RESUMO
The animal and cell models were used in this study to investigate the mechanism of Astragali Radix-Curcumae Rhizoma(HQEZ) in inhibiting colon cancer progression and enhancing the efficacy of 5-fluorouracil(5-FU) by regulating hypoxia-inducible factors and tumor stem cells. The animal model was established by subcutaneous transplantation of colon cancer HCT116 cells in nude mice, and 24 successfully modeled mice were randomized into model, 5-FU, HQEZ, and 5-FU+HQEZ groups. The tumor volume was measured every two days. Western blot was employed to measure the protein levels of epidermal growth factor receptor(EGFR), dihydropyrimidine dehydrogenase(DPYD), and thymidylate synthase(TYMS), the key targets of the hypoxic core region, as well as the hypoxia-inducible factors HIF-1α and HIF-2α and the cancer stem cell surface marker CD133 and SRY-box transcription factor 2(SOX2). The results of animal experiments showed that HQEZ slowed down the tumor growth and significantly increased the tumor inhibition rate of 5-FU. Compared with the model group, HQEZ significantly down-regulated the protein levels of EGFR and DPYD, and 5-FU+HQEZ significantly down-regulated the protein levels of EGFR and TYMS in tumors. Compared with the model group, HQEZ significantly down-regulated the protein levels of HIF-1α, HIF-2α, SOX2, and CD133 in the hypoxic core region. Compared with the 5-FU group, 5-FU+HQEZ lowered the protein levels of HIF-1α, HIF-2α, and SOX2. The cell experiments showed that the protein le-vels of HIF-1α and HIF-2α in HCT116 cells elevated significantly after low oxygen treatment. Compared with 5-FU(1.38 µmol·L~(-1)) alone, HQEZ(40 mg·mL~(-1)) and 5-FU+HQEZ significantly down-regulated the protein levels of HIF-1α, HIF-2α, and TYMS. In conclusion, HQEZ can inhibit the expression of hypoxia-responsive molecules in colon cancer cells and reduce the properties of cancer stem cells, thereby enhancing the therapeutic effect of 5-FU on colon cancer.
Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Neoplasias do Colo , Camundongos , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Camundongos Nus , Fluoruracila/farmacologia , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Hipóxia , Receptores ErbB , Células-Tronco Neoplásicas , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Linhagem Celular TumoralRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Non-alcoholic steatohepatitis (NASH) is a common metabolic liver injury disease that is closely associated with obesity and metabolic disorders. Paeonol, an active ingredient found in Moutan Cortex, a traditional Chinese medicine which exhibits significant therapeutic effect on liver protection, has shown promising effects in treating liver diseases, particularly NASH. However, the specific intervention mechanism of paeonol on NASH is still unknown. AIM OF THE STUDY: Our objective is to elucidate the pharmacological mechanism of paeonol in intervening NASH at the in vivo level, focusing on the impact on intestinal flora, tryptophan-related targeted metabolome, and related Aryl hydrocarbon receptor (AhR) pathways. MATERIALS AND METHODS: Here, we explored the intervention effect of paeonol on NASH by utilizing the NASH mouse model. The Illumina highthroughput sequencing technology was preformed to determine the differences of gut microbiota of model and paeonol treatment group. The concentration of Indoleacetic acid is determined by ELISA. The intervention effect of NASH mouse and AhR/NLRP3/Caspase-1 metabolic pathway is analyzed by HE staining, oil red O staining, Immunohistochemistry, Immunofluorescence, Western blot and qRT-PCR assays. Fecal microbiota transplantation experiment also was performed to verify the intervention effect of paeonol on NASH by affecting gut microbiota. RESULTS: Firstly, we discovered that paeonol effectively reduced liver pathology and blood lipid levels in NASH mice, thereby intervening in the progression of NASH. Subsequently, through 16S meta-analysis, we identified that paeonol can effectively regulate the composition of intestinal flora in NASH mice, transforming it to resemble that of normal mice. Specifically, paeonol decreased the abundance of certain Gram-negative tryptophan-metabolizing bacteria. Moreover, we discovered that paeonol significantly increased the levels of metabolites Indoleacetic acid, subsequently enhancing the expression of AhR-related pathway proteins. This led to the inhibition of the NOD-like receptor protein 3 (NLRP3) inflammasome production and inflammation generation in NASH. Lastly, we verified the efficacy of paeonol in intervening NASH by conducting fecal microbiota transplantation experiments, which confirmed its role in promoting the AhR/NLRP3/cysteinyl aspartate specific proteinase (Caspase-1) pathway. CONCLUSIONS: Our findings suggest that paeonol can increase the production of Indoleacetic acid by regulating the gut flora, and promote the AhR/NLRP3/Caspase-1 metabolic pathway to intervene NASH.
Assuntos
Acetofenonas , Caspase 1 , Microbioma Gastrointestinal , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR , Hepatopatia Gordurosa não Alcoólica , Receptores de Hidrocarboneto Arílico , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Animais , Acetofenonas/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Masculino , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Caspase 1/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Modelos Animais de Doenças , Fígado/efeitos dos fármacos , Fígado/metabolismo , Transdução de Sinais/efeitos dos fármacos , Redes e Vias Metabólicas/efeitos dos fármacosRESUMO
BACKGROUND: Gynostemma pentaphyllum, an ancient Chinese herbal medicine, serves as a natural source of gypenosides with significant medicinal properties. Basic helix-loop-helix (bHLH) transcription factors play pivotal roles in numerous biological processes, especially in the regulation of secondary metabolism in plants. However, the characteristics and functions of the bHLH genes in G. pentaphyllum remain unexplored, and their regulatory role in gypenoside biosynthesis remains poorly elucidated. RESULTS: This study identified a total of 111 bHLH members in G. pentaphyllum (GpbHLHs), categorizing them into 26 subgroups based on shared conserved motif compositions and gene structures. Collinearity analysis illustrated that segmental duplications predominately lead to the evolution of GpbHLHs, with most duplicated GpbHLH gene pairs undergoing purifying selection. Among the nine gypenoside-related GpbHLH genes, two GpbHLHs (GpbHLH15 and GpbHLH58) were selected for further investigation based on co-expression analysis and functional prediction. The expression of these two selected GpbHLHs was dramatically induced by methyl jasmonate, and their nuclear localization was confirmed. Furthermore, yeast one-hybrid and dual-luciferase assays demonstrated that GpbHLH15 and GpbHLH58 could bind to the promoters of the gypenoside biosynthesis pathway genes, such as GpFPS1, GpSS1, and GpOSC1, and activate their promoter activity to varying degrees. CONCLUSIONS: In conclusion, our findings provide a detailed analysis of the bHLH family and valuable insights into the potential use of GpbHLHs to enhance the accumulation of gypenosides in G. pentaphyllum.
Assuntos
Gynostemma , Extratos Vegetais , Gynostemma/genética , Gynostemma/química , Gynostemma/metabolismo , Extratos Vegetais/química , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismoRESUMO
Medicinal tropane alkaloids (TAs), including hyoscyamine, anisodamine and scopolamine, are essential anticholinergic drugs specifically produced in several solanaceous plants. Atropa belladonna is one of the most important medicinal plants that produces TAs. Therefore, it is necessary to cultivate new A. belladonna germplasm with the high content of TAs. Here, we found that the levels of TAs were elevated under low nitrogen (LN) condition, and identified a LN-responsive bHLH transcription factor (TF) of A. belladonna (named LNIR) regulating the biosynthesis of TAs. The expression level of LNIR was highest in secondary roots where TAs are synthesized specifically, and was significantly induced by LN. Further research revealed that LNIR directly activated the transcription of hyoscyamine 6ß-hydroxylase gene (H6H) by binding to its promoter, which converts hyoscyamine into anisodamine and subsequently epoxidizes anisodamine to form scopolamine. Overexpression of LNIR upregulated the expression levels of TA biosynthesis genes and consequently led to the increased production of TAs. In summary, we functionally identified a LN-responsive bHLH gene that facilitated the development of A. belladonna with high-yield TAs under the decreased usage of nitrogen fertilizer.
Assuntos
Atropa belladonna , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Regulação da Expressão Gênica de Plantas , Oxigenases de Função Mista , Nitrogênio , Tropanos , Nitrogênio/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Atropa belladonna/metabolismo , Atropa belladonna/genética , Tropanos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Medicinais/metabolismo , Plantas Medicinais/genética , Hiosciamina/metabolismo , Hiosciamina/genética , Escopolamina/metabolismo , Regiões Promotoras GenéticasRESUMO
Black goji berry (Lycium ruthenicum Murray) contains a rich source of health-promoting anthocyanins which are used in herbal medicine and nutraceutical foods in China. A natural variant producing white berries allowed us to identify two key genes involved in the regulation of anthocyanin biosynthesis in goji berries: one encoding a MYB transcription factor (LrAN2-like) and one encoding a basic helix-loop-helix (bHLH) transcription factor (LrAN1b). We previously found that LrAN1b expression was lost in the white berry variant, but the molecular basis for this phenotype was unknown. Here, we identified the molecular mechanism for loss of anthocyanins in white goji berries. In white goji, the LrAN1b promoter region has a 229â bp deletion that removes three MYB-binding elements and one bHLH-binding element, which are key to its expression. Complementation of the white goji berry LrAN1b allele with the LrAN1b promoter restored pigmentation. Virus-induced gene silencing of LrAN1b in black goji berry reduced fruit anthocyanin biosynthesis. Molecular analyses showed that LrAN2-like and another bHLH transcription factor LrJAF13 can activate LrAN1b by binding directly to the MYB-recognizing element and bHLH-recognizing element of its promoter-deletion region. LrAN1b expression is enhanced by the interaction of LrAN2-like with LrJAF13 and the WD40 protein LrAN11. LrAN2-like and LrAN11 interact with either LrJAF13 or LrAN1b to form two MYB-bHLH-WD40 complexes, which hierarchically regulate anthocyanin biosynthesis in black goji berry. This study on a natural variant builds a comprehensive anthocyanin regulatory network that may be manipulated to tailor goji berry traits.
Assuntos
Antocianinas , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Frutas , Regulação da Expressão Gênica de Plantas , Lycium , Proteínas de Plantas , Regiões Promotoras Genéticas , Antocianinas/biossíntese , Antocianinas/metabolismo , Regiões Promotoras Genéticas/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Frutas/genética , Frutas/metabolismo , Lycium/genética , Lycium/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Deleção de Sequência , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
Iron (Fe) and phosphate (Pi) are two essential nutrients that are poorly available in the soil and should be supplemented either as fertilizers or organic amendments to sustain crop production. Currently, determining how rhizosphere bacteria contribute to plant mineral nutrient acquisition is an area of growing interest regarding its potential application in agriculture. The aim of this study was to investigate the influence of root colonization by Pseudomonas putida for Arabidopsis growth through Fe and Pi nutritional signaling. We found that root colonization by the bacterium inhibits primary root elongation and promotes the formation of lateral roots. These effects could be related to higher expression of two Pi starvation-induced genes and AtPT1, the major Pi transporter in root tips. In addition, P. putida influenced the accumulation of Fe in the root and the expression of different elements of the Fe uptake pathway. The loss of function of the protein ligase BRUTUS (BTS), and the bHLH transcription factors POPEYE (PYE) and IAA-LEUCINE RESISTANT3 (ILR3) compromised the root branching stimulation triggered by bacterial inoculation while the leaf chlorosis in the fit1 and irt1-1 mutant plants grown under standard conditions could be bypassed by P. putida inoculation. The WT and both mutant lines showed similar Fe accumulation in roots. P. putida repressed the expression of the IRON-REGULATED TRANSPORTER 1 (IRT1) gene suggesting that the bacterium promotes an alternative Fe uptake mechanism. These results open the door for the use of P. putida to enhance nutrient uptake and optimize fertilizer usage by plants.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Pseudomonas putida , Arabidopsis/metabolismo , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Fosfatos/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de PlantasRESUMO
The molecular mechanism underlying phototherapy and light treatment, which utilize various wavelength spectra of light, including near-infrared (NIR), to cure human and plant diseases, is obscure. Here we revealed that NIR light confers antiviral immunity by positively regulating PHYTOCHROME-INTERACTING FACTOR 4 (PIF4)-activated RNA interference (RNAi) in plants. PIF4, a central transcription factor involved in light signaling, accumulates to high levels under NIR light in plants. PIF4 directly induces the transcription of two essential components of RNAi, RNA-DEPENDENT RNA POLYMERASE 6 (RDR6) and ARGONAUTE 1 (AGO1), which play important roles in resistance to both DNA and RNA viruses. Moreover, the pathogenic determinant ßC1 protein, which is evolutionarily conserved and encoded by betasatellites, interacts with PIF4 and inhibits its positive regulation of RNAi by disrupting PIF4 dimerization. These findings shed light on the molecular mechanism of PIF4-mediated plant defense and provide a new perspective for the exploration of NIR antiviral treatment.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Humanos , Fitocromo/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Interferência de RNA , Regulação da Expressão Gênica de PlantasRESUMO
In brief: The transcriptional profiles of Kiss1 neurons from the arcuate and the rostral periventricular region of the third ventricle of the hypothalamus have been directly compared in diestrous female mice. Differentially expressed genes provide molecular signatures for these two populations of Kiss1 neurons and insights into their physiology. Abstract: The neuropeptide kisspeptin is produced by Kiss1 neurons and is required for normal mammalian fertility. The two main populations of Kiss1 neurons are located in the arcuate (ARC) and the rostral periventricular area of the third ventricle (RP3V) of the hypothalamus. To define the molecular signature of these Kiss1 populations, transcriptomics profiling was performed using purified Kiss1 neurons from diestrous stage female mice. From a data set of 7026 genes, 332 differentially expressed transcripts were identified between the Kiss1ARC and Kiss1RP3V neurons. These data have uncovered novel transcripts and expanded the receptor expression, co-transmitter and transcription factor profiles of Kiss1 neurons. Validation by quantitative RT-PCR confirmed differential expression of Cartpt, Ddc, Gal, Gda, Npy2r, Penk, Rasp18, Rxfp3, Slc18a2, and Th in Kiss1RP3V neurons and Gpr83, Hctr2, Nhlh2, Nmn, Npr3, Nr4a2, Nr5a2, Olfm2, Tac2 and Tacr3 in Kiss1ARC neurons. Enriched pathways common to both Kiss1 populations included the NF-kB, mTor, endocannabinoid, GPCR, Wnt and oestrogen signalling while some pathways (e.g. cytomegalovirus infection, dopaminergic and serotonergic biosynthesis) were specific to Kiss1RP3V neurons. Our gene expression data set augments the existing data sets describing the transcriptional profiles of Kiss1 neuronal populations.
Assuntos
Kisspeptinas , Neurônios , Neuropeptídeos , Animais , Feminino , Camundongos , Núcleo Arqueado do Hipotálamo/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Hipotálamo/metabolismo , Kisspeptinas/genética , Kisspeptinas/metabolismo , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Perfilação da Expressão GênicaRESUMO
Tartary buckwheat (Fagopyrum tataricum) is an important plant, utilized for both medicine and food. It has become a current research hotspot due to its rich content of flavonoids, which are beneficial for human health. Anthocyanins (ATs) and proanthocyanidins (PAs) are the two main kinds of flavonoid compounds in Tartary buckwheat, which participate in the pigmentation of some tissue as well as rendering resistance to many biotic and abiotic stresses. Additionally, Tartary buckwheat anthocyanins and PAs have many health benefits for humans and the plant itself. However, little is known about the regulation mechanism of the biosynthesis of anthocyanin and PA in Tartary buckwheat. In the present study, a bHLH transcription factor (TF) FtTT8 was characterized to be homologous with AtTT8 and phylogenetically close to bHLH proteins from other plant species. Subcellular location and yeast two-hybrid assays suggested that FtTT8 locates in the nucleus and plays a role as a transcription factor. Complementation analysis in Arabidopsis tt8 mutant showed that FtTT8 could not recover anthocyanin deficiency but could promote PAs accumulation. Overexpression of FtTT8 in red-flowering tobacco showed that FtTT8 inhibits anthocyanin biosynthesis and accelerates proanthocyanidin biosynthesis. QRT-PCR and yeast one-hybrid assay revealed that FtTT8 might bind to the promoter of NtUFGT and suppress its expression, while binding to the promoter of NtLAR and upregulating its expression in K326 tobacco. This displayed the bidirectional regulating function of FtTT8 that negatively regulates anthocyanin biosynthesis and positively regulates proanthocyanidin biosynthesis. The results provide new insights on TT8 in Tartary buckwheat, which is inconsistent with TT8 from other plant species, and FtTT8 might be a high-quality gene resource for Tartary buckwheat breeding.
Assuntos
Arabidopsis , Fagopyrum , Proantocianidinas , Humanos , Antocianinas/metabolismo , Proantocianidinas/metabolismo , Fagopyrum/genética , Fagopyrum/metabolismo , Proteínas de Plantas/metabolismo , Filogenia , Melhoramento Vegetal , Flavonoides/metabolismo , Plantas/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Arabidopsis/genéticaRESUMO
Mood alterations, anxiety, and cognitive impairments associated with adult-onset hypothyroidism often persist despite replacement treatment. In rodent models of hypothyroidism, replacement does not bring 3-iodothyronamine (T1AM) brain levels back to normal. T1AM is a thyroid hormone derivative with cognitive effects. Using a pharmacological hypothyroid mouse model, we investigated whether augmenting levothyroxine (L-T4) with T1AM improves behavioural correlates of depression, anxiety, and memory and has an effect on hippocampal neurogenesis. Hypothyroid mice showed impaired performance in the novel object recognition test as compared to euthyroid mice (discrimination index (DI): 0.02 ± 0.09 vs. 0.29 ± 0.06; t = 2.515, p = 0.02). L-T4 and L-T4+T1AM rescued memory (DI: 0.27 ± 0.08 and 0.34 ± 0.08, respectively), while T1AM had no effect (DI: -0.01 ± 0.10). Hypothyroidism reduced the number of neuroprogenitors in hippocampal neurogenic niches by 20%. L-T4 rescued the number of neuroprogenitors (mean diff = 106.9 ± 21.40, t = 4.99, pcorr = 0.003), while L-T4+T1AM produced a 30.61% rebound relative to euthyroid state (mean diff = 141.6 ± 31.91, t = 4.44, pcorr = 0.004). We performed qPCR analysis of 88 genes involved in neurotrophic signalling pathways and found an effect of treatment on the expression of Ngf, Kdr, Kit, L1cam, Ntf3, Mapk3, and Neurog2. Our data confirm that L-T4 is necessary and sufficient for recovering memory and hippocampal neurogenesis deficits associated with hypothyroidism, while we found no evidence to support the role of non-canonical TH signalling.
Assuntos
Hipotireoidismo , Tiroxina , Camundongos , Animais , Tiroxina/metabolismo , Hipotireoidismo/tratamento farmacológico , Hipotireoidismo/metabolismo , Hipocampo/metabolismo , Suplementos Nutricionais , Proteínas do Tecido Nervoso/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismoRESUMO
The present study aims to explore the anti-inflammatory potential activity of the hexane extract from branches (HEB) of Endlicheria paniculata (Lauraceae) and its main compound, methyldehydrodieugenol B, in the inflammatory response induced by a murine implant sponge model. HPLC-ESI/MS analysis of HEB led to the identification of six chemically related neolignans, with methyldehydrodieugenol B as the main compound. An in silico analysis of the pharmacokinetic parameters of the identified compounds suggested moderate solubility but good absorption and biodistribution in vivo. Thus, the treatment of mice with HEB using in vivo assays indicated that HEB promoted pro-inflammatory, antiangiogenic, and antifibrogenic effects, whereas treatment with methyldehydrodieugenol B caused anti-inflammatory, antifibrogenic, and antiangiogenic effects. The obtained results shown the therapeutic potential of HEB and methyldehydrodieugenol B in the treatment of pathologies associated with inflammation and angiogenesis, including chronic wounds.
Assuntos
Hexanos , Lauraceae , Camundongos , Animais , Distribuição Tecidual , Extratos Vegetais/farmacologia , Inflamação/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Lauraceae/química , Fatores de Transcrição Hélice-Alça-Hélice BásicosRESUMO
Coptis chinensis Franch is a perennial species with high medical value. The rhizome of C. chinensis is a traditional Chinese medicine widely used for more than 2000 years in China. Its principal active ingredients are benzylisoquinoline alkaloids (BIAs). The basic helix-loop-helix (bHLH) transcription factors play an important regulatory role in the biosynthesis of plant secondary metabolites. However, the bHLH genes in C. chinensis have not been described, and little is known about their roles in alkaloid biosynthesis. In this study, a total of 143 CcbHLH genes (CcbHLHs) were identified and unevenly distributed on nine chromosomes. Phylogenetic analysis divided the 143 CcbHLH proteins into 26 subfamilies by comparison with Arabidopsis thaliana bHLH proteins. The majority CcbHLHs in each subgroup had similar gene structures and conserved motifs. Furthermore, the physicochemical properties, conserved motif, intron/exon composition, and cis-acting elements of CcbHLHs were analyzed. Transcriptome analysis revealed that 30 CcbHLHs were significantly expressed in the rhizomes of C. chinensis. Co-expression analysis revealed that 11 CcbHLHs were highly positively correlated with contents of various alkaloids of C. chinensis. Moreover, yeast one-hybrid experiments verified that CcbHLH001 and CcbHLH0002 could interact with the promoters of berberine biosynthesis pathway genes CcBBE and CcCAS, suggesting their regulatory roles in BIA biosynthesis. This study provides comprehensive insights into the bHLH gene family in C. chinensis and will support in-depth functional characterization of CcbHLHs involved in the regulation of protoberberine-type alkaloid biosynthesis.
Assuntos
Alcaloides , Benzilisoquinolinas , Coptis chinensis , Filogenia , Alcaloides/genética , Genoma de Planta , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismoRESUMO
Tumor microenvironment has significant influence in therapeutic response and clinical outcome. Combination therapy is more effective in cancer treatment compared with monotherapy. Any chemical or drug that targets tumor microenvironment pathway, will be a boon to combination cancer chemotherapy. Combination therapy through micronutrient may have added advantage in clinical applications. Selenium (Se) is an essential micronutrient; Se in the form of Se nanoparticles (SeNPs) show efficient anticancer properties and may have the potential to target tumor niche such as hypoxic environment. The aim of this study was to find out the anticancer effect of SeNPs on cell line HepG2 under hypoxic condition and also to evaluate their effect on the translocation of hypoxia-inducible factors (HIFs) from cytoplasm to nucleus that help the cells to survive under hypoxic condition. It was found that the SeNPs induce HepG2 cell death in normoxic and hypoxic conditions, however, hypoxic condition showed higher LD50. SeNP concentration is directly proportional to cell death in both the conditions. Furthermore, intracellular accumulation of Se is not affected by hypoxia. SeNP-induced HepG2 cell death is due to increased DNA damage, nuclear condensation, and mitochondrial membrane potential disturbance. Furthermore, SeNPs were also found to decrease the translocation of HIFs from cytosol to the nucleus. After analyzing the results, it is concluded that SeNP treatment disturbs tumor niche through the inhibition of HIFs' translocation from cytosol to nucleus. SeNPs in synergy with primary drug, such as doxorubicin (DOX), may enhance the anticancer efficacy of DOX through regulation of HIFs, warranting further research.
Assuntos
Neoplasias Hepáticas , Nanopartículas , Selênio , Humanos , Selênio/farmacologia , Selênio/química , Linhagem Celular , Doxorrubicina/farmacologia , Nanopartículas/química , Hipóxia/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Linhagem Celular Tumoral , Microambiente TumoralRESUMO
Nothapodytes nimmoniana is a medicinally important plant producing anticancer monoterpene indole alkaloid (MIA), camptothecin (CPT). The CPT is synthesised through the strictosidine intermediate following the MIA pathway; however, transcriptional regulation of CPT pathway is still elusive in N. nimmoniana. Biosynthesis of MIA is regulated by various transcription factors (TFs) belonging to AP2/ERF, bHLH, MYB, and WRKY families. The present study identified transcriptionally active full-length 105 AP2/ERF and 68 bHLH family TFs from the N. nimmoniana. AP2/ERF TFs were divided into three subfamilies along with a soloist, while bHLH TFs were divided into 10 subfamilies according to their phylogenetic similarities. Three group IXa ERFs, Nn-ERF22, Nn-ERF29, and Nn-ERF41, one subfamily IVa TF Nn-bHLH7, and three subfamilies IIIe Nn-bHLH33, Nn-bHLH51, and Nn-bHLH52 clustered with the TFs regulating alkaloid biosynthesis in Catharanthus roseus, tomato, tobacco, and Artemisia annua. Expression of these TFs in N. nimmoniana was higher in roots, which is a primary CPT accumulating tissue. Moreover, genome skimming approach was used to reconstruct the promoter regions of candidate ERF genes to identify the cis-regulatory elements. The presence of G-boxes and other jasmonic acid-responsive elements in the promoter suggests the regulation of ERFs by bHLHs. The present study effectively generated and used genomics resource for characterisation of regulatory TFs from non-model medicinal plant.
Assuntos
Alcaloides , Plantas Medicinais , Humanos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Filogenia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Plantas Medicinais/genética , Regiões Promotoras Genéticas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismoRESUMO
BACKGROUND: A. annua (also named Artemisia annua, sweet wormwood) is the main source of the anti-malarial drug artemisinin, which is synthesised and stored in its trichomes. Members of the basic Helix-Loop-Helix (bHLH) family of transcription factors (TFs) have been implicated in artemisinin biosynthesis in A. annua and in trichome development in other plant species. RESULTS: Here, we have systematically identified and characterised 226 putative bHLH TFs in A. annua. All of the proteins contain a HLH domain, 213 of which also contain the basic motif that mediates DNA binding of HLH dimers. Of these, 22 also contained a Myc domain that permits dimerisation with other families of TFs; only two proteins lacking the basic motif contained a Myc domain. Highly conserved GO annotations reflected the transcriptional regulatory role of the identified TFs, and suggested conserved roles in biological processes such as iron homeostasis, and guard cell and endosperm development. Expression analysis revealed that three genes (AabHLH80, AabHLH96, and AaMyc-bHLH3) exhibited spatiotemporal expression patterns similar to genes encoding key enzymes in artemisinin synthesis. CONCLUSIONS: This comprehensive analysis of bHLH TFs provides a new resource to direct further analysis into key molecular mechanisms underlying and regulating artemisinin biosynthesis and trichome development, as well as other biological processes, in the key medicinal plant A. annua.
Assuntos
Artemisia annua , Artemisininas , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Artemisia annua/genética , Fatores de Transcrição/genética , Sequências Hélice-Alça-HéliceRESUMO
Group rearing is a common housing condition, but group-housed older mice show increased adrenal hypertrophy, a marker of stress. However, the ingestion of theanine, an amino acid unique to tea leaves, suppressed stress. We aimed to elucidate the mechanism of theanine's stress-reducing effects using group-reared older mice. The expression of repressor element 1 silencing transcription factor (REST), which represses excitability-related genes, was increased in the hippocampus of group-reared older mice, whereas the expression of neuronal PAS domain protein 4 (Npas4), which is involved in the regulation of excitation and inhibition in the brain, was lower in the hippocampus of older group-reared mice than in same-aged two-to-a-house mice. That is, the expression patterns of REST and Npas4 were found to be just inversely correlated. On the other hand, the expression levels of the glucocorticoid receptor and DNA methyltransferase, which suppress Npas4 transcription, were higher in the older group-housed mice. In mice fed theanine, the stress response was reduced and Npas4 expression tended to be increased. These results suggest that Npas4 expression was suppressed by the increased expression of REST and Npas4 downregulators in the group-fed older mice, but that theanine avoids the decrease in Npas4 expression by suppressing the expression of Npas4 transcriptional repressors.
Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Camellia sinensis , Glutamatos , Folhas de Planta , Estresse Psicológico , Animais , Camundongos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Folhas de Planta/química , Glutamatos/farmacologia , Glutamatos/uso terapêutico , Camellia sinensis/química , Estresse Psicológico/terapiaRESUMO
Naringin (Nar) is a dihydroflavonoid compound, widely found in citrus fruit and used in Chinese herbal medicine. As a phytochemical, it acts as a dietary supplement that can delay aging and prevent aging-related disease, such as obesity and diabetes. However, its exact mechanism remains unclear. In this study, the high-glucose-induced (HGI) Caenorhabditis elegans model was used to evaluate the anti-aging and anti-obesity effects of Nar. The mean lifespan and fast movement span of HGI worms were extended roughly 24% and 11%, respectively, by Nar treatment. Oil red O staining revealed a significant reduction in fat accumulation and dFP::LGG-labeled worms showed the promotion of autophagy. Additionally, whole transcriptome sequencing and gene set variation analysis suggested that Nar upregulated the lipid biosynthesis and metabolism pathways, as well as the TGF-ß, Wnt and longevity signaling pathways. Protein-protein interaction (PPI) network analysis identified hub genes in these pathways for further analysis. Mutant worms and RNA interference were used to study mechanisms; the suppression of hlh-30, lgg-1, unc-51, pha-4, skn-1 and yap-1 disabled the fat-lowering, lifespan-prolonging, and health-promoting properties of Nar. Collectively, our findings indicate that Nar plays an important role in alleviating HGI-aging and anti-obesity effects by reducing fat accumulation and promoting autophagy.
Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Proteínas de Caenorhabditis elegans/metabolismo , Glucose/metabolismo , Envelhecimento/genética , Longevidade , Autofagia/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Sinalização YAPRESUMO
The aryl-hydrocarbon receptor (AHR) is a ligand-activated transcription factor that buoys intestinal immune responses. AHR induces its own negative regulator, the AHR repressor (AHRR). Here, we show that AHRR is vital to sustaining intestinal intraepithelial lymphocytes (IELs). AHRR deficiency reduced IEL representation in a cell-intrinsic fashion. Single-cell RNA sequencing revealed an oxidative stress profile in Ahrr-/- IELs. AHRR deficiency unleashed AHR-induced expression of CYP1A1, a monooxygenase that generates reactive oxygen species, increasing redox imbalance, lipid peroxidation, and ferroptosis in Ahrr-/- IELs. Dietary supplementation with selenium or vitamin E to restore redox homeostasis rescued Ahrr-/- IELs. Loss of IELs in Ahrr-/- mice caused susceptibility to Clostridium difficile infection and dextran sodium-sulfate-induced colitis. Inflamed tissue of inflammatory bowel disease patients showed reduced Ahrr expression that may contribute to disease. We conclude that AHR signaling must be tightly regulated to prevent oxidative stress and ferroptosis of IELs and to preserve intestinal immune responses.
Assuntos
Ferroptose , Linfócitos Intraepiteliais , Animais , Camundongos , Linfócitos Intraepiteliais/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Estresse Oxidativo , HidrocarbonetosRESUMO
The occurrence of osteoarthritis (OA) is highly correlated with the reduction of joint lubrication performance, in which persistent excessive inflammation and irreversible destruction of cartilage dominate the mechanism. The inadequate response to monotherapy methods, suboptimal efficacy caused by undesirable bioavailability, short retention, and lack of stimulus-responsiveness, are few unresolved issues. Herein, we report a pH-responsive metal-organic framework (MOF), namely, MIL-101-NH2, for the co-delivery of anti-inflammatory drug curcumin (CCM) and small interfering RNA (siRNA) for hypoxia inducible factor (HIF-2α). CCM and siRNA were loaded via encapsulation and surface coordination ability of MIL-101-NH2. Our vitro tests showed that MIL-101-NH2 protected siRNA from nuclease degradation by lysosomal escape. The pH-responsive MIL-101-NH2 gradually collapsed in an acidic OA microenvironment to release the CCM payloads to down-regulate the level of pro-inflammatory cytokines, and to release the siRNA payloads to cleave the target HIF-2α mRNA for gene-silencing therapy, ultimately exhibiting the synergetic therapeutic efficacy by silencing HIF-2α genes accompanied by inhibiting the inflammation response and cartilage degeneration of OA. The hybrid material reported herein exhibited promising potential performance for OA therapy as supported by both in vitro and in vivo studies and may offer an efficacious therapeutic strategy for OA utilizing MOFs as host materials.
Assuntos
Curcumina , Estruturas Metalorgânicas , Osteoartrite , Humanos , Curcumina/farmacologia , Condrócitos/metabolismo , RNA Interferente Pequeno/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Inflamação/metabolismo , Concentração de Íons de HidrogênioRESUMO
Targeting the tumor microenvironment is a promising strategy to prevent metastasis, overcome acquired drug resistance, and improve the therapeutic effect. Hypoxia is one of the characteristics of the tumor microenvironment, which is mainly regulated by hypoxia-inducible factors. Hypoxia-inducible factors (HIFs) including HIF-1α, HIF-2α, and HIF-3α, of which HIF-2α has assumed a more important role in tumor hypoxia environment. It has been demonstrated that HIF-2α plays an important role in tumor diseases, including renal cell carcinoma, breast cancer, non-small cell lung cancer, and gastric cancer, among others. Therefore, targeting HIF-2α has become one of the important strategies for treating cancers. HIF-2α inhibitors can be divided into two categories: specific inhibitors and non-specific inhibitors. The former includes synthetic monomer compounds and traditional Chinese medicine extracts. In this review, we summarized, classified, and discussed current research on the structure, structure-activity relationship (SAR), and pharmacology of HIF-2α inhibitors, which is helpful to the rational design of effective drugs for various types of malignant tumors.