Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
Mais filtros

Medicinas Complementares
Métodos Terapêuticos e Terapias MTCI
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 329: 118154, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38614259

RESUMO

ETHNOPHARMACOLOGY RELEVANCE: The plants of Amaryllidaceae family, such as Amaryllis belladonna L., have been used as herbal remedies for thousands of years to address various disorders, including diseases that might today be identified as cancer. AIM OF THE STUDY: The objective of this work was to evaluate the potential of three Amaryllidaceae alkaloids against four cancer cell lines. MATERIAL AND METHODS: The alkaloids lycorine, 1-O-acetylcaranine, and montanine were evaluated in vitro against colon adenocarcinoma cell line (HCT-116) and breast carcinoma cell lines (MCF-7, MDAMB231, and Hs578T). Computational experiments (target prediction and molecular docking) were conducted to gain a deeper comprehension of possible interactions between these alkaloids and potential targets associated with these tumor cells. RESULTS: Montanine presented the best results against HCT-116, MDAMB231, and Hs578T cell lines, while lycorine was the most active against MCF-7. In alignment with the target prediction outcomes and existing literature, four potential targets were chosen for the molecular docking analysis: CDK8, EGFR, ER-alpha, and dCK. The docking scores revealed two potential targets for the alkaloids with scores similar to co-crystallized inhibitors and substrates: CDK8 and dCK. A visual analysis of the optimal docked configurations indicates that the alkaloids may interact with some key residues in contrast to the other docked compounds. This observation implies their potential to bind effectively to both targets. CONCLUSIONS: In vitro and in silico results corroborate with data literature suggesting the Amaryllidaceae alkaloids as interesting molecules with antitumoral properties, especially montanine, which showed the best in vitro results against colorectal and breast carcinoma. More studies are necessary to confirm the targets and pharmaceutical potential of montanine against these cancer cell lines.


Assuntos
Alcaloides de Amaryllidaceae , Antineoplásicos Fitogênicos , Simulação de Acoplamento Molecular , Humanos , Alcaloides de Amaryllidaceae/farmacologia , Alcaloides de Amaryllidaceae/química , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Linhagem Celular Tumoral , Células MCF-7 , Amaryllidaceae/química , Células HCT116 , Simulação por Computador , Fenantridinas/farmacologia , Fenantridinas/química , Isoquinolinas
2.
Phytomedicine ; 128: 155464, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38484625

RESUMO

BACKGROUND: Ang II induces hypertensive heart failure (HF) via hemodynamic and non-hemodynamic actions. Lycorine (LYC) is an alkaloid derived from Lycoris bulbs, and it possesses anti-cardiovascular disease-related activities. Herein, we explored the potential LYC-mediated regulation of Ang II-induced HF. METHODS: Over 4 weeks, we established a hypertensive HF mouse model by infusing Ang II into C57BL/6 mice using a micro-osmotic pump. For the final two weeks, mice were administered LYC via intraperitoneal injection. The LYC signaling network was then deduced using RNA sequencing. RESULTS: LYC administration strongly suppressed hypertrophy, myocardial fibrosis, and cardiac inflammation. As a result, it minimized heart dysfunction while causing no changes in blood pressure. The Nuclear Factor kappa B (NF-κB) network/phosphoinositol-3-kinase (PI3K)-protein kinase B (AKT) was found to be a major modulator of LYC-based cardioprotection using RNA sequencing study. We further confirmed that in cultured cardiomyocytes and mouse hearts, LYC reduced the inflammatory response and downregulated the Ang II-induced PI3K-AKT/NF-κB network. Moreover, PI3K-AKT or NF-κB axis depletion in cardiomyocytes completely abrogated the anti-inflammatory activities of LYC. CONCLUSION: Herein, we demonstrated that LYC safeguarded hearts in Ang II -stimulated mice by suppressing the PI3K-AKT/NF-κB-induced inflammatory responses. Given the evidence mentioned above, LYC is a robust therapeutic agent for hypertensive HF.


Assuntos
Alcaloides de Amaryllidaceae , Angiotensina II , Camundongos Endogâmicos C57BL , NF-kappa B , Fenantridinas , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Animais , Alcaloides de Amaryllidaceae/farmacologia , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fenantridinas/farmacologia , Masculino , Transdução de Sinais/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Camundongos , Insuficiência Cardíaca/tratamento farmacológico , Remodelação Ventricular/efeitos dos fármacos , Inflamação/tratamento farmacológico , Miócitos Cardíacos/efeitos dos fármacos , Hipertensão/tratamento farmacológico , Hipertensão/induzido quimicamente , Modelos Animais de Doenças , Lycoris/química , Miocárdio
3.
Phytomedicine ; 104: 154266, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35752077

RESUMO

BACKGROUND: Multiorgan dysfunction, especially sepsis-related multiorgan damage, remains a major cause of high mortality in the late stages of infection and a great clinical challenge. In recent years, natural drugs have received widespread attention because of their low cost, wide sources, high efficacy, low toxicity, and limited side effects. Lycorine, a natural compound extracted from Amaryllidaceae, exhibits multiple pharmacological activities, including in the regulation of autophagy and the induction of cancer cell apoptosis, and has anti-inflammatory, antifungal, antiviral, antimalarial, and antitumor activities. However, studies on lycorine have mainly focused on its antitumor properties, and research on its use for organ protection, especially in sepsis-related organ injury, is relatively limited. PURPOSE: To review and discuss the effects and mechanisms of lycorine in the treatment of multi-organ dysfunction, especially sepsis. METHODS: Literature searches in electronic databases, such as Web of Science, Science Direct, PubMed, Google Scholar, and Scopus, were performed using 'Lycorine', 'Amaryllidaceae', 'Pharmacology', 'Pharmacokinetics', 'Anti-inflammation', 'Autophagy', 'Apoptosis', 'Anti-microbial and anti-parasitic', 'Antitumor', 'Organ protection', and 'Sepsis' as keywords, the correlated literature was extracted and conducted from the databases mentioned above. RESULTS: By summarizing the progress made in existing research, we found that the general effects of lycorine involve the regulation of autophagy and the induction of cancer cell apoptosis, and anti-inflammatory, antifungal, antiviral, antimalarial, and antitumor effects; through these pathways, the compound can ameliorate organ damage. In addition, lycorine was found to have an important effect on organ damage in sepsis. CONCLUSION: Lycorine is a promising natural organ protective agent. This review will provide a new theoretical basis for the treatment of organ protection, especially in sepsis.


Assuntos
Alcaloides de Amaryllidaceae , Amaryllidaceae , Antimaláricos , Alcaloides de Amaryllidaceae/farmacologia , Antifúngicos/farmacologia , Antimaláricos/farmacologia , Antivirais/farmacologia , Apoptose , Fenantridinas/farmacologia
4.
J Nanobiotechnology ; 19(1): 221, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34315494

RESUMO

BACKGROUND: Despite advances of surgery and neoadjuvant chemotherapy during the past few decades, the therapeutic efficacy of current therapeutic protocol for osteosarcoma (OS) is still seriously compromised by multi-drug resistance and severe side effects. Amplification of intracellular oxidative stress is considered as an effective strategy to induce cancer cell death. The purpose of this study was to develop a novel strategy that can amplify the intracellular oxidative stress for synergistic cascade cancer therapy. METHODS AND RESULTS: A novel nanocomposite, composed of folic acid (FA) modified mesoporous silica-coated gold nanostar (GNS@MSNs-FA) and traditional Chinese medicine lycorine (Ly), was rationally designed and developed. Under near-infrared (NIR) irradiation, the obtained GNS@MSNs-FA/Ly could promote a high level of ROS production via inducing mitochondrial dysfunction and potent endoplasmic reticulum (ER) stress. Moreover, glutathione (GSH) depletion during ER stress could reduce ROS scavenging and further enable efficient amplification of intracellular oxidative stress. Both in vitro and in vivo studies demonstrated that GNS@MSNs-FA/Ly coupled with NIR irradiation exhibited excellent antitumor efficacy without noticeable toxicity in MNNG/HOS tumor-bearing mice. CONCLUSION: All these results demonstrated that GNS@MSNs-FA/Ly coupled with NIR irradiation could dramatically amplify the intra-tumoral oxidative stress, exhibiting excellent antitumor ability without obvious systemic toxicity. Taken together, this promising strategy provides a new avenue for the effective cancer synergetic therapy and future clinical translation.


Assuntos
Alcaloides de Amaryllidaceae/farmacologia , Ouro/química , Nanocompostos/química , Neoplasias/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Fenantridinas/farmacologia , Animais , Materiais Biocompatíveis , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Estresse do Retículo Endoplasmático , Ácido Fólico , Humanos , Camundongos , Microscopia de Fluorescência , Mitocôndrias , Nanocompostos/uso terapêutico , Neoplasias/patologia , Osteossarcoma , Espécies Reativas de Oxigênio , Dióxido de Silício
5.
Phytomedicine ; 87: 153578, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34038839

RESUMO

BACKGROUND: Parkinson's disease (PD) is one of the most common neurodegenerative motor disorders, and is characterized by the presence of Lewy bodies containing misfolded α-synuclein (α-syn) and by selective degeneration of midbrain dopamine neurons. Studies have shown that upregulation of ubiquitin-proteasome system (UPS) activity promotes the clearance of aggregation-prone proteins such as α-syn and Tau, so as to alleviate the neuropathology of neurodegenerative diseases. PURPOSE: To identify and investigate lycorine as a UPS enhancer able to decrease α-syn in transgenic PD models. METHODS: Dot blot was used to screen α-syn-lowering compounds in an inducible α-syn overexpression cell model. Inducible wild-type (WT) and mutant α-syn-overexpressing PC12 cells, WT α-syn-overexpressing N2a cells and primary cultured neurons from A53T transgenic mice were used to evaluate the effects of lycorine on α-syn degradation in vitro. Heterozygous A53T transgenic mice were used to evaluate the effects of lycorine on α-syn degradation in vivo. mCherry-GFP-LC3 reporter was used to detect autophagy-dependent degradation. Ub-R-GFP and Ub-G76V-GFP reporters were used to detect UPS-dependent degradation. Proteasome activity was detected by fluorogenic substrate Suc-Leu-Leu-Val-Tyr-AMC (Suc-LLVY-AMC). RESULTS: Lycorine significantly promoted clearance of over-expressed WT and mutant α-syn in neuronal cell lines and primary cultured neurons. More importantly, 15 days' intraperitoneal administration of lycorine effectively promoted the degradation of α-syn in the brains of A53T transgenic mice. Mechanistically, lycorine accelerated α-syn degradation by activating cAMP-dependent protein kinase (PKA) to promote proteasome activity. CONCLUSION: Lycorine is a novel α-syn-lowering compound that works through PKA-mediated UPS activation. This ability to lower α-syn implies that lycorine has the potential to be developed as a pharmaceutical for the treatment of neurodegenerative diseases, such as PD, associated with UPS impairment and protein aggregations.


Assuntos
Alcaloides de Amaryllidaceae/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Doença de Parkinson/tratamento farmacológico , Fenantridinas/farmacologia , alfa-Sinucleína/metabolismo , Animais , Autofagia/efeitos dos fármacos , Autofagia/fisiologia , AMP Cíclico/metabolismo , Modelos Animais de Doenças , Humanos , Masculino , Camundongos Transgênicos , Fármacos Neuroprotetores/farmacologia , Células PC12 , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Ratos , Ubiquitina/metabolismo , Regulação para Cima/efeitos dos fármacos , alfa-Sinucleína/genética
6.
Phytomedicine ; 85: 153540, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33773188

RESUMO

BACKGROUND: Neuroinflammation is defined as innate immune system activation in the central nervous system, and is a complex response involved in removing pathogens, toxic components, and dead cells by activating microglial cells. However, over-activated microglia have been implicated in the pathogenesis of neurodegenerative diseases, because they release large amounts of neurotoxic factors. Thus, inhibiting microglial activation may represent an attractive approach for preventing neuroinflammatory disorders. The objective of this study was to investigate the effect of narciclasine (NA) on lipopolysaccharide (LPS)-induced neuroinflammation by evaluating related markers and neurotoxic factors. METHODS: BV-2 cells were pre-incubated with NA at 0.1, 0.2, and 0.3 µM for 1h, and then co-treated with LPS for 12 h. Cellular medium and lysates were measured using a nitric oxide assay, enzyme-link immunosorbent assay (ELISA), western blotting, kinase activity assay, luciferase assay, and immunofluorescence assay. C57BL/6N mice were orally administered NA and intraperitoneally injected with LPS, and the cerebral cortex was examined using western blotting and immunofluorescence assays. RESULTS: NA showed novel pharmacological activity, inhibiting pro-inflammatory factors, including TNF-α, IL-6, IL-18, NO, and PGE2, but increasing the anti-inflammatory cytokines IL-10 and TGF-ß1 in LPS-induced microglial cells. Moreover, NA also attenuated the LPS-induced mRNA and proteins of iNOS and COX-2. The mechanistic study indicated that NA attenuates the secretion of pro-inflammatory factor by down-regulating the Akt/IKK/NF-κB and JNK signaling pathways, and directly inhibits the catalytic activity of IKKα/ß. Furthermore, we found that NA also reduced the expression of the microglial markers Iba-1, COX-2, and TNF-α in the mouse brain. CONCLUSION: NA inhibits the over-expression of pro-inflammatory factors but it promotes anti-inflammatory cytokines by down-regulating the Akt/IKK/NF-κB and JNK signaling pathways in experimental models. Thus, NA may be a potential candidate for relieving neuroinflammation.


Assuntos
Alcaloides de Amaryllidaceae/farmacologia , Anti-Inflamatórios/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Microglia/efeitos dos fármacos , Fenantridinas/farmacologia , Animais , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Inflamação , Lipopolissacarídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Transcrição RelA/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
7.
Phytomedicine ; 85: 153530, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33761445

RESUMO

BACKGROUND: Colorectal cancer (CRC) is one of the most common malignancies worldwide. Metastasis is the major cause of death in patients with CRC. Lycorine, the phenanthridine alkaloid most commonly found in spp of the Amaryllidaceae family, has shown promising anticancer activities with minor side effects. However, the effects and the detailed mechanism of lycorine against metastasis of CRC remains unclear. STUDY DESIGN/METHODS: The purpose of this study was to investigate the effects of lycorine on CRC and characterize the molecular mechanisms observed in lycorine-treated CRC cells using RNA-sequencing. MTT assay, colony formation assay, acridine orange/ethidium bromide (AO/EB) staining and Annexin V-FITC/Propidium iodide (PI) staining were conducted to examine the effects of lycorine on cell proliferation and apoptosis in CRC cells. RNA sequencing, real-time PCR assays and western blot were performed. Migration and invasion abilities of lycorine-treated CRC cells were investigated by wound healing and transwell invasion assays. The mouse CRC lung metastasis model was established and was used to detect the effect of lycorine on CRC in vivo. RESULTS: Our results demonstrated that lycorine inhibited the proliferation and colony formation of CRC cells in a concentration-dependent manner. AO/EB staining and Annexin V-FITC/PI staining showed that lycorine induced apoptosis in a concentration-dependent manner. Lycorine also reduced lung metastasis of CRC in vivo. Moreover, transcriptomic analysis suggested that lycorine regulated the expression of 3556 genes. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway was implicated according to the differentially expressed genes (DEGs), and multiple pathways including those of mitogen-activated protein kinase (MAPK), relaxin, Ras, phosphatidylinositol 3­kinase (PI3K)-protein kinase B (Akt) and Wnt/ß-catenin were selected by functional enrichment analyses. Furthermore, based on transcriptomic analysis, we found that the tumor necrosis factor (TNF) pathway and endoplasmic reticulum stress were responsible for lycorine-induced apoptosis. CONCLUSIONS: These results obtained in this study demonstrated that lycorine has the potential to suppress CRC in vitro and in vivo through the lycorine-regulated multiple signaling pathways.


Assuntos
Alcaloides de Amaryllidaceae/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Fenantridinas/farmacologia , RNA-Seq , Transdução de Sinais/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/patologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Metástase Neoplásica , Fosfatidilinositol 3-Quinases/metabolismo
8.
Aging Cell ; 20(2): e13307, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33455051

RESUMO

Lycorine, a natural compound isolated from the traditional Chinese medicinal herb Lycoris radiata, exhibits multiple pharmacological effects, such as anti-inflammatory, antiviral, and anticancer effects. Accumulating evidence also indicates that lycorine might hold the potential to treat age-associated Alzheimer's disease. However, whether lycorine is involved in delaying the onset of cellular senescence and its underlying mechanisms has not been determined. Here, we demonstrate that the salt of lycorine, lycorine hydrochloride, significantly suppressed stress-induced premature cellular senescence (SIPS) by ~2-fold, as determined by senescence-associated beta-galactosidase (SA-ß-gal) staining and the expression of p16 and p21. In addition, pretreating cells with lycorine hydrochloride significantly inhibited the expression of CXCL1 and IL1α, two factors of the senescence-associated secreted phenotype (SASP) in SIPS cells. Further experiments revealed that lycorine hydrochloride promoted both the homologous recombination (HR) and nonhomologous end joining (NHEJ) pathways of DNA double-strand break (DSB) repair. Mechanistic studies suggested that lycorine hydrochloride treatment promoted the transcription of SIRT1 and SIRT6, critical longevity genes positively regulating both HR and NHEJ repair pathways, thereby stimulating DSB repair and stabilizing genomes. Inhibiting SIRT1 enzymatic activity abrogated the protective effect of lycorine hydrochloride on delaying the onset of SIPS, repairing DSBs, and restoring genome integrity. In summary, our work indicates that lycorine hydrochloride might hold therapeutic potential for treating age-associated diseases or promoting healthy aging by stabilizing genomes.


Assuntos
Alcaloides de Amaryllidaceae/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Fenantridinas/farmacologia , Células Cultivadas , Senescência Celular/efeitos dos fármacos , Senescência Celular/genética , Humanos , Lycoris/química , Medicina Tradicional Chinesa , Estresse Oxidativo/efeitos dos fármacos
9.
Phytochem Anal ; 32(3): 423-432, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32898923

RESUMO

INTRODUCTION: Macleaya cordata (Willd) R. Br. (Papaveraceae family) is a well-known traditional Chinese medicine used to treat muscle pain, inflamed wounds, and bee bites. Benzo[c]phenanthridine alkaloids are the main active ingredients in M. cordata. In this work, sanguinarine and chelerythrine were efficiently extracted and purified by ultrahigh-pressure extraction (UHPE) technique and pH-zone-refining counter-current chromatography (PZRCCC) from M. cordata. OBJECTIVE: To develop an efficient UHPE method followed by an efficient separation technique using PZRCCC for benzo[c]phenanthridine alkaloids from the study plant species, and to evaluate the study samples for anti-breast cancer activity. METHODOLOGY: The optimal extraction conditions were optimised as extraction pressure 200 MPa, extraction solvent 95% ethanol, solid-liquid ratio 1:30 (g/mL) and extraction time 2 min. A two-phase n-hexane/ethyl acetate/i-propanol/water (1:3:1.5:4.5, v/v) solvent system was optimised with 10 mmol triethylamine in the upper phase and 10 mmol trifluoroacetic acid in lower phase in PZRCCC. The sample loading was optimised as 2.50 g. Moreover, the samples were evaluated for anti-breast cancer activity later on. RESULTS: The 2.50 g sample loading yielded 0.45 g of sanguinarine and 0.59 g chelerythrine in one-step separation using PZRCCC. The anti-breast cancer activities of sanguinarine and chelerythrine were found stronger than positive control (vincristine 5.04 µg/mL) with half-maximal inhibitory concentration values of 0.96 and 3.00 µg/mL, respectively. CONCLUSION: This study showed that the established methods were efficient in extraction (UHPE) and separation (PZRCCC) of the sanguinarine and chelerythrine from M. cordata.


Assuntos
Alcaloides , Neoplasias , Papaveraceae , Alcaloides/farmacologia , Animais , Cromatografia Líquida de Alta Pressão , Distribuição Contracorrente , Concentração de Íons de Hidrogênio , Fenantridinas/farmacologia
10.
Phytomedicine ; 86: 153440, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33376043

RESUMO

BACKGROUND: Highly effective novel treatments need to be developed to suppress emerging coronavirus (CoV) infections such as COVID-19. The RNA dependent RNA polymerase (RdRp) among the viral proteins is known as an effective antiviral target. Lycorine is a phenanthridine Amaryllidaceae alkaloid isolated from the bulbs of Lycoris radiata (L'Hér.) Herb. and has various pharmacological bioactivities including antiviral function. PURPOSE: We investigated the direct-inhibiting action of lycorine on CoV's RdRp, as potential treatment for emerging CoV infections. METHODS: We examined the inhibitory effect of lycorine on MERS-CoV, SARS-CoV, and SARS-CoV-2 infections, and then quantitatively measured the inhibitory effect of lycorine on MERS-CoV RdRp activity using a cell-based reporter assay. Finally, we performed the docking simulation with lycorine and SARS-CoV-2 RdRp. RESULTS: Lycorine efficiently inhibited these CoVs with IC50 values of 2.123 ± 0.053, 1.021 ± 0.025, and 0.878 ± 0.022 µM, respectively, comparable with anti-CoV effects of remdesivir. Lycorine directly inhibited MERS-CoV RdRp activity with an IC50 of 1.406 ± 0.260 µM, compared with remdesivir's IC50 value of 6.335 ± 0.731 µM. In addition, docking simulation showed that lycorine interacts with SARS-CoV-2 RdRp at the Asp623, Asn691, and Ser759 residues through hydrogen bonding, at which the binding affinities of lycorine (-6.2 kcal/mol) were higher than those of remdesivir (-4.7 kcal/mol). CONCLUSIONS: Lycorine is a potent non-nucleoside direct-acting antiviral against emerging coronavirus infections and acts by inhibiting viral RdRp activity; therefore, lycorine may be a candidate against the current COVID-19 pandemic.


Assuntos
Alcaloides de Amaryllidaceae/farmacologia , Antivirais/farmacologia , Fenantridinas/farmacologia , RNA Polimerase Dependente de RNA/antagonistas & inibidores , SARS-CoV-2/efeitos dos fármacos , Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Animais , Chlorocebus aethiops , Ligação de Hidrogênio , Coronavírus da Síndrome Respiratória do Oriente Médio/efeitos dos fármacos , Simulação de Acoplamento Molecular , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/efeitos dos fármacos , Células Vero , Proteínas Virais
11.
Parasitol Res ; 119(8): 2587-2595, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32524267

RESUMO

Lycorine is an Amaryllidaceae alkaloid that presents anti-Trichomonas vaginalis activity. T. vaginalis causes trichomoniasis, the most common non-viral sexually transmitted infection. The modulation of T. vaginalis purinergic signaling through the ectonucleotidases, nucleoside triphosphate diphosphohydrolase (NTPDase), and ecto-5'-nucleotidase represents new targets for combating the parasite. With this knowledge, the aim of this study was to investigate whether NTPDase and ecto-5'-nucleotidase inhibition by lycorine could lead to extracellular ATP accumulation. Moreover, the lycorine effect on the reactive oxygen species (ROS) production by neutrophils and parasites was evaluated as well as the alkaloid toxicity. The metabolism of purines was assessed by HPLC. ROS production was measured by flow cytometry. Cytotoxicity against epithelial vaginal cells and fibroblasts was tested, as well as the hemolytic effect of lycorine and its in vivo toxicity in Galleria mellonella larvae. Our findings showed that lycorine caused ATP accumulation due to NTPDase inhibition. The alkaloid did not affect the ROS production by T. vaginalis; however, it increased ROS levels in neutrophils incubated with lycorine-treated trophozoites. Lycorine was cytotoxic against vaginal epithelial cells and fibroblasts; conversely, it was not hemolytic neither exhibited toxicity against the in vivo model of G. mellonella larvae. Overall, besides having anti-T. vaginalis activity, lycorine modulates ectonucleotidases and stimulates neutrophils to secrete ROS. This mechanism of action exerted by the alkaloid could enhance the susceptibility of T. vaginalis to host immune cell, contributing to protozoan clearance.


Assuntos
Alcaloides de Amaryllidaceae/farmacologia , Amaryllidaceae/química , Antiprotozoários/farmacologia , Neutrófilos/metabolismo , Nucleosídeo-Trifosfatase/antagonistas & inibidores , Fenantridinas/farmacologia , Extratos Vegetais/farmacologia , Proteínas de Protozoários/antagonistas & inibidores , Tricomoníase/metabolismo , Trichomonas vaginalis/enzimologia , 5'-Nucleotidase/antagonistas & inibidores , 5'-Nucleotidase/metabolismo , Humanos , Neutrófilos/efeitos dos fármacos , Nucleosídeo-Trifosfatase/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Tricomoníase/parasitologia , Trichomonas vaginalis/efeitos dos fármacos , Trichomonas vaginalis/crescimento & desenvolvimento , Trichomonas vaginalis/metabolismo , Trofozoítos/efeitos dos fármacos , Trofozoítos/enzimologia , Trofozoítos/crescimento & desenvolvimento , Trofozoítos/metabolismo
12.
Molecules ; 25(10)2020 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-32429491

RESUMO

Plants of the Amaryllidaceae family are promising therapeutic tools for human diseases and have been used as alternative medicines. The specific secondary metabolites of this plant family, called Amaryllidaceae alkaloids (AA), have attracted considerable attention due to their interesting pharmacological activities. One of them, galantamine, is already used in the therapy of Alzheimer's disease as a long acting, selective, reversible inhibitor of acetylcholinesterase. One group of AA is the montanine-type, such as montanine, pancracine and others, which share a 5,11-methanomorphanthridine core. So far, only 14 montanine-type alkaloids have been isolated. Compared with other structural-types of AA, montanine-type alkaloids are predominantly present in plants in low concentrations, but some of them display promising biological properties, especially in vitro cytotoxic activity against different cancerous cell lines. The present review aims to summarize comprehensively the research that has been published on the Amaryllidaceae alkaloids of montanine-type.


Assuntos
Alcaloides de Amaryllidaceae/química , Amaryllidaceae/química , Antineoplásicos Fitogênicos/química , Antiprotozoários/química , Inibidores da Colinesterase/química , Nootrópicos/química , Amaryllidaceae/metabolismo , Alcaloides de Amaryllidaceae/isolamento & purificação , Alcaloides de Amaryllidaceae/farmacologia , Antineoplásicos Fitogênicos/isolamento & purificação , Antineoplásicos Fitogênicos/farmacologia , Antiprotozoários/isolamento & purificação , Antiprotozoários/farmacologia , Linhagem Celular Tumoral , Inibidores da Colinesterase/isolamento & purificação , Inibidores da Colinesterase/farmacologia , Galantamina/química , Galantamina/isolamento & purificação , Galantamina/farmacologia , Compostos Heterocíclicos de 4 ou mais Anéis/química , Compostos Heterocíclicos de 4 ou mais Anéis/isolamento & purificação , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Humanos , Concentração Inibidora 50 , Isoquinolinas/química , Isoquinolinas/isolamento & purificação , Isoquinolinas/farmacologia , Nootrópicos/isolamento & purificação , Nootrópicos/farmacologia , Fenantridinas/química , Fenantridinas/isolamento & purificação , Fenantridinas/farmacologia , Extratos Vegetais/química , Metabolismo Secundário
13.
Sci Rep ; 10(1): 5712, 2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32235878

RESUMO

Primary effusion lymphoma (PEL) is a subtype of non-Hodgkin lymphoma associated with infection by Kaposi sarcoma-associated herpes virus (KSHV). PEL is an aggressive disease with extremely poor prognosis when treated with conventional chemotherapy. Narciclasine, a natural product present in Amaryllidaceae family of flowering plants including daffodils, belongs to a class of molecules termed 'isocarbostyril alkaloid'. We have found that narciclasine displays preferential cytotoxicity towards PEL at low nanomolar concentrations and is approximately 10 and 100-fold more potent than its structural analogs lycoricidine and lycorine, respectively. Narciclasine arrested cell-cycle progression at the G1 phase and induced apoptosis in PEL, which is accompanied by activation of caspase-3/7, cleavage of PARP and increase in the surface expression of Annexin-V. Although narciclasine treatment resulted in a marked decrease in the expression of MYC and its direct target genes,time-course experiments revealed that MYC is not a direct target of narciclasine. Narciclasine treatment neither induces the expression of KSHV-RTA/ORF50 nor the production of infectious KSHV virions in PEL. Finally, narciclasine provides dramatic survival advantages to mice in two distinct mouse xenograft models of PEL. In conclusion, our results suggest that narciclasine could be a promising agent for the treatment of PEL.


Assuntos
Alcaloides de Amaryllidaceae/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Linfoma de Efusão Primária/tratamento farmacológico , Fenantridinas/farmacologia , Extratos Vegetais/farmacologia , Alcaloides de Amaryllidaceae/uso terapêutico , Animais , Antineoplásicos/uso terapêutico , Peso Corporal/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Linfoma de Efusão Primária/patologia , Camundongos , Fenantridinas/uso terapêutico , Extratos Vegetais/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Nat Prod Res ; 34(2): 233-240, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30636443

RESUMO

A new narciclasine glycoside, narciclasine-4-O-ß-D-xylopyranoside (1) was characterised along with four known alkaloids pancratistatin (2), 1-O-(3-hydroxybutyryl) pancratistatin (3), vittatine (4), 9-O-demethylgalanthine (5) from Zephyranthes minuta. Their structures were established on the basis of spectroscopic data analysis. The in vitro cytotoxic study of extract, fractions and isolated compounds against two human cancer cell lines (KB and SiHa) indicated the potential activity of extract and n-butanol fraction due to presence of active alkaloids pancratistatin, 1-O-(3-hydroxybutyryl) pancratistatin, lycorine and haemanthamine.


Assuntos
Alcaloides de Amaryllidaceae/isolamento & purificação , Amaryllidaceae/química , Glicosídeos/isolamento & purificação , Fenantridinas/isolamento & purificação , Alcaloides/química , Alcaloides/farmacologia , Alcaloides de Amaryllidaceae/química , Alcaloides de Amaryllidaceae/farmacologia , Glicosídeos Cardíacos , Linhagem Celular Tumoral , Citotoxinas/isolamento & purificação , Citotoxinas/farmacologia , Glicosídeos/química , Humanos , Isoquinolinas/farmacologia , Fenantridinas/química , Fenantridinas/farmacologia , Extratos Vegetais/química
15.
Phytomedicine ; 73: 152753, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-30773353

RESUMO

BACKGROUND: Fungal pathogenesis continues to be a burden to healthcare structures in both developed and developing nations. The gradual and irreversible loss of efficacies of existing antifungal medicines as well as the emergence of drug-resistant strains have contributed largely to this scenario. There is therefore a pressing need for new drugs from diverse structural backgrounds with improved potencies and novel modes of action to fortify or replace contemporary antifungal schedules. AIM: Alkaloids of the plant family Amaryllidaceae exhibit good growth inhibitory activities against several fungal pathogens. This review focuses on the mechanistic aspects of these antifungal activities. It achieves this by highlighting the molecular targets as well as structural features of Amaryllidaceae constituents which serve to enhance such action. METHODS: During the information gathering stage extensive use was made of the three database platforms; Google Scholar, SciFinder and Scopus. In most instances articles were accessed directly from journals licensed to the University of KwaZulu-Natal. In the absence of such proprietary agreements the respective corresponding authors were approached directly for copies of papers. RESULTS: Although several classes of molecules from the Amaryllidaceae have been probed for their antifungal effects, it is the key constituents lycorine and narciclasine which have together afforded the most profound mechanistic insights. These may be summarized as follows: (i) effects on the fungal cell wall and cell membrane; (ii) effects on morphology such as budding and hyphal growth; (iii) effects on fungal organelles such as ribosomes; (iv) effects on macromolecules such as DNA, RNA and proteins and; (v) identification of the active sites for these constituents. CONCLUSION: The key feature in the antifungal effects of Amaryllidaceae alkaloids is the inhibition of protein synthesis. This involved the inhibition of peptide bond formation by binding to yeast ribosomes via the 60S subunit. Related effects involved the inhibition of both DNA and RNA synthesis. These adverse effects were reflected morphologically on both the fungal cell wall and cell membrane. Such observations should prove useful in the chemotherapeutic arena should efforts shift towards the development of a clinical candidate.


Assuntos
Amaryllidaceae/química , Antifúngicos/química , Antifúngicos/farmacologia , Alcaloides/química , Alcaloides/farmacologia , Alcaloides de Amaryllidaceae/farmacologia , Parede Celular/efeitos dos fármacos , Fenantridinas/farmacologia , Inibidores da Síntese de Proteínas/química , Inibidores da Síntese de Proteínas/farmacologia
16.
Fungal Genet Biol ; 134: 103280, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31622671

RESUMO

Proteinaceous infectious particles causing mammalian transmissible spongiform encephalopathies or prions are being extensively studied. However due to their hazardous nature, the initial screening of potential anti-prion drugs is often made in a yeast-based screening system utilizing a well-characterized [PSI+] prion (amyloid formed by the translation termination factor Sup35p). In the [PSI+] prion screening system (white/red colony assay), the prion phenotype yields white colonies while addition of an anti-prion drug will yield red colonies. However, this system has some limitations. It is difficult to quantify the effectiveness of the anti-prion compound, the diffusion of the studied compound may affect the result, and the deficiency of glutathione in cells may prevent the formation of red pigment in cured cells. Therefore, alternative yeast prion screening systems are still needed. This article aims to present an alternative yeast-based system to evaluate anti-prion activity of chemical compounds. The method that was used is based on an artificial [LEU2+] prion created by fusing Leu2p with the prion-forming domain of Sup35p in Saccharomyces cerevisiae. Phenotypic analysis and semi-denaturating detergent agarose gel electrophoresis (SDD-AGE) confirmed the presence of the artificial [LEU2+] prion in yeast cells. This screening system verified the anti-prion activity of 3 drugs that were found to have been active in the white/red colony assay, while one compound (6-chlorotacrine) that was active in the white/red colony assay was found to be inactive in the [LEU2+] system. This new system also appears to be more sensitive than the white/red colony assay.


Assuntos
3-Isopropilmalato Desidrogenase/genética , Avaliação Pré-Clínica de Medicamentos/métodos , Príons/efeitos dos fármacos , Príons/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Escherichia coli/genética , Guanabenzo/farmacologia , Fatores de Terminação de Peptídeos/genética , Fenantridinas/farmacologia , Fenótipo , Tacrina/análogos & derivados , Tacrina/síntese química , Tacrina/farmacologia
17.
J Nat Prod ; 82(5): 1372-1376, 2019 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-30933514

RESUMO

In this study, an extract from the bulbs of Cyrtanthus contractus showed strong anti-inflammatory activity in vitro. The extract was partially separated into 14 fractions and analyzed by ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry metabolomics, and the correlation coefficients were calculated between biological activities and metabolite levels. As a result, the top-scoring metabolite narciclasine (1) is proposed as the active principle of C. contractus. This was confirmed by comparing the biological effect of crude extract with that of an authentic standard.


Assuntos
Alcaloides de Amaryllidaceae/farmacologia , Amaryllidaceae/química , Anti-Inflamatórios não Esteroides/farmacologia , Metabolômica , Fenantridinas/farmacologia , Alcaloides de Amaryllidaceae/química , Anti-Inflamatórios não Esteroides/química , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Molécula 1 de Adesão Intercelular/efeitos dos fármacos , Molécula 1 de Adesão Intercelular/metabolismo , Espectrometria de Massas , Fenantridinas/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Raízes de Plantas/química
18.
J Virol ; 93(12)2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-30918074

RESUMO

Coronaviruses (CoVs) act as cross-species viruses and have the potential to spread rapidly into new host species and cause epidemic diseases. Despite the severe public health threat of severe acute respiratory syndrome coronavirus and Middle East respiratory syndrome CoV (MERS-CoV), there are currently no drugs available for their treatment; therefore, broad-spectrum inhibitors of emerging and endemic CoVs are urgently needed. To search for effective inhibitory agents, we performed high-throughput screening (HTS) of a 2,000-compound library of approved drugs and pharmacologically active compounds using the established genetically engineered human CoV OC43 (HCoV-OC43) strain expressing Renilla luciferase (rOC43-ns2Del-Rluc) and validated the inhibitors using multiple genetically distinct CoVs in vitro We screened 56 hits from the HTS data and validated 36 compounds in vitro using wild-type HCoV-OC43. Furthermore, we identified seven compounds (lycorine, emetine, monensin sodium, mycophenolate mofetil, mycophenolic acid, phenazopyridine, and pyrvinium pamoate) as broad-spectrum inhibitors according to their strong inhibition of replication by four CoVs in vitro at low-micromolar concentrations. Additionally, we found that emetine blocked MERS-CoV entry according to pseudovirus entry assays and that lycorine protected BALB/c mice against HCoV-OC43-induced lethality by decreasing viral load in the central nervous system. This represents the first demonstration of in vivo real-time bioluminescence imaging to monitor the effect of lycorine on the spread and distribution of HCoV-OC43 in a mouse model. These results offer critical information supporting the development of an effective therapeutic strategy against CoV infection.IMPORTANCE Currently, there is no approved therapy to treat coronavirus infection; therefore, broad-spectrum inhibitors of emerging and endemic CoVs are needed. Based on our high-throughput screening assay using a compound library, we identified seven compounds with broad-spectrum efficacy against the replication of four CoVs in vitro Additionally, one compound (lycorine) was found to protect BALB/c mice against HCoV-OC43-induced lethality by decreasing viral load in the central nervous system. This inhibitor might offer promising therapeutic possibilities for combatting novel CoV infections in the future.


Assuntos
Coronavirus Humano OC43/efeitos dos fármacos , Coronavirus/efeitos dos fármacos , Alcaloides de Amaryllidaceae/farmacologia , Animais , Antivirais/farmacologia , Linhagem Celular , Coronavirus/patogenicidade , Coronavirus Humano OC43/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Emetina/farmacologia , Ensaios de Triagem em Larga Escala/métodos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Coronavírus da Síndrome Respiratória do Oriente Médio/efeitos dos fármacos , Fenantridinas/farmacologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/efeitos dos fármacos
19.
Food Chem Toxicol ; 125: 605-613, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30738987

RESUMO

Lycoris radiata (L'Her.) Herb. (L. radiata) was traditionally used as a folk medicine in China for treatment of Alzheimer's disease. However, the specific component responsible for its considerable toxicity remained unclear thus restricting its clinical trials. Narciclasine (NCS) was isolated from L. radiata and treatment of NCS for 72 h exhibited significant antiproliferative effects against L02, Hep G2, HT-29 and RAW264.7 cells. However, what needs to be emphasized is that at safe working concentrations of 0.001-0.016 µM, administration of NCS for 24 h inhibited the mRNA expression of inducible nitric oxide synthase (iNOS), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-ɑ), interleukin-1beta (IL-1ß) and cyclooxygenase-2 (COX-2) in lipopolysaccharide (LPS)-induced macrophages thereby suppressing production of nitric oxide (NO), IL-6, TNF-ɑ and IL-1ß. NCS supplementation also inhibited nuclear factor-kappa B (NF-κB) activation by suppressing NF-κB P65 phosphorylation and nuclear translocation, IκBɑ degradation and phosphorylation, and IκKɑ/ß phosphorylation. The phosphorylation of c-Jun N-terminal kinase (JNK) and P38, and expression of COX-2 was also attenuated by NCS. These results suggested that NCS might exert anti-inflammatory effects through inhibiting NF-κB and mitogen-activated protein kinase (MAPK) pathways even at very low doses.


Assuntos
Alcaloides de Amaryllidaceae/farmacologia , Anti-Inflamatórios/farmacologia , Lycoris/química , Macrófagos/efeitos dos fármacos , Fenantridinas/farmacologia , Alcaloides de Amaryllidaceae/isolamento & purificação , Alcaloides de Amaryllidaceae/toxicidade , Animais , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/toxicidade , Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia , Antineoplásicos/toxicidade , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ciclo-Oxigenase 2/metabolismo , Citocinas/genética , Citocinas/metabolismo , Expressão Gênica/efeitos dos fármacos , Humanos , Inflamação/induzido quimicamente , Lipopolissacarídeos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , NF-kappa B/metabolismo , Fenantridinas/isolamento & purificação , Fenantridinas/toxicidade , Componentes Aéreos da Planta/química , Células RAW 264.7 , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA