Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 311
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 329: 118154, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38614259

RESUMO

ETHNOPHARMACOLOGY RELEVANCE: The plants of Amaryllidaceae family, such as Amaryllis belladonna L., have been used as herbal remedies for thousands of years to address various disorders, including diseases that might today be identified as cancer. AIM OF THE STUDY: The objective of this work was to evaluate the potential of three Amaryllidaceae alkaloids against four cancer cell lines. MATERIAL AND METHODS: The alkaloids lycorine, 1-O-acetylcaranine, and montanine were evaluated in vitro against colon adenocarcinoma cell line (HCT-116) and breast carcinoma cell lines (MCF-7, MDAMB231, and Hs578T). Computational experiments (target prediction and molecular docking) were conducted to gain a deeper comprehension of possible interactions between these alkaloids and potential targets associated with these tumor cells. RESULTS: Montanine presented the best results against HCT-116, MDAMB231, and Hs578T cell lines, while lycorine was the most active against MCF-7. In alignment with the target prediction outcomes and existing literature, four potential targets were chosen for the molecular docking analysis: CDK8, EGFR, ER-alpha, and dCK. The docking scores revealed two potential targets for the alkaloids with scores similar to co-crystallized inhibitors and substrates: CDK8 and dCK. A visual analysis of the optimal docked configurations indicates that the alkaloids may interact with some key residues in contrast to the other docked compounds. This observation implies their potential to bind effectively to both targets. CONCLUSIONS: In vitro and in silico results corroborate with data literature suggesting the Amaryllidaceae alkaloids as interesting molecules with antitumoral properties, especially montanine, which showed the best in vitro results against colorectal and breast carcinoma. More studies are necessary to confirm the targets and pharmaceutical potential of montanine against these cancer cell lines.


Assuntos
Alcaloides de Amaryllidaceae , Antineoplásicos Fitogênicos , Simulação de Acoplamento Molecular , Humanos , Alcaloides de Amaryllidaceae/farmacologia , Alcaloides de Amaryllidaceae/química , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Linhagem Celular Tumoral , Células MCF-7 , Amaryllidaceae/química , Células HCT116 , Simulação por Computador , Fenantridinas/farmacologia , Fenantridinas/química , Isoquinolinas
2.
Z Naturforsch C J Biosci ; 79(3-4): 73-79, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38516999

RESUMO

The Sceletium-type alkaloids, known for their anxiolytic and antidepressant activities, have been recently found to be biosynthesized in Narcissus cv. Hawera, which is largely used as an ornamental plant. An alkaloid fraction enriched with Sceletium-type alkaloids from the plant has shown promising antidepressant and anxiolytic activities. In the present study, qualitative and quantitative analyses of the alkaloids in the plant organs were performed during one vegetation season by GC-MS. The alkaloid pattern and total alkaloid content was found to depend strongly on the stage of development and plant organ. The alkaloid content of bulbs was found to be highest during the dormancy period and lowest in sprouting bulbs. The leaves showed the highest alkaloid content during the intensive vegetative growth and lowest during flowering. In total, 13 alkaloids were detected in the methanol extracts of Narcissus cv. Hawera, six Sceletium-type and seven typical Amaryllidaceae alkaloids. Major alkaloids in the alkaloid pattern were lycorine, 6-epi-mesembrenol, mesembrenone, sanguinine, and galanthamine. The leaves of flowering plants were found to have the highest amount of 6-epi-mesembrenol. Mesembrenone was found to be dominant alkaloid in the leaves of sprouting bulbs and in the flowers. Considering the biomass of the plant, the dormant bulbs are the best source of alkaloid fractions enriched with 6-epi-mesembrenol. The flowers and the young leaves can be used for preparation of alkaloid fractions enriched with mesembrenone. The results indicates that Narcissus cv. Hawera is an emerging source of valuable bioactive compounds and its utilization can be extended as a medicinal plant.


Assuntos
Alcaloides , Alcaloides Indólicos , Narcissus , Fenantridinas , Folhas de Planta , Narcissus/química , Narcissus/metabolismo , Narcissus/crescimento & desenvolvimento , Alcaloides/metabolismo , Alcaloides/química , Folhas de Planta/química , Folhas de Planta/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Flores/química , Flores/metabolismo , Flores/crescimento & desenvolvimento , Extratos Vegetais/química , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Alcaloides de Amaryllidaceae/metabolismo , Alcaloides de Amaryllidaceae/química
3.
Phytomedicine ; 128: 155464, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38484625

RESUMO

BACKGROUND: Ang II induces hypertensive heart failure (HF) via hemodynamic and non-hemodynamic actions. Lycorine (LYC) is an alkaloid derived from Lycoris bulbs, and it possesses anti-cardiovascular disease-related activities. Herein, we explored the potential LYC-mediated regulation of Ang II-induced HF. METHODS: Over 4 weeks, we established a hypertensive HF mouse model by infusing Ang II into C57BL/6 mice using a micro-osmotic pump. For the final two weeks, mice were administered LYC via intraperitoneal injection. The LYC signaling network was then deduced using RNA sequencing. RESULTS: LYC administration strongly suppressed hypertrophy, myocardial fibrosis, and cardiac inflammation. As a result, it minimized heart dysfunction while causing no changes in blood pressure. The Nuclear Factor kappa B (NF-κB) network/phosphoinositol-3-kinase (PI3K)-protein kinase B (AKT) was found to be a major modulator of LYC-based cardioprotection using RNA sequencing study. We further confirmed that in cultured cardiomyocytes and mouse hearts, LYC reduced the inflammatory response and downregulated the Ang II-induced PI3K-AKT/NF-κB network. Moreover, PI3K-AKT or NF-κB axis depletion in cardiomyocytes completely abrogated the anti-inflammatory activities of LYC. CONCLUSION: Herein, we demonstrated that LYC safeguarded hearts in Ang II -stimulated mice by suppressing the PI3K-AKT/NF-κB-induced inflammatory responses. Given the evidence mentioned above, LYC is a robust therapeutic agent for hypertensive HF.


Assuntos
Alcaloides de Amaryllidaceae , Angiotensina II , Camundongos Endogâmicos C57BL , NF-kappa B , Fenantridinas , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Animais , Alcaloides de Amaryllidaceae/farmacologia , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fenantridinas/farmacologia , Masculino , Transdução de Sinais/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Camundongos , Insuficiência Cardíaca/tratamento farmacológico , Remodelação Ventricular/efeitos dos fármacos , Inflamação/tratamento farmacológico , Miócitos Cardíacos/efeitos dos fármacos , Hipertensão/tratamento farmacológico , Hipertensão/induzido quimicamente , Modelos Animais de Doenças , Lycoris/química , Miocárdio
4.
Chem Biodivers ; 21(3): e202302122, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38354224

RESUMO

Griffinia gardneriana Ravenna, Griffinia liboniana Morren and Griffinia nocturna Ravenna (Amarillydaceae) are bulbous plants found in tropical regions of Brazil. Our work aimed to determine the alkaloid profiles of Griffinia spp. and evaluate their anxiolytic potential through in vivo and in silico assays. The plants grown in greenhouses were dried and their ground bulbs were subjected to liquid-liquid partitions, resulting in alkaloid fractions that were analyzed by gas chromatography coupled to mass spectrometry (GC-MS). Anxiolytic activity was evaluated in zebrafish (Danio rerio) through intraperitoneal injection at doses of 40, 100 and 200 mg/kg in light-dark box test. GC-MS analyses revealed 23 alkaloids belonging to different skeleton types: lycorine, homolychorine, galanthamine, crinine, haemanthamine, montanine and narcisclasine. The chemical profiles were relatively similar, presenting 8 alkaloids common to the three species. The major component for G. gardneriana and G. liboniana was lycorine, while G. nocturna consisted mainly of anhydrolycorine. All three alkaloid fractions demonstrated anxiolytic effect. Furthermore, pre-treatment with diazepam and pizotifen drugs was able to reverse the anxiolytic action, indicating involving the GABAergic and serotonergic receptors. Molecular docking showed that the compounds vittatine, lycorine and 11,12-dehydro-2-methoxyassoanine had high affinity with both receptors, suggesting them to be responsible for the anxiolytic effect.


Assuntos
Alcaloides , Alcaloides de Amaryllidaceae , Amaryllidaceae , Ansiolíticos , Fenantridinas , Animais , Amaryllidaceae/química , Peixe-Zebra , Ansiolíticos/farmacologia , Simulação de Acoplamento Molecular , Cromatografia Gasosa-Espectrometria de Massas/métodos , Alcaloides de Amaryllidaceae/farmacologia , Alcaloides de Amaryllidaceae/química , Alcaloides/farmacologia , Alcaloides/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química
5.
Phytomedicine ; 126: 155460, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38394731

RESUMO

BACKGROUND: Multidrug resistance is the major obstacle to cancer chemotherapy. Modulation of P-glycoprotein and drug combination approaches have been considered important strategies to overcome drug resistance. PURPOSE: Aiming at generating a small library of Amaryllidaceae-type alkaloids to overcome drug resistance, two major alkaloids, isolated from Pancratium maritimum, lycorine (1), and 2α-10bα-dihydroxy-9-O-demethylhomolycorine (2), were derivatized, giving rise to nineteen derivatives (3 - 21). METHODS: The main chemical transformation of lycorine resulted from the cleavage of ring E of the diacetylated lycorine derivative (3) to obtain compounds that have carbamate and amine functions (5 - 16), while acylation of compound 2 provided derivatives 17 - 21. Compounds 1 - 21 were evaluated for their effects on cytotoxicity, and drug resistance reversal, using resistant human ovarian carcinoma cells (HOC/ADR), overexpressing P-glycoprotein (P-gp/ABCB1), as model. RESULTS: Excluding lycorine (1) (IC50 values of 1.2- 2.5 µM), the compounds were not cytotoxic or showed moderate/weak cytotoxicity. Chemo-sensitization assays were performed by studying the in vitro interaction between the compounds and the anticancer drug doxorubicin. Most of the compounds have shown synergistic interactions with doxorubicin. Compounds 5, 6, 9 - 14, bearing both carbamate and aromatic amine moieties, were found to have the highest sensitization rate, reducing the dose of doxorubicin 5-35 times, highlighting their potential to reverse drug resistance in combination chemotherapy. Selected compounds (4 - 6, 9 - 14, and 21), able of re-sensitizing resistant cancer cells, were further evaluated as P-gp inhibitors. Compound 11, which has a para­methoxy-N-methylbenzylamine moiety, was the strongest inhibitor. In the ATPase assay, compounds 9-11 and 13 behaved as verapamil, suggesting competitive inhibition of P-gp. At the same time, none of these compounds affected P-gp expression at the mRNA or protein level. CONCLUSIONS: This study provided evidence of the potential of Amaryllidaceae alkaloids as lead candidates for the development of MDR reversal agents.


Assuntos
Adenocarcinoma , Alcaloides , Alcaloides de Amaryllidaceae , Antineoplásicos , Fenantridinas , Humanos , Alcaloides de Amaryllidaceae/farmacologia , Resistencia a Medicamentos Antineoplásicos , Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Alcaloides/farmacologia , Carbamatos/farmacologia , Linhagem Celular Tumoral
6.
J Pharm Biomed Anal ; 240: 115935, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38181554

RESUMO

Ligand fishing, also described as affinity-based assay, represents a convenient and efficient approach to separate potential ligands from complex matrixes or chemical libraries. This approach contributes to the identification of lead compounds that can bind to a specific target. In the context of COVID-19, the search for novel therapeutic agents is crucial. Small molecule-based antiviral drugs, such as Amaryllidaceae alkaloids, have been described as potential candidates because they can inhibit RNA viruses. Among various SARS-CoV-2 proteins, Nsp3, Nsp4, and Nsp6 play a crucial role in the pathogenicity of the virus and are attractive targets for developing COVID-19 treatments. These proteins are responsible for the replication/transcription complex (RTC) within double-membrane vesicles (DMVs), and their inhibition disrupts the virus's infectious cycle. Herein, we have successfully expressed and immobilized the SARS-CoV-2 Nsp4 protein on magnetic beads (Nsp4-MBs) and employed a ligand fishing assay to screen a collection of ten Amaryllidaceae-based alkaloids and applied to Hippeastrum aulicum extract. Remarkably, four out of ten alkaloids, namely 2-α-7-dimethoxyhomolycorine (6), haemanthamine (5), albomaculine (8), and tazettine (9), exhibited selective affinities for Nsp4. Albomaculine (8) and haemanthamine (5) were also identified from extract by the affinity assay. These findings highlight the potential of these alkaloids as model compounds for future drug discovery studies aimed at developing therapeutic interventions against SARS-CoV-2 infections.


Assuntos
Alcaloides , Alcaloides de Amaryllidaceae , COVID-19 , Fenantridinas , Humanos , Alcaloides de Amaryllidaceae/farmacologia , SARS-CoV-2 , Ligantes , Alcaloides/farmacologia , Alcaloides/química , Extratos Vegetais/química , Antivirais/farmacologia
7.
Angew Chem Int Ed Engl ; 61(40): e202209293, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-35912895

RESUMO

Herein, cobaloxime is used for the first time as a catalyst for the synthesis of phosphorylated heteroaromatics, which is an intriguing and versatile functional motif. With visible-light irradiation, cobaloxime not only oxidizes phosphine oxides to form phosphorus radicals (P-radicals) for a subsequent reaction with radical acceptor isocyanides or heteroaromatics, but also combines the radical intermediate with ß-H elimination, thereby producing phosphorylated heteroaromatics with only H2 or CH4 as byproduct. Phosphine oxides with dialkyl, alkylaryl, and diaryl substituents could be directly transformed into phosphorylated phenanthridines, benzothiazoles, isoquinolines, and common heteroaromatics. This catalytic system features extremely mild conditions, broad substrate scope and good to excellent yields. Scale-up reaction and sunlight reaction show the great application potential in the green synthesis of important organophosphorus chemicals.


Assuntos
Cianetos , Óxidos , Benzotiazóis , Isoquinolinas , Compostos Organometálicos , Fenantridinas , Fosfinas , Fósforo
8.
BMC Cancer ; 22(1): 873, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35948939

RESUMO

Lycorine (Lyc) is a natural alkaloid derived from medicinal plants of the Amaryllidaceae family. Lyc has been reported to inhibit the recurrence and metastasis of different kinds of tumors. However, Lyc's effect on angiogenesis and its specific mechanism are still not clear. This study was designed to test the antiangiogenesis effect of Lyc and to explore the possible mechanisms. We performed cell experiments to confirm Lyc's inhibitory effect on angiogenesis and employed sunitinib as a positive control. Moreover, the synergistic effect of Lyc and sunitinib was also explored. Next, we conducted bioinformatics analyses to predict the potential targets of Lyc and verified them by western blotting and immunofluorescence. Molecular docking, kinase activity assays, Biacore assays and cellular thermal shift assays (CETSAs) were applied to elucidate the mechanism by which Lyc inhibited target activity. Lyc inhibited angiogenesis in human umbilical vein endothelial cells (HUVECs). Employing bioinformatics, we found that Lyc's target was PDGFRα and that Lyc attenuated PDGFRα phosphorylation. We also found that Lyc inhibited PDGFRα activation by docking to it to restrain its activity. Additionally, Lyc significantly inhibited PDGF-AA-induced angiogenesis. This study provides new insights into the molecular functions of Lyc and indicates its potential as a therapeutic agent for tumor angiogenesis.


Assuntos
Neoplasias , Receptor alfa de Fator de Crescimento Derivado de Plaquetas , Alcaloides de Amaryllidaceae , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Proliferação de Células , Células Endoteliais da Veia Umbilical Humana , Humanos , Simulação de Acoplamento Molecular , Neoplasias/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Fenantridinas , Sunitinibe/uso terapêutico
9.
Phytomedicine ; 104: 154266, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35752077

RESUMO

BACKGROUND: Multiorgan dysfunction, especially sepsis-related multiorgan damage, remains a major cause of high mortality in the late stages of infection and a great clinical challenge. In recent years, natural drugs have received widespread attention because of their low cost, wide sources, high efficacy, low toxicity, and limited side effects. Lycorine, a natural compound extracted from Amaryllidaceae, exhibits multiple pharmacological activities, including in the regulation of autophagy and the induction of cancer cell apoptosis, and has anti-inflammatory, antifungal, antiviral, antimalarial, and antitumor activities. However, studies on lycorine have mainly focused on its antitumor properties, and research on its use for organ protection, especially in sepsis-related organ injury, is relatively limited. PURPOSE: To review and discuss the effects and mechanisms of lycorine in the treatment of multi-organ dysfunction, especially sepsis. METHODS: Literature searches in electronic databases, such as Web of Science, Science Direct, PubMed, Google Scholar, and Scopus, were performed using 'Lycorine', 'Amaryllidaceae', 'Pharmacology', 'Pharmacokinetics', 'Anti-inflammation', 'Autophagy', 'Apoptosis', 'Anti-microbial and anti-parasitic', 'Antitumor', 'Organ protection', and 'Sepsis' as keywords, the correlated literature was extracted and conducted from the databases mentioned above. RESULTS: By summarizing the progress made in existing research, we found that the general effects of lycorine involve the regulation of autophagy and the induction of cancer cell apoptosis, and anti-inflammatory, antifungal, antiviral, antimalarial, and antitumor effects; through these pathways, the compound can ameliorate organ damage. In addition, lycorine was found to have an important effect on organ damage in sepsis. CONCLUSION: Lycorine is a promising natural organ protective agent. This review will provide a new theoretical basis for the treatment of organ protection, especially in sepsis.


Assuntos
Alcaloides de Amaryllidaceae , Amaryllidaceae , Antimaláricos , Alcaloides de Amaryllidaceae/farmacologia , Antifúngicos/farmacologia , Antimaláricos/farmacologia , Antivirais/farmacologia , Apoptose , Fenantridinas/farmacologia
10.
Molecules ; 27(9)2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35566325

RESUMO

Candida species are the main fungal agents causing infectious conditions in hospital patients. The development of new drugs with antifungal potential, increased efficacy, and reduced toxicity is essential to face the challenge of fungal resistance to standard treatments. The aim of this study is to evaluate the in vitro antifungal effects of two crude extracts of Crinum americanum L., a rich alkaloid fraction and lycorine alkaloid, on the Candida species. As such, we used a disk diffusion susceptibility test, determined the minimum inhibitory concentration (MIC), and characterized the components of the extracts using Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (ESI FT-ICR MS). The extracts were found to have antifungal activity against various Candida species. The chemical characterization of the extracts indicated the presence of alkaloids such as lycorine and crinine. The Amaryllidaceae family has a promising antifungal potential. Furthermore, it was found that the alkaloid lycorine directly contributes to the effects that were observed for the extracts and fraction of C. americanum.


Assuntos
Alcaloides , Alcaloides de Amaryllidaceae , Amaryllidaceae , Crinum , Alcaloides/química , Alcaloides/farmacologia , Alcaloides de Amaryllidaceae/química , Alcaloides de Amaryllidaceae/farmacologia , Antifúngicos/química , Antifúngicos/farmacologia , Candida , Crinum/química , Humanos , Fenantridinas , Extratos Vegetais/química , Extratos Vegetais/farmacologia
11.
Phytomedicine ; 102: 154178, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35617889

RESUMO

BACKGROUND: Adriamycin (ADR), a high-efficiency, broad-spectrum anthraquinone chemotherapeutic agent, is currently used to treat various malignant tumors and can lead to cumulative, dose-dependent, and irreversible cardiotoxicity. Lycorine (LYC) is a benzyl phenethylamine alkaloid that exerts remarkable therapeutic effects on cancers and sepsis. PURPOSE: However, researchers have not yet elucidated whether LYC exerts protective effects against cardiotoxicity induced by ADR and the possible molecular mechanisms. DESIGN: This study established ADR injury models in vitro and in vivo to explore the effects of LYC against cardiotoxicity induced by ADR. The effects of LYC on blood biochemical parameters, cardiac parameters and structure, ADR-related pathophysiological processes, and the SIRT1/PPARγ signal pathway in ADR-injured models, were analyzed using a series of experimental methods. RESULTS: LYC significantly improved survival rate, blood biochemical parameters (LDH, CK, and BUN), cardiac parameters (SV and CO), mitochondrial dysfunction, and ameliorated oxidative stress, apoptosis, and myocardial fibrosis in ADR-injured mice (p<0.05). Moreover, LYC obviously increased cell viability and reduced oxidative stress, apoptosis, and mitochondrial dysfunction in ADR-injured cells (p<0.05). Furthermore, this study confirmed that the protective effect of LYC on ADR-induced cardiotoxicitymight be mediated by the SIRT1/PPARγ signaling pathway. These results revealed that the beneficial role of LYC on cardiotoxicity induced by ADR were mediated via regulating SIRT1/PPARγ signaling for the first time. CONCLUSION: These discoveries may provide a theoretical basis for the exploitation of LYC as a potential cardioprotective drug candidate due to its multiple biological functions to reduce ADR-induced cardiotoxicity, but further preclinical and clinical studies are still needed.


Assuntos
Cardiotoxicidade , Doxorrubicina , Alcaloides de Amaryllidaceae , Animais , Cardiotoxicidade/tratamento farmacológico , Camundongos , Estresse Oxidativo , PPAR gama , Fenantridinas , Sirtuína 1
12.
J Nanobiotechnology ; 19(1): 221, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34315494

RESUMO

BACKGROUND: Despite advances of surgery and neoadjuvant chemotherapy during the past few decades, the therapeutic efficacy of current therapeutic protocol for osteosarcoma (OS) is still seriously compromised by multi-drug resistance and severe side effects. Amplification of intracellular oxidative stress is considered as an effective strategy to induce cancer cell death. The purpose of this study was to develop a novel strategy that can amplify the intracellular oxidative stress for synergistic cascade cancer therapy. METHODS AND RESULTS: A novel nanocomposite, composed of folic acid (FA) modified mesoporous silica-coated gold nanostar (GNS@MSNs-FA) and traditional Chinese medicine lycorine (Ly), was rationally designed and developed. Under near-infrared (NIR) irradiation, the obtained GNS@MSNs-FA/Ly could promote a high level of ROS production via inducing mitochondrial dysfunction and potent endoplasmic reticulum (ER) stress. Moreover, glutathione (GSH) depletion during ER stress could reduce ROS scavenging and further enable efficient amplification of intracellular oxidative stress. Both in vitro and in vivo studies demonstrated that GNS@MSNs-FA/Ly coupled with NIR irradiation exhibited excellent antitumor efficacy without noticeable toxicity in MNNG/HOS tumor-bearing mice. CONCLUSION: All these results demonstrated that GNS@MSNs-FA/Ly coupled with NIR irradiation could dramatically amplify the intra-tumoral oxidative stress, exhibiting excellent antitumor ability without obvious systemic toxicity. Taken together, this promising strategy provides a new avenue for the effective cancer synergetic therapy and future clinical translation.


Assuntos
Alcaloides de Amaryllidaceae/farmacologia , Ouro/química , Nanocompostos/química , Neoplasias/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Fenantridinas/farmacologia , Animais , Materiais Biocompatíveis , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Estresse do Retículo Endoplasmático , Ácido Fólico , Humanos , Camundongos , Microscopia de Fluorescência , Mitocôndrias , Nanocompostos/uso terapêutico , Neoplasias/patologia , Osteossarcoma , Espécies Reativas de Oxigênio , Dióxido de Silício
13.
Phytomedicine ; 87: 153578, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34038839

RESUMO

BACKGROUND: Parkinson's disease (PD) is one of the most common neurodegenerative motor disorders, and is characterized by the presence of Lewy bodies containing misfolded α-synuclein (α-syn) and by selective degeneration of midbrain dopamine neurons. Studies have shown that upregulation of ubiquitin-proteasome system (UPS) activity promotes the clearance of aggregation-prone proteins such as α-syn and Tau, so as to alleviate the neuropathology of neurodegenerative diseases. PURPOSE: To identify and investigate lycorine as a UPS enhancer able to decrease α-syn in transgenic PD models. METHODS: Dot blot was used to screen α-syn-lowering compounds in an inducible α-syn overexpression cell model. Inducible wild-type (WT) and mutant α-syn-overexpressing PC12 cells, WT α-syn-overexpressing N2a cells and primary cultured neurons from A53T transgenic mice were used to evaluate the effects of lycorine on α-syn degradation in vitro. Heterozygous A53T transgenic mice were used to evaluate the effects of lycorine on α-syn degradation in vivo. mCherry-GFP-LC3 reporter was used to detect autophagy-dependent degradation. Ub-R-GFP and Ub-G76V-GFP reporters were used to detect UPS-dependent degradation. Proteasome activity was detected by fluorogenic substrate Suc-Leu-Leu-Val-Tyr-AMC (Suc-LLVY-AMC). RESULTS: Lycorine significantly promoted clearance of over-expressed WT and mutant α-syn in neuronal cell lines and primary cultured neurons. More importantly, 15 days' intraperitoneal administration of lycorine effectively promoted the degradation of α-syn in the brains of A53T transgenic mice. Mechanistically, lycorine accelerated α-syn degradation by activating cAMP-dependent protein kinase (PKA) to promote proteasome activity. CONCLUSION: Lycorine is a novel α-syn-lowering compound that works through PKA-mediated UPS activation. This ability to lower α-syn implies that lycorine has the potential to be developed as a pharmaceutical for the treatment of neurodegenerative diseases, such as PD, associated with UPS impairment and protein aggregations.


Assuntos
Alcaloides de Amaryllidaceae/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Doença de Parkinson/tratamento farmacológico , Fenantridinas/farmacologia , alfa-Sinucleína/metabolismo , Animais , Autofagia/efeitos dos fármacos , Autofagia/fisiologia , AMP Cíclico/metabolismo , Modelos Animais de Doenças , Humanos , Masculino , Camundongos Transgênicos , Fármacos Neuroprotetores/farmacologia , Células PC12 , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Ratos , Ubiquitina/metabolismo , Regulação para Cima/efeitos dos fármacos , alfa-Sinucleína/genética
14.
Rev Bras Parasitol Vet ; 30(1): e020220, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33909833

RESUMO

Trypanosoma vivax infections cause nonspecific clinical signs in cattle associated with aparasitemic intervals, making disease diagnosis a challenge. In Brazil, diminazene aceturate and isometamidium chloride (ISM) are available to treat bovine trypanosomosis. The objective of this study was to follow-up, by molecular and serological techniques, dairy cattle naturally infected by T. vivax after ISM treatment. Thirty cattle naturally infected with T. vivax received two applications of ISM, at a dosage of 1.0 mg/kg intramuscularly, on days 0 and 150. For T. vivax diagnosis, EDTA-blood and serum samples were evaluated on 0, 7, 15, 30, 60, 90, 120, 150, 180, 210, and 240 days after treatment PCR, Loop-mediated isothermal amplification (LAMP) and ELISA. Animals with persistent detection of T. vivax DNA by both PCR and LAMP were found and continuous detection of anti-T. vivax IgG antibodies by ELISA, suggesting the presence of T. vivax resistance to ISM. The combination of LAMP and ELISA tests can prevent misdiagnosis of the parasite clearance in treated cattle, contributing to better disease control. This is the first experiment that demonstrates the persistence infection of T. vivax under ISM treatment in a natural infected herd and evidence of ISM chemotherapy-resistant T. vivax in Brazil.


Assuntos
Tripanossomicidas , Tripanossomíase Africana , Tripanossomíase Bovina , Animais , Brasil , Bovinos , Seguimentos , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , Fenantridinas , Tripanossomicidas/uso terapêutico , Trypanosoma vivax , Tripanossomíase Africana/veterinária , Tripanossomíase Bovina/diagnóstico , Tripanossomíase Bovina/tratamento farmacológico
15.
Phytomedicine ; 85: 153540, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33773188

RESUMO

BACKGROUND: Neuroinflammation is defined as innate immune system activation in the central nervous system, and is a complex response involved in removing pathogens, toxic components, and dead cells by activating microglial cells. However, over-activated microglia have been implicated in the pathogenesis of neurodegenerative diseases, because they release large amounts of neurotoxic factors. Thus, inhibiting microglial activation may represent an attractive approach for preventing neuroinflammatory disorders. The objective of this study was to investigate the effect of narciclasine (NA) on lipopolysaccharide (LPS)-induced neuroinflammation by evaluating related markers and neurotoxic factors. METHODS: BV-2 cells were pre-incubated with NA at 0.1, 0.2, and 0.3 µM for 1h, and then co-treated with LPS for 12 h. Cellular medium and lysates were measured using a nitric oxide assay, enzyme-link immunosorbent assay (ELISA), western blotting, kinase activity assay, luciferase assay, and immunofluorescence assay. C57BL/6N mice were orally administered NA and intraperitoneally injected with LPS, and the cerebral cortex was examined using western blotting and immunofluorescence assays. RESULTS: NA showed novel pharmacological activity, inhibiting pro-inflammatory factors, including TNF-α, IL-6, IL-18, NO, and PGE2, but increasing the anti-inflammatory cytokines IL-10 and TGF-ß1 in LPS-induced microglial cells. Moreover, NA also attenuated the LPS-induced mRNA and proteins of iNOS and COX-2. The mechanistic study indicated that NA attenuates the secretion of pro-inflammatory factor by down-regulating the Akt/IKK/NF-κB and JNK signaling pathways, and directly inhibits the catalytic activity of IKKα/ß. Furthermore, we found that NA also reduced the expression of the microglial markers Iba-1, COX-2, and TNF-α in the mouse brain. CONCLUSION: NA inhibits the over-expression of pro-inflammatory factors but it promotes anti-inflammatory cytokines by down-regulating the Akt/IKK/NF-κB and JNK signaling pathways in experimental models. Thus, NA may be a potential candidate for relieving neuroinflammation.


Assuntos
Alcaloides de Amaryllidaceae/farmacologia , Anti-Inflamatórios/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Microglia/efeitos dos fármacos , Fenantridinas/farmacologia , Animais , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Inflamação , Lipopolissacarídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Transcrição RelA/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
16.
Phytomedicine ; 85: 153530, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33761445

RESUMO

BACKGROUND: Colorectal cancer (CRC) is one of the most common malignancies worldwide. Metastasis is the major cause of death in patients with CRC. Lycorine, the phenanthridine alkaloid most commonly found in spp of the Amaryllidaceae family, has shown promising anticancer activities with minor side effects. However, the effects and the detailed mechanism of lycorine against metastasis of CRC remains unclear. STUDY DESIGN/METHODS: The purpose of this study was to investigate the effects of lycorine on CRC and characterize the molecular mechanisms observed in lycorine-treated CRC cells using RNA-sequencing. MTT assay, colony formation assay, acridine orange/ethidium bromide (AO/EB) staining and Annexin V-FITC/Propidium iodide (PI) staining were conducted to examine the effects of lycorine on cell proliferation and apoptosis in CRC cells. RNA sequencing, real-time PCR assays and western blot were performed. Migration and invasion abilities of lycorine-treated CRC cells were investigated by wound healing and transwell invasion assays. The mouse CRC lung metastasis model was established and was used to detect the effect of lycorine on CRC in vivo. RESULTS: Our results demonstrated that lycorine inhibited the proliferation and colony formation of CRC cells in a concentration-dependent manner. AO/EB staining and Annexin V-FITC/PI staining showed that lycorine induced apoptosis in a concentration-dependent manner. Lycorine also reduced lung metastasis of CRC in vivo. Moreover, transcriptomic analysis suggested that lycorine regulated the expression of 3556 genes. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway was implicated according to the differentially expressed genes (DEGs), and multiple pathways including those of mitogen-activated protein kinase (MAPK), relaxin, Ras, phosphatidylinositol 3­kinase (PI3K)-protein kinase B (Akt) and Wnt/ß-catenin were selected by functional enrichment analyses. Furthermore, based on transcriptomic analysis, we found that the tumor necrosis factor (TNF) pathway and endoplasmic reticulum stress were responsible for lycorine-induced apoptosis. CONCLUSIONS: These results obtained in this study demonstrated that lycorine has the potential to suppress CRC in vitro and in vivo through the lycorine-regulated multiple signaling pathways.


Assuntos
Alcaloides de Amaryllidaceae/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Fenantridinas/farmacologia , RNA-Seq , Transdução de Sinais/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/patologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Metástase Neoplásica , Fosfatidilinositol 3-Quinases/metabolismo
17.
Artigo em Inglês | MEDLINE | ID: mdl-33741446

RESUMO

More than 500 molecules have been identified as components of Cannabis sativa (C. sativa), of which the most studied is Δ9-tetrahydrocannabinol (Δ9-THC). Several studies have suggested that Δ9-THC exerts diverse biological effects, ranging from fragmentation of DNA to behavioral disruptions. Currently, it is accepted that most of the pharmacological properties of Δ9-THC engage the activation of the cannabinoid receptors, named CB1 and CB2. Interestingly, multiple pieces of evidence have suggested that the cannabinoid receptors play an active role in the modulation of several diseases leading to the design of synthetic cannabinoid-like compounds. Advances in the development of synthetic CB1 cannabinoid receptor selective agonists as therapeutical approaches are, however, limited. This review focuses on available evidence searched in PubMed regarding the synthetic CB1 cannabinoid receptor selective agonists such as AM-1235, arachidonyl-2' chloroethylamide (ACEA), CP 50,556-1 (Levonantradol), CP-55,940, HU-210, JWH-007, JWH-018, JWH-200 (WIN 55,225), methanandamide, nabilone, O-1812, UR-144, WIN 55,212-2, nabiximols, and dronabinol. Indeed, it would be ambitious to describe all available evidence related to the synthetic CB1 cannabinoid receptor selective agonists. However, and despite the positive evidence on the positive results of using these compounds in experimental models of health disturbances and preclinical trials, we discuss evidence in regards some concerns due to side effects.


Assuntos
Agonistas de Receptores de Canabinoides/síntese química , Agonistas de Receptores de Canabinoides/uso terapêutico , Substâncias Controladas/síntese química , Receptor CB1 de Canabinoide/agonistas , Analgésicos/síntese química , Analgésicos/uso terapêutico , Animais , Ansiolíticos/síntese química , Ansiolíticos/uso terapêutico , Canabinoides/síntese química , Canabinoides/uso terapêutico , Substâncias Controladas/administração & dosagem , Cicloexanóis/síntese química , Cicloexanóis/uso terapêutico , Dronabinol/análogos & derivados , Dronabinol/síntese química , Dronabinol/uso terapêutico , Humanos , Transtornos Mentais/tratamento farmacológico , Transtornos Mentais/metabolismo , Dor/tratamento farmacológico , Dor/metabolismo , Fenantridinas/síntese química , Fenantridinas/uso terapêutico , Receptor CB1 de Canabinoide/metabolismo
18.
Aging Cell ; 20(2): e13307, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33455051

RESUMO

Lycorine, a natural compound isolated from the traditional Chinese medicinal herb Lycoris radiata, exhibits multiple pharmacological effects, such as anti-inflammatory, antiviral, and anticancer effects. Accumulating evidence also indicates that lycorine might hold the potential to treat age-associated Alzheimer's disease. However, whether lycorine is involved in delaying the onset of cellular senescence and its underlying mechanisms has not been determined. Here, we demonstrate that the salt of lycorine, lycorine hydrochloride, significantly suppressed stress-induced premature cellular senescence (SIPS) by ~2-fold, as determined by senescence-associated beta-galactosidase (SA-ß-gal) staining and the expression of p16 and p21. In addition, pretreating cells with lycorine hydrochloride significantly inhibited the expression of CXCL1 and IL1α, two factors of the senescence-associated secreted phenotype (SASP) in SIPS cells. Further experiments revealed that lycorine hydrochloride promoted both the homologous recombination (HR) and nonhomologous end joining (NHEJ) pathways of DNA double-strand break (DSB) repair. Mechanistic studies suggested that lycorine hydrochloride treatment promoted the transcription of SIRT1 and SIRT6, critical longevity genes positively regulating both HR and NHEJ repair pathways, thereby stimulating DSB repair and stabilizing genomes. Inhibiting SIRT1 enzymatic activity abrogated the protective effect of lycorine hydrochloride on delaying the onset of SIPS, repairing DSBs, and restoring genome integrity. In summary, our work indicates that lycorine hydrochloride might hold therapeutic potential for treating age-associated diseases or promoting healthy aging by stabilizing genomes.


Assuntos
Alcaloides de Amaryllidaceae/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Fenantridinas/farmacologia , Células Cultivadas , Senescência Celular/efeitos dos fármacos , Senescência Celular/genética , Humanos , Lycoris/química , Medicina Tradicional Chinesa , Estresse Oxidativo/efeitos dos fármacos
19.
Molecules ; 26(1)2021 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-33401696

RESUMO

Plants in the Amaryllidaceae family synthesize a diversity of bioactive alkaloids. Some of these plant species are not abundant and have a low natural multiplication rate. The aims of this work were the alkaloids analysis of a Habranthus cardenasianus bulbs extract, the evaluation of its inhibitory activity against cholinesterases, and to test several propagation strategies for biomass production. Eleven compounds were characterized by GC-MS in the alkaloid extract, which showed a relatively high proportion of tazettine. The known alkaloids tazettine, haemanthamine, and the epimer mixture haemanthidine/6-epi-haemanthidine were isolated and identified by spectroscopic methods. Inhibitory cholinesterases activity was not detected. Three forms of propagation were performed: bulb propagation from seed, cut-induced bulb division, and micropropagated bulbs. Finally, different imbibition and post-collection times were evaluated in seed germination assays. The best propagation method was cut-induced bulb division with longitudinal cuts into quarters (T1) while the best conditions for seed germination were 0-day of post-collection and two days of imbibition. The alkaloids analyses of the H. cardenasianus bulbs showed that they are a source of anti-tumoral alkaloids, especially pretazettine (tazettine) and T1 is a sustainable strategy for its propagation and domestication to produce bioactive alkaloids.


Assuntos
Alcaloides/análise , Alcaloides/farmacologia , Amaryllidaceae/química , Amaryllidaceae/crescimento & desenvolvimento , Inibidores da Colinesterase/farmacologia , Alcaloides/química , Alcaloides/isolamento & purificação , Alcaloides de Amaryllidaceae/análise , Biomassa , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/química , Cromatografia Gasosa-Espectrometria de Massas , Germinação , Estrutura Molecular , Fenantridinas/análise , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Raízes de Plantas/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimento , Fatores de Tempo
20.
Phytomedicine ; 86: 153440, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33376043

RESUMO

BACKGROUND: Highly effective novel treatments need to be developed to suppress emerging coronavirus (CoV) infections such as COVID-19. The RNA dependent RNA polymerase (RdRp) among the viral proteins is known as an effective antiviral target. Lycorine is a phenanthridine Amaryllidaceae alkaloid isolated from the bulbs of Lycoris radiata (L'Hér.) Herb. and has various pharmacological bioactivities including antiviral function. PURPOSE: We investigated the direct-inhibiting action of lycorine on CoV's RdRp, as potential treatment for emerging CoV infections. METHODS: We examined the inhibitory effect of lycorine on MERS-CoV, SARS-CoV, and SARS-CoV-2 infections, and then quantitatively measured the inhibitory effect of lycorine on MERS-CoV RdRp activity using a cell-based reporter assay. Finally, we performed the docking simulation with lycorine and SARS-CoV-2 RdRp. RESULTS: Lycorine efficiently inhibited these CoVs with IC50 values of 2.123 ± 0.053, 1.021 ± 0.025, and 0.878 ± 0.022 µM, respectively, comparable with anti-CoV effects of remdesivir. Lycorine directly inhibited MERS-CoV RdRp activity with an IC50 of 1.406 ± 0.260 µM, compared with remdesivir's IC50 value of 6.335 ± 0.731 µM. In addition, docking simulation showed that lycorine interacts with SARS-CoV-2 RdRp at the Asp623, Asn691, and Ser759 residues through hydrogen bonding, at which the binding affinities of lycorine (-6.2 kcal/mol) were higher than those of remdesivir (-4.7 kcal/mol). CONCLUSIONS: Lycorine is a potent non-nucleoside direct-acting antiviral against emerging coronavirus infections and acts by inhibiting viral RdRp activity; therefore, lycorine may be a candidate against the current COVID-19 pandemic.


Assuntos
Alcaloides de Amaryllidaceae/farmacologia , Antivirais/farmacologia , Fenantridinas/farmacologia , RNA Polimerase Dependente de RNA/antagonistas & inibidores , SARS-CoV-2/efeitos dos fármacos , Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Animais , Chlorocebus aethiops , Ligação de Hidrogênio , Coronavírus da Síndrome Respiratória do Oriente Médio/efeitos dos fármacos , Simulação de Acoplamento Molecular , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/efeitos dos fármacos , Células Vero , Proteínas Virais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA