhagic or ischemic stroke.


Assuntos
Isquemia Encefálica , Peptídeos Penetradores de Células/farmacologia , Ferroptose/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Hemorragias Intracranianas , Neurônios , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/biossíntese , Selênio/farmacologia , Acidente Vascular Cerebral , Transcrição Gênica/efeitos dos fármacos , Animais , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Humanos , Hemorragias Intracranianas/tratamento farmacológico , Hemorragias Intracranianas/metabolismo , Hemorragias Intracranianas/patologia , Masculino , Camundongos , Neurônios/metabolismo , Neurônios/patologia , Fator de Transcrição Sp1/metabolismo , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/patologia , Fator de Transcrição AP-2/metabolismo
13.
J Ethnopharmacol ; 239: 111928, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31077779

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The Chinese herbal medicine Fuzheng Kang-Ai (FZKA) decoction obtained from Guangdong Kangmei Pharmaceutical Company, which contains 12 components with different types of constituents, has been used as part of the adjuvant treatment of lung cancer for decades. We previously showed that FZKA decoction enhances the growth inhibition of epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI)-resistant non-small cell lung cancer (NSCLC) cells by suppressing glycoprotein mucin 1 (MUC1) expression. However, the molecular mechanism underlying the therapeutic potential, particularly in sensitizing or/and enhancing the anti-lung cancer effect of EGFR-TKIs, remains unclear. MATERIALS AND METHODS: Cell viability was measured using 3-(4, 5-diMEThylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) and 5-ethynyl -2'-deoxyuridine (EdU) assays. Western blot analysis was performed to examine the protein expressions of DNA methyltransferase 1 (DNMT1), specificity protein 1 (SP1), and MET, an oncogene encoding for a trans-membrane tyrosine kinase receptor activated by the hepatocyte growth factor (HGF). The expression of MET mRNA was measured by quantitative real-time PCR (qRT-PCR). Exogenous expression of DNMT1 and SP1, and MET were carried out by transient transfection assays. The promoter activity of MET was tested using Dual-luciferase reporter assays. A nude mouse xenografted tumor model further evaluated the effect of the combination of FZKA decoction and erlotinib in vivo. RESULTS: The combination of FZKA and erlotinib produced an even greater inhibition of NSCLC cell growth. FZKA decreased the expressions of DNMT1, SP1, and MET (c-MET) proteins, and the combination of FZKA and erlotinib demonstrated enhanced responses. Interestingly, there was a mutual regulation of DNMT1 and SP1. In addition, exogenously expressed DNMT1 and SP1 blocked the FZKA-inhibited c-MET expression. Moreover, excessive expressed MET neutralized FZKA-inhibited growth of NSCLC cells. FZKA decreased the mRNA and promoter activity of c-MET, which was not observed in cells with ectopic expressed DNMT1 gene. Similar findings were observed in vivo. CONCLUSION: FZKA decreases MET gene expression through the repression and mutual regulation of DNMT1 and SP1 in vitro and in vivo. This leads to inhibit the growth of human lung cancer cells. The combination of FZKA and EGFR-TKI erlotinib exhibits synergy in this process. The regulatory loops among the DNMT1, SP1 and MET converge in the overall effects of FZKA and EGFR-TKI erlotinib. This in vitro and in vivo study clarifies an additional novel molecular mechanism underlying the anti-lung cancer effects in response to the combination of FZKA and erlotinib in gefitinib-resistant NSCLC cells.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Cloridrato de Erlotinib/farmacologia , Neoplasias Pulmonares/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Animais , Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Sinergismo Farmacológico , Medicamentos de Ervas Chinesas/uso terapêutico , Cloridrato de Erlotinib/uso terapêutico , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Camundongos Endogâmicos BALB C , Camundongos Nus , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-met/metabolismo , Fator de Transcrição Sp1/metabolismo
14.
Atherosclerosis ; 282: 1-10, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30665023

RESUMO

BACKGROUND AND AIMS: We have previously demonstrated that in response to hypoxia, von Willebrand factor (VWF) expression is upregulated in lung and heart endothelial cells both in vitro and in vivo, but not in kidney endothelial cells. The aim of our current study was to determine whether endothelial cells of different organs employ distinct molecular mechanisms to mediate VWF response to hypoxia. METHODS: We used cultured human primary lung, heart and kidney endothelial cells to determine the activation of endogenous VWF as well as exogenously expressed VWF promoter in response to hypoxia. Chromatin immunoprecipitation and siRNA knockdown analyses were used to determine the roles of VWF promoter associated transacting factors in mediating its hypoxia response. Platelet aggregates formations in vascular beds of mice were used as a marker for potential functional consequences of hypoxia-induced VWF upregulation in vivo. RESULTS: Our analyses demonstrated that while Yin Yang 1 (YY1) and specificity protein 1 (Sp1) participate in the hypoxia-induced upregulation of VWF specifically in lung endothelial cells, GATA6 mediates this process specifically in heart endothelial cells. In both cell types, the response to hypoxia involves the decreased association of the NFIB repressor with the VWF promoter, and the increased acetylation of the promoter-associated histone H4. In mice exposed to hypoxia, the upregulation of VWF expression was concomitant with the presence of thrombi in heart and lung, but not kidney vascular beds. CONCLUSIONS: Heart and lung endothelial cells demonstrated VWF upregulation in response to hypoxia, using distinct mechanisms, while this response was lacking in kidney endothelial cells.


Assuntos
Células Endoteliais/metabolismo , Rim/citologia , Pulmão/citologia , Miocárdio/citologia , Fator de von Willebrand/metabolismo , Animais , Plaquetas/metabolismo , Hipóxia Celular , Células Cultivadas , Metilação de DNA , Endotélio Vascular/citologia , Fibroblastos/metabolismo , Fator de Transcrição GATA6/metabolismo , Perfilação da Expressão Gênica , Histonas/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Agregação Plaquetária , Regiões Promotoras Genéticas , RNA Interferente Pequeno/metabolismo , Fator de Transcrição Sp1/metabolismo , Fator de Transcrição YY1/metabolismo
15.
Anticancer Drugs ; 30(2): 153-158, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30362980

RESUMO

Colorectal cancer occurs throughout the world but is most common in developed countries. Cancer progression is believed to be driven by genetic mutations in this complex condition. Risk factors for developing colorectal cancer include a genetic family history, long-term ulcerative colitis, and colonic polyps. The use of baicalin has been reported to be clinically efficacious against colon tumors in Asian countries despite an unclear mechanism of action. Several cancers have been found to be biologically dependent on the specificity protein 1 (sp1) transcription factor family. We hypothesized that baicalin may exert its chemotherapeutic effects by sp1 downregulation. Using the SW480 human colorectal cancer cell line, we investigated the physiological properties of baicalin. Our experiments were designed toward clarifying three goals: (a) to determine the mRNA expression profile of transcription factors in colorectal cancer patients using a microarray-based analysis; (b) to determine the effects of baicalin on the sp1 transcription factor with western blotting and reporter cell assays; and (c) to contrast the effects of mithramycin-A (an sp1 transcription factor inhibitor) and baicalin using western blotting and reporter cell assays. Both baicalin and mithramycin-A downregulated sp1 expression, attenuated SW480 cell proliferation, and increased cell apoptosis. Baicalin inhibited sp1 expression and led to SW480 apoptosis, thus clarifying the effect of this traditional Chinese medicine compound in the treatment of colon cancer.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Apoptose , Biomarcadores Tumorais/metabolismo , Neoplasias do Colo/patologia , Flavonoides/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Fator de Transcrição Sp1/antagonistas & inibidores , Biomarcadores Tumorais/genética , Proliferação de Células , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Perfilação da Expressão Gênica , Humanos , Fator de Transcrição Sp1/genética , Fator de Transcrição Sp1/metabolismo , Células Tumorais Cultivadas
16.
Phytomedicine ; 48: 51-61, 2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-30195880

RESUMO

BACKGROUND: Curcumin is a naturally occurring polyphenol which has been demonstrated to possess diverse biological activities. We previously reported that curcumin is a biologically active copper chelator with antitumor activity. Copper transporter 1 (CTR1) on the plasma membrane of eukaryotic cells mediates both copper as well as anticancer drug cisplatin uptake. PURPOSE: This study aims to investigate whether curcumin enhances cisplatin sensitivity of human non-small cell lung cancer (NSCLC) through influencing Cu-Sp1-CTR1 regulatory loop. METHODS: The combination effect of curcumin and cisplatin on cell proliferation and apoptosis was determined in vitro and in vivo. Platinum level in A549 cells and tumor tissue was measured by atomic absorption spectrometry (AAS). The binding ability of specificity protein 1 (Sp1) to CTR1 and Sp1 promoters was detected by ChIP assay and luciferase reporter assay system. RESULTS: Here we show that combined curcumin and cisplatin treatment markedly inhibited A549 cells proliferation and induced its apoptosis. Using a mouse model of A549 xenograft, we demonstrated that curcumin inhibits copper influx and increases uptake of platinum ion in tumor. Curcumin treatment enhances the binding of Sp1 to CTR1 and Sp1 promoters, thus induces CTR1 expression and chemosensitization to cisplatin treatment. This process is regulated by the Cu-Sp1-CTR1 regulatory loop. Moreover, the enhancement mediated by curcumin on cisplatin therapeutic efficacy in cultured human NSCLC cell lines (A549, H460, H1299) was dependent on CTR1. CONCLUSIONS: Our results demonstrated copper chelator curcumin enhances the benefits of platinum-containing chemotherapeutic agents and CTR1 could be a promising therapeutic target for non-small cell lung cancer treatment.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Cisplatino/farmacologia , Curcumina/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Células A549 , Animais , Proteínas de Transporte de Cátions/metabolismo , Proliferação de Células/efeitos dos fármacos , Cobre/farmacologia , Transportador de Cobre 1 , Humanos , Pulmão/patologia , Camundongos , Fator de Transcrição Sp1/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Cryobiology ; 83: 1-8, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30056853

RESUMO

Hibernation is an adaptive strategy used by some animals to cope with cold and food shortage. The heart rate, overall energy need, body temperature, and many other physiological functions are greatly reduced during torpor but promptly return to normal levels upon arousal. The heartbeat of torpid bats can be hundreds fold lower than that of active bats, indicating that hibernating bats have a remarkable ability to control excitation-contraction coupling in cardiac muscle. FKBP1B (calstabin 2), a peptidyl-prolyl cis-trans isomerase, is critical for the regulation of excitation-contraction coupling. Whether FKBP1B is adapted to hibernation in bats is not known. Evolutionary analyses showed that the ω values of the Fkbp1b genes of 25 mammalian species are all less than 1, and amino acid sequence alignments revealed that FKBP1B proteins are highly conserved in mammals. The expression of the Fkbp1b gene was found to be elevated at both mRNA and protein levels in two distantly related bats (Rhinolophus ferrumequinum in Yinpterochiroptera and Myotis ricketti in Yangochiroptera) during torpor. Transcription factors such as YY1 and SPs were bioinformatically determined to have a higher binding affinity to the potential regulatory regions of Fkbp1b genes in hibernating than in non-hibernating mammals. This study provides new insights into the molecular evolution of Fkbp1b in adaptation to bat hibernation.


Assuntos
Quirópteros/fisiologia , Coração/fisiologia , Hibernação/fisiologia , Proteínas de Ligação a Tacrolimo/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Sítios de Ligação/genética , Temperatura Corporal , Quirópteros/metabolismo , Acoplamento Excitação-Contração/fisiologia , Masculino , Ligação Proteica/fisiologia , RNA Mensageiro/genética , Fator de Transcrição Sp1/metabolismo , Fator de Transcrição Sp3/metabolismo , Proteínas de Ligação a Tacrolimo/genética , Fator de Transcrição YY1/metabolismo
18.
Am J Chin Med ; 46(5): 1093-1110, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29976085

RESUMO

The mechanism of ethanol-induced hepatotoxicity was complicated, accompanied by the over-expressions of the cytochrome P450 2E1 (CYP2E1), heat shock protein 70 (Hsp70) and the nuclear factor specificity protein 1 (SP1). Kaempferol (Kaem) could protect the ethanol-induced hepatotoxicity likely by inhibiting the CYP2E1 expression and activity. This study investigated the protective mechanism(s) of kaempferol on ethanol-induced toxicity by dynamic alteration of SP1, Hsp70 and CYP2E1 among the nucleus and different organelles in hepatocytes. After ethanol treatment alone and co-incubation hepatocytes with kaempferol, protein levels of CYP2E1, Hsp70, and SP1 were determined in vitro (western blotting and immunofluorescence). Hepatocytes' viability was assessed by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) methods. Glutathione (GSH) levels were evaluated for ethanol-induced oxidative stress. In the ethanol-treated hepatocytes, kaempferol decreased protein levels of CYP2E1 in both microsome and mitochondria, cytosolic Hsp70 and SP1 in nuclear and cytosol, and the oxidative stress and increased the cell viability compared to those of ethanol group. Collectively, our findings propose that the protective mechanism of kaempferol is involved in the synchronous, early and persistent inhibitions of mitochondrial and microsomal CYP2E1, cytosolic Hsp70 and nuclear and cytosolic SP1 in mouse primary hepatocytes' injury induced by ethanol.


Assuntos
Citocromo P-450 CYP2E1/metabolismo , Etanol/efeitos adversos , Proteínas de Choque Térmico HSP70/metabolismo , Hepatócitos/efeitos dos fármacos , Quempferóis/farmacologia , Hepatopatias Alcoólicas/metabolismo , Fígado/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Fator de Transcrição Sp1/metabolismo , Animais , Células Cultivadas , Citocromo P-450 CYP2E1/genética , Glutationa/metabolismo , Proteínas de Choque Térmico HSP70/genética , Hepatócitos/metabolismo , Humanos , Fígado/lesões , Fígado/metabolismo , Hepatopatias Alcoólicas/genética , Hepatopatias Alcoólicas/prevenção & controle , Masculino , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Fator de Transcrição Sp1/genética
19.
Am J Chin Med ; 46(5): 1021-1044, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29986596

RESUMO

An extract of Dendropanax morbifera branch exerts antioxidant, anti-inflammatory, antithrombotic, and anticancer activities. The purpose of this study was to investigate the effect of the extract in isoproterenol-induced cardiac hypertrophy. Phalloidin staining showed that treatment with the extract dramatically prevents isoproterenol-induced H9c2 cell enlargement and the expression of cardiac hypertrophic marker genes, including atrial natriuretic peptide (ANP) and B-type brain natriuretic peptide (BNP). Further, pretreatment with the extract decreased isoproterenol-induced GATA4 and Sp1 expression in H9c2 cells. Overexpression of Sp1 induced the expression of GATA4. The forced expression of Sp1 or its downstream target GATA4, as well as the co-transfection of Sp1 and GATA4 increased the expression of ANP, which was decreased by treatment with the extract. To further elucidate the regulation of the Sp1/GATA4-mediated expression of ANP, knockdown experiments were performed. Transfection with small interfering RNAs (siRNAs) for Sp1 or GATA4 decreased ANP expression. The extract did not further inhibit the expression of ANP reduced by the transfection of GATA4 siRNA. Sp1 knockdown did not affect the expression of ANP that was induced by the overexpression of GATA4; however, GATA4 knockdown abolished the expression of ANP that had been induced by Sp1 overexpression. The extract treatment also attenuated the isoproterenol-induced activation of p38 MAPK, ERK1/2, and JNK1. Hesperidin, catechin, 2,5-dihydroxybenzoic acid, and salicylic acid are the main phenolic compounds present in the extract as observed by high performance liquid chromatography. Hesperidin and 2,5-dihydroxybenzoic acid attenuated isoproterenol-induced cardiac hypertrophy. These findings suggest that the D. morbifera branch extract prevents cardiac hypertrophy by downregulating the activation of Sp1/GATA4 and MAPK signaling pathways.


Assuntos
Araliaceae/química , Cardiomegalia/metabolismo , Fator de Transcrição GATA4/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Extratos Vegetais/farmacologia , Fator de Transcrição Sp1/metabolismo , Animais , Cardiomegalia/tratamento farmacológico , Cardiomegalia/genética , Linhagem Celular , Regulação para Baixo/efeitos dos fármacos , Fator de Transcrição GATA4/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Miócitos Cardíacos/metabolismo , Ratos , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição Sp1/genética
20.
Mol Med Rep ; 17(4): 6150-6155, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29484433

RESUMO

The smallest product of the Duchenne muscular dystrophy gene, dystrophin (Dp)71, is ubiquitously expressed in nonmuscle tissues. We previously showed that Dp71 expression in hepatic cells is modulated in part by stimulating factor 1 (Sp1), stimulating protein 3 (Sp3), and yin yang 1 (YY1) transcription factors, and that the polyaromatic hydrocarbon, ß-naphthoflavone (ß­NF), downregulates Dp71 expression. The aim of the present study was to determine whether ß­NF represses Dp71 expression by altering mRNA stability or its promoter activity. Reverse transcription­quantitative polymerase chain reaction was used to measure half­life mRNA levels in ß­NF­treated cells exposed to actinomycin D, an inhibitor of transcription, for 0, 4, 8, 12 and 16 h. Transient transfections with a plasmid carrying the Dp71 basal promoter fused to luciferase reporter gene were carried out in control and ß­NF­treated cells. Electrophoretic mobility shift assays (EMSAs) were performed with labeled probes, corresponding to Dp71 promoter sequences, and nuclear extracts of control and ß­NF­treated cells. To the best of our knowledge, the results demonstrated for the first time that this negative regulation takes place at the promoter level rather than the mRNA stability level. Interestingly, using EMSAs, ß­NF reduced binding of YY1, Sp1, and Sp3 to the Dp71 promoter. It also suggests that ß­NF may modulate the expression of other genes regulated by these transcription factors. In conclusion, ß­NF represses Dp71 expression in hepatic cells by altering binding of YY1, Sp1, and Sp3 to the Dp71 promoter.


Assuntos
Distrofina/genética , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Regiões Promotoras Genéticas , Fator de Transcrição Sp1/metabolismo , Fator de Transcrição Sp3/metabolismo , Fator de Transcrição YY1/metabolismo , beta-Naftoflavona/farmacologia , Células Hep G2 , Humanos , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA