Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Nanomedicine ; 15: 9759-9770, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33304100

RESUMO

BACKGROUND: Delivery of therapeutic small interfering RNA (siRNA) via functionalized nanoparticles holds great promise for cancer therapy. However, developing a safe and efficient delivery carrier of siRNA is a challenging issue. METHODS: RGDfC peptide was used to modify the surface of selenium nanoparticles (SeNPs) to synthesize a biocompatible siRNA delivery vehicle (R-SeNPs), and MEF2D-siRNA was loaded onto R-SeNPs to prepare a functionalized selenium nanoparticle R-Se@MEF2D-siRNA. The chemical properties of R-SeNPs were characterized, and the anticancer efficacy as well as related mechanisms of R-Se@MEF2D-siRNA were further explored. RESULTS: R-Se@MEF2D-siRNA was significantly taken up by SKOV3 cells and could enter SKOV3 cells mainly in the clathrin-associated endocytosis way. The result of in vitro siRNA release demonstrated that R-Se@MEF2D-siRNA could release MEF2D-siRNA quicker in a microenvironment simulating a lysosomal environment in tumor cells compared to a normal physiological environment. The results of qRT-PCR assay proved that R-Se@MEF2D-siRNA could effectively silence the expression of the MEF2D gene in SKOV3 cells. R-Se@MEF2D-siRNA remarkably suppressed the proliferation of SKOV3 cells and further triggered its apoptosis. In addition, R-Se@MEF2D-siRNA had the capability to disrupt mitochondrial membrane potential (MMP) in SKOV3 cells and resulted in the overproduction of reactive oxygen species (ROS), indicating that mitochondrial dysfunction and ROS generation played an important role in the apoptosis of SKOV3 cells induced by R-Se@MEF2D-siRNA. In vivo, R-Se@MEF2D-siRNA also exhibited excellent antitumor activity mainly through decreasing tumor cells proliferation and triggering their apoptosis in tumor-bearing nude mice. CONCLUSION: R-Se@MEF2D-siRNA provides an alternative strategy for ovarian cancer treatment in the clinic.


Assuntos
Inativação Gênica , Nanopartículas/química , Neoplasias Ovarianas/terapia , RNA Interferente Pequeno/química , RNA Interferente Pequeno/genética , Selênio/química , Animais , Apoptose/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Portadores de Fármacos/química , Feminino , Humanos , Fatores de Transcrição MEF2/deficiência , Fatores de Transcrição MEF2/genética , Camundongos , Camundongos Nus , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Espécies Reativas de Oxigênio/metabolismo , Microambiente Tumoral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA