Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 575
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Curr Top Dev Biol ; 156: 201-243, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38556424

RESUMO

Metabolism is the fundamental process that sustains life. The heart, in particular, is an organ of high energy demand, and its energy substrates have been studied for more than a century. In recent years, there has been a growing interest in understanding the role of metabolism in the early differentiation of pluripotent stem cells and in cancer research. Studies have revealed that metabolic intermediates from glycolysis and the tricarboxylic acid cycle act as co-factors for intracellular signal transduction, playing crucial roles in regulating cell behaviors. Mitochondria, as the central hub of metabolism, are also under intensive investigation regarding the regulation of their dynamics. The metabolic environment of the fetus is intricately linked to the maternal metabolic status, and the impact of the mother's nutrition and metabolic health on fetal development is significant. For instance, it is well known that maternal diabetes increases the risk of cardiac and nervous system malformations in the fetus. Another notable example is the decrease in the risk of neural tube defects when pregnant women are supplemented with folic acid. These examples highlight the profound influence of the maternal metabolic environment on the fetal organ development program. Therefore, gaining insights into the metabolic environment within developing fetal organs is critical for deepening our understanding of normal organ development. This review aims to summarize recent findings that build upon the historical recognition of the environmental and metabolic factors involved in the developing embryo.


Assuntos
Coração , Mitocôndrias , Gravidez , Feminino , Humanos , Mitocôndrias/metabolismo , Desenvolvimento Fetal , Feto/metabolismo , Embrião de Mamíferos/metabolismo , Metabolismo Energético
2.
Birth Defects Res ; 115(18): 1685-1692, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37665042

RESUMO

BACKGROUND: Bladder dysfunction has been linked to the progression of renal failure in children with neurogenic bladder (NB) dysfunction. The purpose of this study was to determine whether bladder injuries in fetal rats with myelomeningocele (MMC) may be treated with folic acid. METHODS: Pregnant Sprague-Dawley rats were randomly divided into three groups. On the 10th day of gestation, pregnant rats were intragastrically injected with all-trans retinoic acid (ATRA) (60 mg/kg) to induce MMC fetal rats. The same amount of olive oil was put into the control group to create normal fetal rats. The rats in the rescue group were given folic acid (40 mg/kg) by gavage 0.5 and 12 hr after ATRA therapy. Bladders were obtained via cesarean section on embryonic day E20.5 and examined for MMC. The histology of the fetuses was examined using hematoxylin and eosin staining, and immunohistochemistry (IHC) was utilized to determine the expression of α-smooth muscle actin (α-SMA) and neuron-specific nuclear-binding protein (NeuN). Furthermore, the levels of neuromuscular development-related and apoptotic proteins were determined by western blotting. RESULTS: The incidence of MMC in the model group was 60.6% (20/33) while it was much lower in the rescue group (21.4%). In comparison to the model group, the weight and crown-rump length of the fetal rats in the rescue group were significantly improved. IHC revealed that there was no significant difference in the expression of α-SMA and NeuN between the control and ATRA groups, while the expression levels decreased significantly in the MMC group. Western blot analysis showed that there was no significant difference between the model and ATRA groups, but the expression of the α-SMA protein and the ß3-tubulin was much lower in the MMC group than in the control group. After the administration of folic acid, the α-SMA and ß3-tubulin proteins considerably increased in the folic acid-rescued MMC group and folic acid-rescued ATRA group. Meanwhile, in the control group, the expression of cleaved caspase-3 in the bladder tissue was significantly higher, and the expression of poly (ADP-ribose) polymerase (PARP) protein was significantly lower compared to the control group. Folic acid therapy reduced cleaved caspase-3 expression while increasing PARP expression in comparison to the MMC group. CONCLUSIONS: NB in MMC fetal rats is associated with the reduction of bladder nerve and smooth muscle-related protein synthesis. However, folic acid therapy can help improve these functional deficiencies. Folic acid also exhibits strong anti-apoptotic properties against NB in MMC fetal rats.


Assuntos
Meningomielocele , Humanos , Criança , Ratos , Animais , Gravidez , Feminino , Meningomielocele/metabolismo , Ratos Sprague-Dawley , Caspase 3 , Bexiga Urinária/inervação , Bexiga Urinária/patologia , Tubulina (Proteína)/metabolismo , Cesárea , Inibidores de Poli(ADP-Ribose) Polimerases , Feto/metabolismo , Tretinoína/farmacologia , Ácido Fólico/farmacologia , Suplementos Nutricionais
3.
Am J Physiol Regul Integr Comp Physiol ; 325(5): R523-R533, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37642284

RESUMO

Maternal diet during pregnancy is associated with offspring metabolic risk trajectory in humans and animal models, but the prenatal origins of these effects are less clear. We examined the effects of a high-fat diet (HFD) during pregnancy on fetal skeletal muscle metabolism and metabolic risk parameters using an ovine model. White-faced ewes were fed a standardized diet containing 5% fat wt/wt (CON), or the same diet supplemented with 6% rumen-protected fats (11% total fat wt/wt; HFD) beginning 2 wk before mating until midgestation (GD75). Maternal HFD increased maternal weight gain, fetal body weight, and low-density lipoprotein levels in the uterine and umbilical circulation but had no significant effects on circulating glucose, triglycerides, or placental fatty acid transporters. Fatty acid (palmitoylcarnitine) oxidation capacity of permeabilized hindlimb muscle fibers was >50% higher in fetuses from HFD pregnancies, whereas pyruvate and maximal (mixed substrate) oxidation capacities were similar to CON. This corresponded to greater triacylglycerol content and protein expression of fatty acid transport and oxidation enzymes in fetal muscle but no significant effect on respiratory chain complexes or pyruvate dehydrogenase expression. However, serine-308 phosphorylation of insulin receptor substrate-1 was greater in fetal muscle from HFD pregnancies along with c-jun-NH2 terminal kinase activation, consistent with prenatal inhibition of skeletal muscle insulin signaling. These results indicate that maternal high-fat feeding shifts fetal skeletal muscle metabolism toward a greater capacity for fatty acid over glucose utilization and favors prenatal development of insulin resistance, which may predispose offspring to metabolic syndrome later in life.NEW & NOTEWORTHY Maternal diet during pregnancy is associated with offspring metabolic risk trajectory in humans and animal models, but the prenatal origins of these effects are less clear. This study examined the effects of a high-fat diet during pregnancy on metabolic risk parameters using a new sheep model. Results align with findings previously reported in nonhuman primates, demonstrating changes in fetal skeletal muscle metabolism that may predispose offspring to metabolic syndrome later in life.


Assuntos
Resistência à Insulina , Síndrome Metabólica , Animais , Feminino , Gravidez , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos/metabolismo , Feto/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Resistência à Insulina/fisiologia , Síndrome Metabólica/metabolismo , Músculo Esquelético/metabolismo , Placenta/metabolismo , Piruvatos/metabolismo , Ovinos
4.
J Neuroendocrinol ; 35(9): e13320, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37497857

RESUMO

Obesity is a key medical challenge of our time. The increasing number of children born to overweight or obese women is alarming. During pregnancy, the circulation of the mother and her fetus interact to maintain the uninterrupted availability of essential nutrients for fetal organ development. In doing so, the mother's dietary preference determines the amount and composition of nutrients reaching the fetus. In particular, the availability of polyunsaturated fatty acids (PUFAs), chiefly their ω-3 and ω-6 subclasses, can change when pregnant women choose a specific diet. Here, we provide a succinct overview of PUFA biochemistry, including exchange routes between ω-3 and ω-6 PUFAs, the phenotypes, and probable neurodevelopmental disease associations of offspring born to mothers consuming specific PUFAs, and their mechanistic study in experimental models to typify signaling pathways, transcriptional, and epigenetic mechanisms by which PUFAs can imprint long-lasting modifications to brain structure and function. We emphasize that the ratio, rather than the amount of individual ω-3 or ω-6 PUFAs, might underpin physiologically correct cellular differentiation programs, be these for neurons or glia, during pregnancy. Thereupon, the PUFA-driven programming of the brain is contextualized for childhood obesity, metabolic, and endocrine illnesses.


Assuntos
Ácidos Graxos Ômega-3 , Obesidade Infantil , Humanos , Criança , Feminino , Gravidez , Ácidos Graxos Ômega-6/metabolismo , Ácidos Graxos Ômega-6/farmacologia , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Insaturados/farmacologia , Encéfalo/metabolismo , Feto/metabolismo
5.
Biochem Pharmacol ; 210: 115490, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36893816

RESUMO

Maternal exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) causes developmental and reproductive disorders in pups due to the attenuated luteinizing hormone (LH) production during the perinatal stage; however, the administration of α-lipoic acid (LA) to TCDD-exposed pregnant rats reversed the attenuated LH production. Therefore, reproductive disorders in pups are expected to be ameliorated with LA supplementation. To address this issue, pregnant rats orally received low dose TCDD at gestational day 15 (GD15) and proceeded to parturition. The control received a corn oil vehicle. To examine the preventive effects of LA, supplementation with LA was provided until postnatal day 21. In this study, we demonstrated that maternal administration of LA restored the sexually dimorphic behavior of male and female offspring. TCDD-induced LA insufficiency is likely a direct cause of TCDD reproductive toxicity. In the analysis to clarify the mechanism of the decrease in LA, we found evidence suggesting that TCDD inhibits the synthesis and increases the utilization of S-adenosylmethionine (SAM), a cofactor for LA synthesis, resulting in a decrease in the SAM level. Furthermore, folate metabolism, which is involved in SAM synthesis, is disrupted by TCDD, which may adversely affect infant growth. Maternal supplementation of LA restored SAM to its original level in the fetal hypothalamus; in turn, SAM ameliorated abnormal folate consumption and suppressed aryl hydrocarbon receptor activation induced by TCDD. The study demonstrates that the application of LA could prevent and recover next-generation dioxin reproductive toxicity, which provides the potential to establish effective protective measures against dioxin toxicity.


Assuntos
Ácido Fólico , Exposição Materna , Dibenzodioxinas Policloradas , Efeitos Tardios da Exposição Pré-Natal , Caracteres Sexuais , Desenvolvimento Sexual , Ácido Tióctico , Animais , Feminino , Masculino , Gravidez , Ratos , Feto/efeitos dos fármacos , Feto/metabolismo , Ácido Fólico/metabolismo , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Exposição Materna/efeitos adversos , Dibenzodioxinas Policloradas/toxicidade , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/prevenção & controle , S-Adenosilmetionina/metabolismo , Desenvolvimento Sexual/efeitos dos fármacos , Ácido Tióctico/administração & dosagem , Ácido Tióctico/farmacologia , Ácido Tióctico/uso terapêutico , Reprodução/efeitos dos fármacos
6.
Genes (Basel) ; 14(1)2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36672920

RESUMO

Conotruncal heart defects (CTDs) are heart malformations that affect the cardiac outflow tract and typically cause significant morbidity and mortality. Evidence from epidemiological studies suggests that maternal folate intake is associated with a reduced risk of heart defects, including CTD. However, it is unclear if folate-related gene variants and maternal folate intake have an interactive effect on the risk of CTDs. In this study, we performed targeted sequencing of folate-related genes on DNA from 436 case families with CTDs who are enrolled in the National Birth Defects Prevention Study and then tested for common and rare variants associated with CTD. We identified risk alleles in maternal MTHFS (ORmeta = 1.34; 95% CI 1.07 to 1.67), maternal NOS2 (ORmeta = 1.34; 95% CI 1.05 to 1.72), fetal MTHFS (ORmeta = 1.35; 95% CI 1.09 to 1.66), and fetal TCN2 (ORmeta = 1.38; 95% CI 1.12 to 1.70) that are associated with an increased risk of CTD among cases without folic acid supplementation. We detected putative de novo mutations in genes from the folate, homocysteine, and transsulfuration pathways and identified a significant association between rare variants in MGST1 and CTD risk. Results suggest that periconceptional folic acid supplementation is associated with decreased risk of CTD among individuals with susceptible genotypes.


Assuntos
Ácido Fólico , Cardiopatias Congênitas , Humanos , Ácido Fólico/metabolismo , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/metabolismo , Genótipo , Feto/metabolismo , Coração
7.
Placenta ; 131: 13-22, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36469958

RESUMO

INTRODUCTION: Recent research indicates an important role in the placental fetal brain axis, with a paucity of information reported in large animals. Melatonin supplementation has been investigated as a potential therapeutic to negate fetal growth restriction. We hypothesized that maternal nutrient restriction and melatonin supplementation would alter neurotransmitter pathways in fetal blood, cotyledonary and hypothalamus tissue. METHODS: On day 160 of gestation, Brangus heifers (n = 29 in fall study; n = 25 in summer study) were assigned to one of four treatments: adequately fed (ADQ-CON; 100% NRC recommendation), nutrient restricted (RES-CON; 60% NRC recommendation), and ADQ or RES supplemented with 20 mg/d of melatonin (ADQ-MEL; RES-MEL). Placentomes, fetal blood, and hypothalamic tissue were collected at day 240 of gestation. Neurotransmitters were analyzed in fetal blood and fetal and placental tissues. Transcript abundance of genes in the serotonin pathway and catecholamine pathway were determined in fetal hypothalamus and placental cotyledon. RESULTS: Serotonin was increased (P < 0.05) by 12.5-fold in the blood of fetuses from RES dams versus ADQ in the fall study. Additionally, melatonin supplementation increased (P < 0.05) neurotransmitter metabolites and transcript abundance of the monoamine oxidase A (MAOA) enzyme in the cotyledon. In the summer study, plasma dopamine and placental dopamine receptors were decreased (P < 0.05) in RES dams versus ADQ. DISCUSSION: In conclusion, these data indicate novel evidence of the presence of neurotransmitters and their synthesis and metabolism in the bovine conceptus, which could have greater implications in establishing postnatal behavior.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal , Melatonina , Neurotransmissores , Placenta , Animais , Bovinos , Feminino , Gravidez , Feto/metabolismo , Fenômenos Fisiológicos da Nutrição Materna , Melatonina/farmacologia , Nutrientes , Placenta/metabolismo , Serotonina/metabolismo , Neurotransmissores/química , Neurotransmissores/farmacologia
8.
PLoS One ; 17(7): e0270657, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35793323

RESUMO

A maternal high-fat diet (HFD) can impact the offspring's development of liver steatosis, with fetal development in utero being a crucial period. Therefore, this study investigated the mechanism and whether butyrate can rescue liver injury caused by maternal HFD in the fetus. Pregnant female Sprague Dawley rats were randomly divided into two groups, prenatal HFD (58% fat) exposure or normal control diet (4.5% fat). The HFD group was fed an HFD 7 weeks before mating and during gestation until sacrifice at gestation 21 days. After confirmation of mating, the other HFD group was supplemented with sodium butyrate (HFSB). The results showed that maternal liver histology showed lipid accumulation with steatosis and shortened ileum villi in HFD, which was ameliorated in the HFSB group (P<0.05). There was increased fetal liver and ileum TUNEL staining and IL-6 expression with increased fetal liver TNF-α and malondialdehyde expression in the HFD group (P<0.05), which decreased in the HFSB group (P<0.05). The fetal liver expression of phospho-AKT/AKT and GPX1 decreased in the HFD group but increased in the HFSB group (P<0.05). In conclusion that oxidative stress with inflammation and apoptosis plays a vital role after maternal HFD in the fetus liver that can be ameliorated with butyrate supplementation.


Assuntos
Dieta Hiperlipídica , Fígado Gorduroso , Animais , Apoptose , Ácido Butírico/metabolismo , Ácido Butírico/farmacologia , Fígado Gorduroso/metabolismo , Feminino , Feto/metabolismo , Gravidez , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley
9.
Environ Int ; 166: 107362, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35749991

RESUMO

The adverse effects of plastic on adult animal and human health have been receiving increasing attention. However, its potential toxicity to fetuses has not been fully elucidated. Herein, biodistribution of polystyrene (PS) particles was determined after the maternal mice were orally given PS micro- and/or nano-particles with and without surface modifications during gestational days 1 to 17. The results showed that PS microplastics (MPs) and nanoparticles (NPs) mainly emerged in the alimentary tract, brain, uterus, and placenta in maternal mice, and only the latter infiltrated into the fetal thalamus. PS NPs and carboxyl-modified NPs induced differentially expressed genes mainly enriched in oxidative phosphorylation and GABAergic synapse. Maternal administration of PS particles during gestation led to anxiety-like behavior of the progenies and their γ-aminobutyric acid (GABA) reduction in the prefrontal cortex and amygdala at Week 8. N-Acetylcysteine (NAC), an antioxidant, alleviated PS particles-induced oxidative injury in the fetal brain and rescued the anxiety-like behavior of the progenies. Additionally, PS nanoparticles caused excessive ROS and apoptosis in neuronal cell lines, which were prevented by glutathione supplementation. These results suggested that PS particles produced a negative effect on fetuses by inducing oxidative injury and suppressing GABA synthesis in their brain. The findings contribute to estimating the risk for PS particles to human and animal health.


Assuntos
Nanopartículas , Poluentes Químicos da Água , Gravidez , Feminino , Humanos , Animais , Camundongos , Poliestirenos/toxicidade , Poliestirenos/metabolismo , Plásticos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Distribuição Tecidual , Feto/metabolismo , Apoptose , Ácido gama-Aminobutírico/metabolismo , Nanopartículas/toxicidade , Poluentes Químicos da Água/toxicidade
10.
Sci Rep ; 12(1): 9341, 2022 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-35662279

RESUMO

The adverse effects of maternal prenatal stress (PS) on child's neurodevelopment warrant the establishment of biomarkers that enable early interventional therapeutic strategies. We performed a prospective matched double cohort study screening 2000 pregnant women in third trimester with Cohen Perceived Stress Scale-10 (PSS-10) questionnaire; 164 participants were recruited and classified as stressed and control group (SG, CG). Fetal cord blood iron parameters of 107 patients were measured at birth. Transabdominal electrocardiograms-based Fetal Stress Index (FSI) was derived. We investigated sex contribution to group differences and conducted causal inference analyses to assess the total effect of PS exposure on iron homeostasis using a directed acyclic graph (DAG) approach. Differences are reported for p < 0.05 unless noted otherwise. Transferrin saturation was lower in male stressed neonates. The minimum adjustment set of the DAG to estimate the total effect of PS exposure on fetal ferritin iron biomarkers consisted of maternal age and socioeconomic status: SG revealed a 15% decrease in fetal ferritin compared with CG. Mean FSI was higher among SG than among CG. FSI-based timely detection of fetuses affected by PS can support early individualized iron supplementation and neurodevelopmental follow-up to prevent long-term sequelae due to PS-exacerbated impairment of the iron homeostasis.


Assuntos
Ferritinas , Feto , Biomarcadores , Estudos de Coortes , Feminino , Sangue Fetal/metabolismo , Feto/metabolismo , Homeostase , Humanos , Recém-Nascido , Ferro/metabolismo , Masculino , Gravidez , Estudos Prospectivos
11.
J Physiol ; 600(13): 3193-3210, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35587817

RESUMO

Prophylactic creatine treatment may reduce hypoxic brain injury due to its ability to sustain intracellular ATP levels thereby reducing oxidative and metabolic stress responses during oxygen deprivation. Using microdialysis, we investigated the real-time in vivo effects of fetal creatine supplementation on cerebral metabolism following acute in utero hypoxia caused by umbilical cord occlusion (UCO). Fetal sheep (118 days' gestational age (dGA)) were implanted with an inflatable Silastic cuff around the umbilical cord and a microdialysis probe inserted into the right cerebral hemisphere for interstitial fluid sampling. Creatine (6 mg kg-1  h-1 ) or saline was continuously infused intravenously from 122 dGA. At 131 dGA, a 10 min UCO was induced. Hourly microdialysis samples were obtained from -24 to 72 h post-UCO and analysed for percentage change of hydroxyl radicals (• OH) and interstitial metabolites (lactate, pyruvate, glutamate, glycerol, glycine). Histochemical markers of protein and lipid oxidation were assessed at post-mortem 72 h post-UCO. Prior to UCO, creatine treatment reduced pyruvate and glycerol concentrations in the microdialysate outflow. Creatine treatment reduced interstitial cerebral • OH outflow 0 to 24 h post-UCO. Fetuses with higher arterial creatine concentrations before UCO presented with reduced levels of hypoxaemia ( PO2${P_{{{\rm{O}}_{\rm{2}}}}}$ and SO2${S_{{{\rm{O}}_{\rm{2}}}}}$ ) during UCO which associated with reduced interstitial cerebral pyruvate, lactate and • OH accumulation. No effects of creatine treatment on immunohistochemical markers of oxidative stress were found. In conclusion, fetal creatine treatment decreased cerebral outflow of • OH and was associated with an improvement in cerebral bioenergetics following acute hypoxia. KEY POINTS: Fetal hypoxia can cause persistent metabolic and oxidative stress responses that disturb energy homeostasis in the brain. Creatine in its phosphorylated form is an endogenous phosphagen; therefore, supplementation is a proposed prophylactic treatment for fetal hypoxia. Fetal sheep instrumented with a cerebral microdialysis probe were continuously infused with or without creatine-monohydrate for 10 days before induction of 10 min umbilical cord occlusion (UCO; 131 days' gestation). Cerebral interstitial fluid was collected up to 72 h following UCO. Prior to UCO, fetal creatine supplementation reduced interstitial cerebral pyruvate and glycerol concentrations. Fetal creatine supplementation reduced cerebral hydroxyl radical efflux up to 24 h post-UCO. Fetuses with higher arterial creatine concentrations before UCO and reduced levels of systemic hypoxaemia during UCO were associated with reduced cerebral interstitial pyruvate, lactate and • OH following UCO. Creatine supplementation leads to some improvements in cerebral bioenergetics following in utero acute hypoxia.


Assuntos
Creatina , Hipóxia Fetal , Animais , Creatina/metabolismo , Creatina/farmacologia , Suplementos Nutricionais , Feminino , Hipóxia Fetal/metabolismo , Feto/metabolismo , Glicerol/metabolismo , Humanos , Hipóxia/metabolismo , Lactatos , Estresse Oxidativo , Gravidez , Piruvatos/metabolismo , Ovinos , Cordão Umbilical/fisiologia
12.
FASEB J ; 35(12): e22063, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34820909

RESUMO

Pregnancy places a unique stress upon choline metabolism, requiring adaptations to support both maternal and fetal requirements. The impact of pregnancy and prenatal choline supplementation on choline and its metabolome in free-living, healthy adults is relatively uncharacterized. This study investigated the effect of prenatal choline supplementation on maternal and fetal biomarkers of choline metabolism among free-living pregnant persons consuming self-selected diets. Participants were randomized to supplemental choline (as choline chloride) intakes of 550 mg/d (500 mg/d d0-choline + 50 mg/d methyl-d9-choline; intervention) or 25 mg/d d9-choline (control) from gestational week (GW) 12-16 until Delivery. Fasting blood and 24-h urine samples were obtained at study Visit 1 (GW 12-16), Visit 2 (GW 20-24), and Visit 3 (GW 28-32). At Delivery, maternal and cord blood and placental tissue samples were collected. Participants randomized to 550 (vs. 25) mg supplemental choline/d achieved higher (p < .05) plasma concentrations of free choline, betaine, dimethylglycine, phosphatidylcholine (PC), and sphingomyelin at one or more study timepoint. Betaine was most responsive to prenatal choline supplementation with increases (p ≤ .001) in maternal plasma observed at Visit 2-Delivery (relative to Visit 1 and control), as well as in the placenta and cord plasma. Notably, greater plasma enrichments of d3-PC and LDL-C were observed in the intervention (vs. control) group, indicating enhanced PC synthesis through the de novo phosphatidylethanolamine N-methyltransferase pathway and lipid export. Overall, these data show that prenatal choline supplementation profoundly alters the choline metabolome, supporting pregnancy-related metabolic adaptations and revealing biomarkers for use in nutritional assessment and monitoring during pregnancy.


Assuntos
Adaptação Fisiológica , Colina/administração & dosagem , Suplementos Nutricionais , Sangue Fetal/metabolismo , Feto/metabolismo , Metaboloma , Placenta/metabolismo , Adulto , Estudos de Casos e Controles , Colina/sangue , Feminino , Feto/efeitos dos fármacos , Humanos , Placenta/efeitos dos fármacos , Gravidez , Adulto Jovem
13.
Genes (Basel) ; 12(10)2021 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-34681028

RESUMO

The maternal environment during the periconceptional period influences foetal growth and development, in part, via epigenetic mechanisms moderated by one-carbon metabolic pathways. During embryonic development, one-carbon metabolism is involved in brain development and neural programming. Derangements in one-carbon metabolism increase (i) the short-term risk of embryonic neural tube-related defects and (ii) long-term childhood behaviour, cognition, and autism spectrum disorders. Here we investigate the association between maternal one-carbon metabolism and foetal and neonatal brain growth and development. Database searching resulted in 26 articles eligible for inclusion. Maternal vitamin B6, vitamin B12, homocysteine, and choline were not associated with foetal and/or neonatal head growth. First-trimester maternal plasma folate within the normal range (>17 nmol/L) associated with increased foetal head size and head growth, and high erythrocyte folate (1538-1813 nmol/L) with increased cerebellar growth, whereas folate deficiency (<7 nmol/L) associated with a reduced foetal brain volume. Preconceptional folic acid supplement use and specific dietary patterns (associated with increased B vitamins and low homocysteine) increased foetal head size. Although early pregnancy maternal folate appears to be the most independent predictor of foetal brain growth, there is insufficient data to confirm the link between maternal folate and offspring risks for neurodevelopmental diseases.


Assuntos
Encéfalo/crescimento & desenvolvimento , Carbono/metabolismo , Desenvolvimento Embrionário/genética , Desenvolvimento Fetal/genética , Encéfalo/metabolismo , Feminino , Desenvolvimento Fetal/fisiologia , Feto/metabolismo , Feto/fisiologia , Ácido Fólico/metabolismo , Humanos , Gravidez , Vitamina B 12/metabolismo
14.
Semin Hematol ; 58(3): 153-160, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34389107

RESUMO

A full-term pregnancy comes with significant demand for iron. Not meeting this demand has adverse effects on maternal health and on the intrauterine and postnatal development of the infant. In the infant, some of these adverse effects cannot be reversed by postnatal iron supplementation, highlighting the need to tackle iron deficiency in utero. Achieving this requires sound understanding of the pathways that govern iron transfer at the fetomaternal interface. Two pathways are emerging as key players in this context; the hepcidin/ferroportin axis pathway and the iron regulatory protein (IRPs) pathway. In late gestation, suppression of maternal hepcidin, by as yet unknown factors, is required for increasing iron availability to the growing fetus. In the placenta, the rate of iron uptake by transferrin receptor TfR1 at the apical/maternal side and of iron release by ferroportin FPN at the basal/fetal side is controlled by IRP1. In fetal hepatocytes, build up of fetal iron stores requires post-translational inhibition of FPN by the cell-autonomous action of hepcidin. In the fetal liver, FPN is also subject to additional control at the transcriptional level, possibly by the action of hypoxia-inducible factor HIF2α. The rates of apical iron uptake and basal iron release in the placenta are modulated according to iron availability in the maternal blood and the placenta's own needs. This placental modulation ensures that the amount of iron delivered to the fetal circulation is maintained within a normal range, even in the face of mild maternal iron deficiency or overload. However, when maternal iron deficiency or overload are extreme, placental modulation is not sufficient to maintain normal iron supply to the fetus, resulting in fetal iron deficiency and overload respectively. Thus, the rate of iron transfer at the fetomaternal interface is subject to several regulatory signals operating simultaneously in the maternal liver, the placenta and the fetal liver. These regulatory signals act in concert to maintain normal iron supply to the fetus within a wide range of maternal iron states, but fail to do so when maternal iron deficiency or overload are extreme. The limitations of existing experimental models must be overcome if we are to gain better understanding of the role of these regulatory signals in normal and complicated pregnancy. Ultimately, that understanding could help identify better markers of fetal iron demand and underpin novel iron replacement strategies to treat maternal and fetal iron deficiency.


Assuntos
Ferro , Mães , Feminino , Feto/metabolismo , Hepcidinas/metabolismo , Hepcidinas/farmacologia , Humanos , Ferro/metabolismo , Troca Materno-Fetal , Placenta/metabolismo , Gravidez
15.
J Nutr Biochem ; 98: 108813, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34242722

RESUMO

Omega (n)-3 polyunsaturated fatty acids (PUFA) are known to regulate lipid metabolism and inflammation; however, the regulation of maternal lipid metabolism and cytokines profile by n-3 PUFA during different gestation stages, and its impact on fetal sustainability is not known. We investigated the effects of maternal diet varying in n-3 PUFA prior to, and during gestation, on maternal metabolic profile, placental inflammatory cytokines, and fetal outcomes. Female C57BL/6 mice were fed either a high, low or very low (9, 3 or 1% w/w n-3 PUFA) diet, containing n-6:n-3 PUFA of 5:1, 20:1 and 40:1, respectively for two weeks before mating, and throughout pregnancy. Animals were sacrificed prior to mating (NP), and during pregnancy at gestation days 6.5, 12.5 and 18.5. Maternal metabolic profile, placental cytokines and fetal outcomes were determined. Our results show for the first time that a maternal diet high in n-3 PUFA prevented dyslipidemia in NP mice, and maintained the expected lipid profile during pregnancy. However, females fed the very low n-3 PUFA diet became hyperlipidemic prior to pregnancy, and carried this profile into pregnancy. Maternal diet high in n-3 PUFA maintained maternal plasma progesterone and placental pro-inflammatory cytokines profile, and sustained fetal numbers throughout pregnancy, while females fed the low and very-low n-3 PUFA diet had fewer fetuses. Our findings demonstrate the importance of maternal diet before, and during pregnancy, to maintain maternal metabolic profile and fetus sustainability. These findings are important when designing dietary strategies to optimize maternal metabolism during pregnancy for successful pregnancy outcome.


Assuntos
Citocinas/sangue , Ácidos Graxos Ômega-3/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Fenômenos Fisiológicos da Nutrição Materna , Animais , Dieta/métodos , Dislipidemias/prevenção & controle , Ácidos Graxos Insaturados/farmacologia , Feminino , Feto/efeitos dos fármacos , Feto/metabolismo , Inflamação/metabolismo , Lipídeos/sangue , Camundongos , Camundongos Endogâmicos C57BL , Placenta/metabolismo , Gravidez , Resultado da Gravidez
16.
Mol Reprod Dev ; 88(6): 437-458, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34008284

RESUMO

Genomic imprinting is important for mammalian development and its dysregulation can cause various developmental defects and diseases. The study evaluated the effects of different dietary combinations of folic acid and B12 on epigenetic regulation of IGF2R and KCNQ1OT1 ncRNA in C57BL/6 mice model. Female mice were fed diets with nine combinations of folic acid and B12 for 4 weeks. They were mated and off-springs born (F1) were continued on the same diet for 6 weeks postweaning and were allowed to mate. The placenta and fetal (F2) tissues were collected at day 20 of gestation. Dietary deficiency of folate (BNFD and BOFD) and B12 (BDFN) with either state of other vitamin or combined deficiency of both vitamins (BDFD) in comparison to BNFN, were overall responsible for reduced expression of IGF2R in the placenta (F1) and the fetal liver (F2) whereas a combination of folate deficiency with different levels of B12 revealed sex-specific differences in kidney and brain. The alterations in the expression of IGF2R caused by folate-deficient conditions (BNFD and BOFD) and both deficient condition (BDFD) was found to be associated with an increase in suppressive histone modifications. Over-supplementation of either folate or B12 or both vitamins in comparison to BNFN, led to increase in expression of IGF2R and KCNQ1OT1 in the placenta and fetal tissues. The increase in the expression of IGF2R caused by folate over-supplementation (BNFO) was associated with decreased DNA methylation in fetal tissues. KCNQ1OT1 noncoding RNA (ncRNA), however, showed upregulation under deficient conditions of folate and B12 only in female fetal tissues which correlated well with hypomethylation observed under these conditions. An epigenetic reprograming of IGF2R and KCNQ1OT1 ncRNA in the offspring was evident upon different dietary combinations of folic acid and B12 in the mice.


Assuntos
Dieta , Epigênese Genética/efeitos dos fármacos , Feto/efeitos dos fármacos , Ácido Fólico/farmacologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Placenta/efeitos dos fármacos , RNA Longo não Codificante/genética , Receptor IGF Tipo 2/genética , Vitamina B 12/farmacologia , Animais , Peso Corporal/efeitos dos fármacos , Encéfalo/embriologia , Encéfalo/metabolismo , Relação Dose-Resposta a Droga , Interações Medicamentosas , Feminino , Feto/metabolismo , Ácido Fólico/administração & dosagem , Ácido Fólico/sangue , Deficiência de Ácido Fólico/genética , Deficiência de Ácido Fólico/metabolismo , Impressão Genômica , Homocisteína/sangue , Rim/embriologia , Rim/metabolismo , Fígado/embriologia , Fígado/metabolismo , Masculino , Camundongos , Placenta/metabolismo , Gravidez , Complicações na Gravidez/genética , Complicações na Gravidez/metabolismo , RNA Longo não Codificante/metabolismo , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Receptor IGF Tipo 2/metabolismo , Vitamina B 12/administração & dosagem , Vitamina B 12/sangue , Deficiência de Vitamina B 12/genética , Deficiência de Vitamina B 12/metabolismo
17.
Cell Death Dis ; 12(6): 540, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34035229

RESUMO

The fecundity of female mammals is resolved by the limited size of the primordial follicle (PF) pool formed perinatally. The establishment of PF pool is accompanied by a significant programmed oocyte death. Long non-coding RNAs (lncRNA) are central modulators in regulating cell apoptosis or autophagy in multiple diseases, however, the significance of lncRNAs governing perinatal oocyte loss remains unknown. Here we find that Yin-Yang 1 (YY1) directly binds to the lncRNA X-inactive-specific transcript (Xist) promoter and facilitates Xist expression in the perinatal mouse ovaries. Xist is highly expressed in fetal ovaries and sharply downregulated along with the establishment of PF pool after birth. Gain or loss of function analysis reveals that Xist accelerates oocyte autophagy, mainly through binding to pre-miR-23b or pre-miR-29a in the nucleus and preventing the export of pre-miR-23b/pre-miR-29a to the cytoplasm, thus resulting in decreased mature of miR-23b-3p/miR-29a-3p expression and upregulation miR-23b-3p/miR-29a-3p co-target, STX17, which is essential for timely control of the degree of oocyte death in prenatal mouse ovaries. Overall, these findings identify Xist as a key non-protein factor that can control the biogenesis of miR-23b-3p/miR-29a-3p, and this YY1-Xist-miR-23b-3p/miR-29a-3p-STX17 regulatory axis is responsible for perinatal oocyte loss through autophagy.


Assuntos
Oócitos/fisiologia , Processamento Pós-Transcricional do RNA/genética , RNA Longo não Codificante/fisiologia , Animais , Animais Recém-Nascidos , Autofagia/genética , Células Cultivadas , Regulação para Baixo/genética , Feminino , Feto/metabolismo , Células HEK293 , Humanos , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Células NIH 3T3 , Ovário/crescimento & desenvolvimento , Ovário/metabolismo , Gravidez , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , Transporte de RNA/genética , Regulação para Cima/genética , Fator de Transcrição YY1/fisiologia
18.
Nutrients ; 13(2)2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33540766

RESUMO

Creatine metabolism is an important component of cellular energy homeostasis. Via the creatine kinase circuit, creatine derived from our diet or synthesized endogenously provides spatial and temporal maintenance of intracellular adenosine triphosphate (ATP) production; this is particularly important for cells with high or fluctuating energy demands. The use of this circuit by tissues within the female reproductive system, as well as the placenta and the developing fetus during pregnancy is apparent throughout the literature, with some studies linking perturbations in creatine metabolism to reduced fertility and poor pregnancy outcomes. Maternal dietary creatine supplementation during pregnancy as a safeguard against hypoxia-induced perinatal injury, particularly that of the brain, has also been widely studied in pre-clinical in vitro and small animal models. However, there is still no consensus on whether creatine is essential for successful reproduction. This review consolidates the available literature on creatine metabolism in female reproduction, pregnancy and the early neonatal period. Creatine metabolism is discussed in relation to cellular bioenergetics and de novo synthesis, as well as the potential to use dietary creatine in a reproductive setting. We highlight the apparent knowledge gaps and the research "road forward" to understand, and then utilize, creatine to improve reproductive health and perinatal outcomes.


Assuntos
Creatina/metabolismo , Saúde do Lactente , Reprodução/fisiologia , Trifosfato de Adenosina/biossíntese , Animais , Encéfalo/embriologia , Creatina/administração & dosagem , Dieta , Metabolismo Energético/fisiologia , Feminino , Desenvolvimento Fetal/fisiologia , Feto/metabolismo , Genitália Feminina/metabolismo , Humanos , Recém-Nascido , Masculino , Placenta/metabolismo , Gravidez
19.
Nutrients ; 13(2)2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33557158

RESUMO

Docosahexaenoic acid (DHA) supplementation during pregnancy has been recommended by several health organizations due to its role in neural, visual, and cognitive development. There are several fat sources available on the market for the manufacture of these dietary supplements with DHA. These fat sources differ in the lipid structure in which DHA is esterified, mainly phospholipids (PL) and triglycerides (TG) molecules. The supplementation of DHA in the form of PL or TG during pregnancy can lead to controversial results depending on the animal model, physiological status and the fat sources utilized. The intestinal digestion, placental uptake, and fetal accretion of DHA may vary depending on the lipid source of DHA ingested by the mother. The form of DHA used in maternal supplementation that would provide an optimal DHA accretion for fetal brain development, based on the available data obtained most of them from different animal models, indicates no consistent differences in fetal accretion when DHA is provided as TG or PL. Other related lipid species are under evaluation, e.g., lyso-phospholipids, with promising results to improve DHA bioavailability although more studies are needed. In this review, the evidence on DHA bioavailability and accumulation in both maternal and fetal tissues after the administration of DHA supplementation during pregnancy in the form of PL or TG in different models is summarized.


Assuntos
Suplementos Nutricionais , Ácidos Docosa-Hexaenoicos/metabolismo , Fosfolipídeos/administração & dosagem , Cuidado Pré-Natal/métodos , Triglicerídeos/administração & dosagem , Animais , Modelos Animais de Doenças , Feminino , Feto/metabolismo , Humanos , Camundongos , Mães , Gravidez , Ratos , Suínos
20.
Sci Rep ; 11(1): 621, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436686

RESUMO

Late Onset Alzheimer's Disease is the most common cause of dementia, characterized by extracellular deposition of plaques primarily of amyloid-ß (Aß) peptide and tangles primarily of hyperphosphorylated tau protein. We present data to suggest a noninvasive strategy to decrease potentially toxic Aß levels, using repeated electromagnetic field stimulation (REMFS) in primary human brain (PHB) cultures. We examined effects of REMFS on Aß levels (Aß40 and Aß42, that are 40 or 42 amino acid residues in length, respectively) in PHB cultures at different frequencies, powers, and specific absorption rates (SAR). PHB cultures at day in vitro 7 (DIV7) treated with 64 MHz, and 1 hour daily for 14 days (DIV 21) had significantly reduced levels of secreted Aß40 (p = 001) and Aß42 (p = 0.029) peptides, compared to untreated cultures. PHB cultures (DIV7) treated at 64 MHz, for 1 or 2 hour during 14 days also produced significantly lower Aß levels. PHB cultures (DIV28) treated with 64 MHz 1 hour/day during 4 or 8 days produced a similar significant reduction in Aß40 levels. 0.4 W/kg was the minimum SAR required to produce a biological effect. Exposure did not result in cellular toxicity nor significant changes in secreted Aß precursor protein-α (sAPPα) levels, suggesting the decrease in Aß did not likely result from redirection toward the α-secretase pathway. EMF frequency and power used in our work is utilized in human magnetic resonance imaging (MRI, thus suggesting REMFS can be further developed in clinical settings to modulate Aß deposition.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/metabolismo , Campos Eletromagnéticos , Feto/metabolismo , Regulação da Expressão Gênica/efeitos da radiação , Precursor de Proteína beta-Amiloide/genética , Encéfalo/efeitos da radiação , Feto/efeitos da radiação , Humanos , Magnetoterapia , Proibitinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA