Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Fitoterapia ; 173: 105825, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38219843

RESUMO

Vulvovaginal candidiasis (VVC) caused by Candida glabrata (C. glabrata) is more persistent and resistant to treatment than when caused by Candida albicans (C. albicans) and has been on the rise in recent years. The n-butanol extract of Pulsatilla Decoction (BEPD) has been shown to be effective in treating VVC caused by C. glabrata, but the underlying mechanism of action remains unclear. In this study, the experimenter conducted in vitro and in vivo experiments to explore the effects of BEPD on the virulence factors of C. glabrata, as well as its efficacy, with a focus on possible immunological mechanism in VVC caused by C. glabrata. The contents of Anemoside B4, Epiberberine, Berberine, Aesculin, Aesculetin, Phellodendrine and Jatrorrhizine in BEPD, detected by high-performance liquid chromatography, were 31,736.64, 13,529.66, 105,143.72, 19,406.20, 4952.67, 10,317.03, 2489.93 µg/g, respectively. In vitro experiments indicated that BEPD moderately inhibited the growth of C. glabrata, its adhesion, and biofilm formation, and affected the expression of efflux transporters in the biofilm state. In vivo experiments demonstrated that BEPD significantly reduced vaginal inflammatory manifestation and the release of proinflammatory cytokines and LDH in mice with VVC caused by C. glabrata. Moreover, it inhibited the Phosphorylation of EGFR, ERK, P38, P65, and C-Fos proteins. The results suggested that although BEPD moderately inhibits the growth and virulence factors of C. glabrata in vitro, it can significantly reduce vaginal inflammation by down-regulating the EGFR/MAPK signaling pathway in mice with VVC infected by C. glabrata.


Assuntos
Candidíase Vulvovaginal , Pulsatilla , Feminino , Humanos , Animais , Camundongos , Candidíase Vulvovaginal/tratamento farmacológico , Candida glabrata , 1-Butanol/farmacologia , Fatores de Virulência/farmacologia , Butanóis/farmacologia , Vagina , Estrutura Molecular , Candida albicans , Extratos Vegetais/farmacologia , Receptores ErbB/farmacologia , Antifúngicos/farmacologia
2.
Sci Rep ; 13(1): 17942, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37864035

RESUMO

Antipathogenic drugs are a potential source of therapeutics, particularly following the emergence of multiple drug-resistant pathogenic microorganisms in the last decade. The inhibition of quorum sensing (QS) is an advanced antipathogenic approach for suppression of bacterial virulence and dissemination. This study aimed to investigate the inhibitory effect of some Egyptian medicinal plants on the QS signaling system of Pseudomonas aeruginosa. Among the tested plants, Mangifera indica exhibited the highest quorum sensing inhibition (QSI) activity against Chromobacterium violaceum ATCC 12472. Four pure compounds were extracted and identified; of these, methyl gallate (MG) showed the most potent QSI. MG had a minimum inhibitory concentration (MIC) of 512 g/mL against P. aeruginosa strains PAO1, PA14, Pa21, Pa22, Pa23, Pa24, and PAO-JP2. The virulence factors of PAO1, PA14, Pa21, Pa22, Pa23, and Pa24 were significantly inhibited by MG at 1/4 and 1/2 sub-MICs without affecting bacterial viability. Computational insights were performed by docking the MG compound on the LasR receptor, and the QSI behavior of MG was found to be mediated by three hydrogen bonds: Trp60, Arg61, and Thr75. This study indicates the importance of M. indica and MG in the inhibition and modulation of QS and QS-related virulence factors in P. aeruginosa.


Assuntos
Mangifera , Plantas Medicinais , Percepção de Quorum , Pseudomonas aeruginosa , Fatores de Virulência/farmacologia , Antibacterianos/farmacologia , Biofilmes , Chromobacterium
3.
J Enzyme Inhib Med Chem ; 38(1): 2183810, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36916299

RESUMO

Helicobacter pylori (HP) is among the most common pathogens causing infection in humans worldwide. Oxidative stress and gastric inflammation are involved in the progression of HP-related gastric diseases, and they can be targeted by integrating conventional antibiotic treatment with polyphenol-enriched natural products. In this work, we characterised three different propolis extracts and evaluated their stability under in vitro simulated gastric digestion, compared to their main constituents alone. The extract with the highest stability to digestion (namely, the dark propolis extract, DPE) showed a minimum bactericidal concentration (MBC) lower than 1 mg/mL on HP strains with different virulence factors. Finally, since urease is one of the virulence factors contributing to the establishment of a microenvironment that promotes HP infection, we evaluated the possible inhibition of this enzyme by using molecular docking simulations and in vitro colorimetric assay, showing that galangin and pinocembrin may be involved in this activity.


Assuntos
Helicobacter pylori , Própole , Humanos , Própole/farmacologia , Simulação de Acoplamento Molecular , Antibacterianos/farmacologia , Fatores de Virulência/farmacologia , Extratos Vegetais/farmacologia , Digestão
4.
Front Cell Infect Microbiol ; 13: 1322778, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38332949

RESUMO

The advent of nanotechnology has been instrumental in the development of new drugs with novel targets. Recently, metallic nanoparticles have emerged as potential candidates to combat the threat of drug-resistant infections. Diabetic foot ulcers (DFUs) are one of the dreadful complications of diabetes mellitus due to the colonization of numerous drug-resistant pathogenic microbes leading to biofilm formation. Biofilms are difficult to treat due to limited penetration and non-specificity of drugs. Therefore, in the current investigation, SnO2 nanoparticles were biosynthesized using Artemisia vulgaris (AvTO-NPs) as a stabilizing agent and were characterized using ultraviolet-visible (UV-vis) spectroscopy, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX). Furthermore, the efficacy of AvTO-NPs against biofilms and virulence factors of drug-resistant Candida albicans strains isolated from DFUs was assessed. AvTO-NPs displayed minimum inhibitory concentrations (MICs) ranging from 1 mg/mL to 2 mg/mL against four strains of C. albicans. AvTO-NPs significantly inhibited biofilm formation by 54.8%-87%, germ tube formation by 72%-90%, cell surface hydrophobicity by 68.2%-82.8%, and exopolysaccharide (EPS) production by 69%-86.3% in the test strains at respective 1/2xMIC. Biosynthesized NPs were effective in disrupting established mature biofilms of test strains significantly. Elevated levels of reactive oxygen species (ROS) generation in the AvTO-NPs-treated C. albicans could be the possible cause of cell death leading to biofilm inhibition. The useful insights of the present study could be exploited in the current line of treatment to mitigate the threat of biofilm-related persistent DFUs and expedite wound healing.


Assuntos
Artemisia , Diabetes Mellitus , Pé Diabético , Nanopartículas Metálicas , Candida albicans , Fatores de Virulência/farmacologia , Estanho/farmacologia , Azóis/farmacologia , Óxidos/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Nanopartículas Metálicas/química , Biofilmes , Testes de Sensibilidade Microbiana , Antifúngicos/farmacologia , Antifúngicos/química
5.
BMC Oral Health ; 22(1): 416, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36127648

RESUMO

BACKGROUND: Enterococcus faecalis (E. faecalis) plays an important role in the failure of root canal treatment and refractory periapical periodontitis. As an important virulence factor of E. faecalis, extracellular polysaccharide (EPS) serves as a matrix to wrap bacteria and form biofilms. The homologous rnc gene, encoding Ribonuclease III, has been reported as a regulator of EPS synthesis. In order to develop novel anti-biofilm targets, we investigated the effects of the rnc gene on the biological characteristics of E. faecalis, and compared the biofilm tolerance towards the typical root canal irrigation agents and traditional Chinese medicine fluid Pudilan. METHODS: E. faecalis rnc gene overexpression (rnc+) and low-expression (rnc-) strains were constructed. The growth curves of E. faecalis ATCC29212, rnc+, and rnc- strains were obtained to study the regulatory effect of the rnc gene on E. faecalis. Scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM), and crystal violet staining assays were performed to evaluate the morphology and composition of E. faecalis biofilms. Furthermore, the wild-type and mutant biofilms were treated with 5% sodium hypochlorite (NaOCl), 2% chlorhexidine (CHX), and Pudilan. The residual viabilities of E. faecalis biofilms were evaluated using crystal violet staining and colony counting assays. RESULTS: The results demonstrated that the rnc gene could promote bacterial growth and EPS synthesis, causing the EPS-barren biofilm morphology and low EPS/bacteria ratio. Both the rnc+ and rnc- biofilms showed increased susceptibility to the root canal irrigation agents. The 5% NaOCl group showed the highest biofilm removing effect followed by Pudilan and 2% CHX. The colony counting results showed almost complete removal of bacteria in the 5% NaOCl, 2% CHX, and Chinese medicine agents' groups. CONCLUSIONS: This study concluded that the rnc gene could positively regulate bacterial proliferation, EPS synthesis, and biofilm formation in E. faecalis. The rnc mutation caused an increase in the disinfectant sensitivity of biofilm, indicating a potential anti-biofilm target. In addition, Pudilan exhibited an excellent ability to remove E. faecalis biofilm.


Assuntos
Desinfetantes , Enterococcus faecalis , Clorexidina/farmacologia , Desinfecção , Enterococcus faecalis/genética , Violeta Genciana/farmacologia , Humanos , Ribonuclease III/farmacologia , Hipoclorito de Sódio/farmacologia , Fatores de Virulência/farmacologia
6.
Fitoterapia ; 162: 105261, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35944753

RESUMO

Streptococcus pneumoniae (S. pneumoniae) is a major Gram-positive opportunistic pathogen that causes pneumonia, bacteremia, and other fatal infections. This bacterium is responsible for more deaths than any other single pathogen in the world. Inexplicably, these symptoms persist despite the administration of effective antibiotics. Targeting pneumolysin (PLY) and sortase A (SrtA), the major virulence factors of S. pneumoniae, this study uncovered a novel resistance mechanism to S. pneumoniae infection. Using protein phenotype assays, we determined that the small molecule inhibitor alnustone is a potent drug that inhibits both PLY and SrtA. As essential virulence factors of S. pneumoniae, PLY and SrtA play a significant role in the occurrence of infection. Furthermore, evaluation using PLY-mediated hemolysis assay demonstrated alunstone had the potential to interrupt the haemolytic activity of PLY with treatment alunstone (4 µg/ml). Co-incubation of S. pneumoniae D39 SrtA with small-molecule inhibitors decreases cell wall-bound Nan A (pneumococcal-anchored surface protein SrtA), inhibits biofilm formation, and reduces biomass significantly. The protective effect of invasive pneumococcal disease (IPD) on murine S. pneumoniae was demonstrated further. Our study proposes a comprehensive bacteriostatic mechanism for S. pneumoniae and highlights the significant translational potential of targeting both PLY and SrtA to prevent pneumococcal infections. Our findings indicate that the antibacterial strategy of directly targeting PLY and SrtA with alnustone is a promising treatment option for S. pneumoniae and that alnustone is a potent inhibitor of PLY and SrtA.


Assuntos
Infecções Pneumocócicas , Streptococcus pneumoniae , Aminoaciltransferases , Animais , Antibacterianos/farmacologia , Proteínas de Bactérias , Cisteína Endopeptidases , Hemólise , Camundongos , Estrutura Molecular , Infecções Pneumocócicas/tratamento farmacológico , Infecções Pneumocócicas/microbiologia , Estreptolisinas , Virulência , Fatores de Virulência/farmacologia , Fatores de Virulência/uso terapêutico
7.
J Trace Elem Med Biol ; 73: 127019, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35709560

RESUMO

BACKGROUND: Systemic candidiasis is produced by Candida albicans or non-albicans Candida species, opportunistic fungi that produce both superficial and invasive infections. Despite the availability of a wide range of antifungal agents for the treatment of candidiasis, failure of therapy is observed frequently, which opens new avenues in the field of alternative therapeutic strategies. METHODS: The effects of p,p'-methoxyl-diphenyl diselenide [(MeOPhSe)2], a synthetic organic selenium (organochalcogen) compound, were investigated on virulence factors of C. krusei and compared with its antifungal effects on the virulence factors related to adhesion to cervical epithelial cell surfaces with C. albicans. RESULTS: (MeOPhSe)2, a compound non-toxic in epithelial (HeLa) and fibroblastic (Vero) cells, inhibited the growth in a dose-dependent manner and changed the kinetics parameters of C. krusei and, most importantly, extending the duration of lag phase of growth, inhibiting biofilm formation, and changing the structure of biofilm. Also, (MeOPhSe)2 reduced C. albicans and C. krusei adherence to cervical epithelial cells, an important factor for the early stage of the Candida-host interaction. The reduction was 37.24 ± 2.7 % in C. krusei (p = 0.00153) and 32.84 ± 3.2 % in C. albicans (p = 0.0072) at 20 µM (MeOPhSe)2, and the effect is in a concentration-dependent manner. Surprisingly, the antifungal potential on adhesion was similar between both species, indicating the potential of (MeOPhSe)2 as a promising antifungal drug against different Candida infections. CONCLUSION: Overall, we demonstrated the potential of (MeOPhSe)2 as an effective antifungal drug against the virulence factors of Candida species.


Assuntos
Antifúngicos , Selênio , Antifúngicos/química , Antifúngicos/farmacologia , Derivados de Benzeno , Biofilmes , Candida , Candida albicans , Células Epiteliais , Testes de Sensibilidade Microbiana , Compostos Organosselênicos , Pichia , Selênio/metabolismo , Selênio/farmacologia , Fatores de Virulência/metabolismo , Fatores de Virulência/farmacologia
8.
Microsc Res Tech ; 84(12): 3150-3160, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34268833

RESUMO

There has been tremendous spread of antimicrobial resistance globally, mainly due to the excessive and unnecessary use of antibiotics, making the situation alarming. This has created a need for the development of alternative strategies to selectively target the bacterial pathogenicity without exerting selection pressure for the development of antimicrobial resistance. Targeting quorum sensing (QS)-mediated virulence and biofilms by nontoxic natural products is gaining importance as new control strategy to combat the virulence and biofilms of pathogenic bacteria. In this study, the crude extract of Plumbago zeylanica was fractioned in different solvents using liquid-liquid partitioning to obtain the most bioactive fraction. The inhibitory effect of the bioactive extract of P. zeylanica on QS at sub-minimum inhibitory concentrations (MICs) was studied against Chromobacterium violaceum 12472, Pseudomonas aeruginosa PAO1, and Serratia marcescens MTCC 97. Biofilm inhibition was studied using microtiter plate assay, scanning electron microscopy, and confocal laser scanning microscopy. Major phytocompounds detected were cinnamaldehyde dimethyl acetal, plumbagin, asarone, 4-chromanol, phthalic acid, palmitic acid, ergost-5-en-3-ol, stigmasterol, and ß-sitosterol. The violacein production in C. violaceum 12472 was reduced by >80% in the presence of P. zeylanica hexane fraction (PZHF; 200 µg/ml). The most active PZHF inhibited QS-mediated virulence factors of P. aeruginosa PAO1 such as pyocyanin, pyoverdin, rhamnolipid production, motility, etc., significantly at sub-MICs. Similarly, PZHF showed 59 to 76% inhibition of biofilm formation of above test pathogens. The findings revealed that active fraction of P. zeylanica was effective against the QS-regulated functions and biofilms development of Gram -ve pathogenic bacteria.


Assuntos
Plumbaginaceae , Percepção de Quorum , Antibacterianos/farmacologia , Biofilmes , Chromobacterium , Extratos Vegetais/farmacologia , Fatores de Virulência/farmacologia
9.
J Immunol ; 191(12): 6010-21, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24218449

RESUMO

Efficient cross-presentation of protein Ags to CTLs by dendritic cells (DCs) is essential for the success of prophylactic and therapeutic vaccines. In this study, we report a previously underappreciated pathway involving Ag entry into the endoplasmic reticulum (ER) critically needed for T cell cross-priming induced by a DC-targeted vaccine. Directing the clinically relevant, melanoma Ag gp100 to mouse-derived DCs by molecular adjuvant and chaperone Grp170 substantially facilitates Ag access to the ER. Grp170 also strengthens the interaction of internalized protein Ag with molecular components involved in ER-associated protein dislocation and/or degradation, which culminates in cytosolic translocation for proteasome-dependent degradation and processing. Targeted disruption of protein retrotranslocation causes exclusive ER retention of tumor Ag in mouse bone marrow-derived DCs and splenic CD8(+) DCs. This results in the blockade of Ag ubiquitination and processing, which abrogates the priming of Ag-specific CD8(+) T cells in vitro and in vivo. Therefore, the improved ER entry of tumor Ag serves as a molecular basis for the superior cross-presenting capacity of Grp170-based vaccine platform. The ER access and retrotranslocation represents a distinct pathway that operates within DCs for cross-presentation and is required for the activation of Ag-specific CTLs by certain vaccines. These results also reinforce the importance of the ER-associated protein quality control machinery and the mode of the Ag delivery in regulating DC-elicited immune outcomes.


Assuntos
Adjuvantes Imunológicos , Apresentação de Antígeno/imunologia , Vacinas Anticâncer/imunologia , Apresentação Cruzada/imunologia , Células Dendríticas/imunologia , Retículo Endoplasmático/imunologia , Glicoproteínas/imunologia , Proteínas de Choque Térmico HSP70/imunologia , Linfócitos T Citotóxicos/imunologia , Vacinação/métodos , Antígeno gp100 de Melanoma/imunologia , ADP Ribose Transferases/farmacologia , Transferência Adotiva , Animais , Toxinas Bacterianas/farmacologia , Células da Medula Óssea/imunologia , Vacinas Anticâncer/farmacocinética , Linhagem da Célula , Células Cultivadas , Citosol/metabolismo , Células Dendríticas/classificação , Endocitose/imunologia , Endossomos/metabolismo , Exotoxinas/farmacologia , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Processamento de Proteína Pós-Traducional , Transporte Proteico , Proteólise , RNA Interferente Pequeno/farmacologia , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/farmacocinética , Canais de Translocação SEC , Baço/citologia , Baço/imunologia , Ubiquitinação , Fatores de Virulência/farmacologia , Antígeno gp100 de Melanoma/genética , Antígeno gp100 de Melanoma/farmacocinética , Exotoxina A de Pseudomonas aeruginosa
10.
Leuk Res ; 35(9): 1254-60, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21295855

RESUMO

We have previously demonstrated that CCR9 plays a pivotal role in drug resistance and invasion in human acute T-lymphocytic leukemia (T-ALL). In this study, we investigated whether the MOLT4 cells, which naturally express CCR9 at high levels, can be successfully killed by the specific ligand, CCL25 fused to Pseudomonas exotoxin 38 (PE38) toxin. Our results demonstrated that CCL25-PE38 was able to specifically kill MOLT4 cells via apoptosis induction, and suppress the growth of CCR9(+) tumors. This work shows that CCR9 high-expressing human T-ALL cells can be successfully killed by delivering PE38 toxin fused to the ligand CCL25.


Assuntos
ADP Ribose Transferases/uso terapêutico , Apoptose/efeitos dos fármacos , Toxinas Bacterianas/uso terapêutico , Quimiocinas CC/uso terapêutico , Exotoxinas/uso terapêutico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Receptores CCR/metabolismo , Fatores de Virulência/uso terapêutico , ADP Ribose Transferases/química , ADP Ribose Transferases/farmacologia , Animais , Toxinas Bacterianas/química , Toxinas Bacterianas/farmacologia , Células Cultivadas , Quimiocinas CC/química , Quimiocinas CC/farmacologia , Avaliação Pré-Clínica de Medicamentos , Exotoxinas/química , Exotoxinas/farmacologia , Feminino , Humanos , Camundongos , Camundongos SCID , Proteínas Recombinantes de Fusão/farmacologia , Proteínas Recombinantes de Fusão/uso terapêutico , Especificidade por Substrato , Fatores de Virulência/química , Fatores de Virulência/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Exotoxina A de Pseudomonas aeruginosa
11.
AIDS Res Hum Retroviruses ; 20(2): 145-50, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15018701

RESUMO

Although several immunotoxins that selectively kill HIV-1-infected cells have been described, their clinical utility is limited by low potency against spreading viral infection. We show here that changing the carboxyterminal sequence of an anti-HIV-1 envelope immunotoxin to the consensus endoplasmic reticulum retention sequence KDEL substantially improves its ability to block infection of peripheral blood mononuclear cells by primary HIV-1 isolates without increasing nonspecific toxicity. Polychromatic flow cytometry of peripheral blood mononuclear cells (PBMC) infected with an HIV-1-GFP reporter virus demonstrated that the improved immunotoxin is active against a variety of primary cell types including memory T cells, NK-T cells, and monocyte/macrophages. The subnanomolar potency of this agent suggests that it could be clinically useful either as an adjuvant to highly active antiretroviral therapy (HAART) in drug-resistant patients or to reduce the reservoir of latently infected cells that is implicated in HIV-1 persistence.


Assuntos
HIV-1/efeitos dos fármacos , HIV-1/patogenicidade , Imunotoxinas/farmacologia , ADP Ribose Transferases/genética , ADP Ribose Transferases/farmacologia , Animais , Terapia Antirretroviral de Alta Atividade , Toxinas Bacterianas/genética , Toxinas Bacterianas/farmacologia , Células CHO , Células Cultivadas , Quimioterapia Adjuvante , Cricetinae , Exotoxinas/genética , Exotoxinas/farmacologia , Genes Reporter , Proteínas de Fluorescência Verde , Anticorpos Anti-HIV/genética , Anticorpos Anti-HIV/farmacologia , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , HIV-1/genética , Humanos , Imunotoxinas/genética , Técnicas In Vitro , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/virologia , Proteínas Luminescentes/genética , Subpopulações de Linfócitos/efeitos dos fármacos , Subpopulações de Linfócitos/virologia , Oligopeptídeos , Sinais Direcionadores de Proteínas , Fatores de Virulência/genética , Fatores de Virulência/farmacologia , Exotoxina A de Pseudomonas aeruginosa
12.
Biochem Biophys Res Commun ; 299(1): 102-8, 2002 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-12435395

RESUMO

The low density lipoprotein receptor (LDLR)-related protein (LRP) is a multifunctional receptor which mediates the endocytic uptake of several ligands implicated in Alzheimer's disease pathophysiology. Although LRP, as a member of the LDLR family, is likely to be regulated in response to various cellular stresses, this regulation has not been fully understood yet. In the present study we studied the regulation of LRP expression in primary cultured rat astrocytes in response to serum deprivation as a general cellular stress. A significant increase in LRP expression was detected after serum deprivation and this increase was blocked by treatment of U0126, an inhibitor of MAP kinase. This serum deprivation action was partially reversed by either serum or D-glucose supplementation, but further augmented by glutamine. This result contrasted with a finding that glutamine suppressed gadd153 protein induced by serum deprivation. Taken together, the present data suggest that serum deprivation induces dramatically LRP expression in astrocytes partly by MAPK signaling pathways and by signaling pathways apparently distinct from gadd153 induction.


Assuntos
Astrócitos/metabolismo , Meios de Cultura Livres de Soro/farmacologia , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/biossíntese , ADP Ribose Transferases/farmacologia , Animais , Toxinas Bacterianas/farmacologia , Northern Blotting , Western Blotting , Butadienos/farmacologia , Sobrevivência Celular , Células Cultivadas , Inibidores Enzimáticos/farmacologia , Exotoxinas/farmacologia , Glucose/farmacologia , Glutamina/farmacologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Nitrilas/farmacologia , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Fatores de Tempo , Regulação para Cima , Fatores de Virulência/farmacologia , Exotoxina A de Pseudomonas aeruginosa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA